JPS60177936A - Thin strip consisting of fe-base amorphous alloy having large thickness - Google Patents

Thin strip consisting of fe-base amorphous alloy having large thickness

Info

Publication number
JPS60177936A
JPS60177936A JP59033335A JP3333584A JPS60177936A JP S60177936 A JPS60177936 A JP S60177936A JP 59033335 A JP59033335 A JP 59033335A JP 3333584 A JP3333584 A JP 3333584A JP S60177936 A JPS60177936 A JP S60177936A
Authority
JP
Japan
Prior art keywords
amorphous alloy
cooling
paddle
alloy ribbon
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59033335A
Other languages
Japanese (ja)
Other versions
JPS6340624B2 (en
Inventor
Shun Sato
駿 佐藤
Tsutomu Ozawa
小澤 勉
Toshio Yamada
山田 利男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59033335A priority Critical patent/JPS60177936A/en
Priority to DE19843442009 priority patent/DE3442009A1/en
Publication of JPS60177936A publication Critical patent/JPS60177936A/en
Priority to US07/102,274 priority patent/US4865664A/en
Publication of JPS6340624B2 publication Critical patent/JPS6340624B2/ja
Priority to US08/083,851 priority patent/US5301742A/en
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • C21D8/1211Rapid solidification; Thin strip casting

Abstract

PURPOSE:To manufacture a titled thin strip having a good surface of specific thickness and width or above by subjecting the unsolidified free surface side, on a cooling bare body, of the thin alloy strip drawn out of a paddle to pressurization by direct injection of gas, etc. thereby intensifying forced cooling and heat contact and increasing the solidifying rate. CONSTITUTION:A thin alloy strip drawn out of a paddle at a high speed is quickly cooled as it travels at an equal speed on a cooling bare body. The unsolidified free surface thereof is pressurized by the cooling gas injected directly thereto and the heat contact with the bare body is increased to increase the solidifying rate. The thickness of the thin strip consisting of the Fe amorphous alloy is made to >=45mum thinkness, >=20mm. width and <=0.5mum free surface Ra with respect to 0.8 cut-off value in surface roughness by such increase in the solidifying rate. The roll surface is also made to <=0.5mum Ra. The increase in the cooling method is executed by a method of increasing the pressure over the entire part of the atmosphere and exerting pressure to the paddle itself or superposing the 2nd paddle on the unsolidified thin strip emitted from the paddle and pressing the same.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は移動する冷却基板の表面で溶融状態にある金属
(合金)を急冷凝固する方法によってつくられる板厚の
大きなFe基基孔晶質合金薄帯関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a large Fe-based porous crystalline material produced by rapidly solidifying a metal (alloy) in a molten state on the surface of a moving cooling substrate. This relates to alloy ribbons.

(従来技術) 金属(合金)を溶融状態から急冷して連続的に薄帯をつ
くる方法として基本的なものに遠心急冷法、単ロール法
で代表される溶融紡糸法がある。
(Prior Art) The basic methods for continuously producing thin ribbons by rapidly cooling metals (alloys) from a molten state include the centrifugal quenching method and the melt spinning method represented by the single roll method.

この方法は回転する金属製ドラムの内周面又は外周面に
溶融金属のジェットを噴出して急冷凝固させ、−気に金
属の薄帯や線をつくるものである。
In this method, a jet of molten metal is ejected onto the inner or outer surface of a rotating metal drum to rapidly cool and solidify it, thereby creating a thin metal ribbon or wire.

この方法によれば冷却速度がきわめてはやいので、合金
組成を適正に選ぶならば液体金属に類似した構造をもつ
非晶質金属(合金)を得ることができる。
According to this method, the cooling rate is extremely fast, so if the alloy composition is appropriately selected, an amorphous metal (alloy) having a structure similar to that of liquid metal can be obtained.

非晶質金属(合金)は特異な性質によって実用的に注目
されている金属材料であるが、冷却速度に関する制約か
ら薄い板厚の材料しか製造できない点が応用範囲を制限
していた。
Amorphous metals (alloys) are metal materials that have attracted practical attention due to their unique properties, but the range of applications has been limited by the fact that only thin plates can be manufactured due to constraints on cooling rates.

一般に非晶質合金の最大板厚は合金組成と装置の冷却能
に依存する。非晶質化可能な板厚の組成依存性は実用的
に重要な鉄基合金を中心に調べられており、Hagiw
araらの報告Sc1. Rep+ Re+。
Generally, the maximum thickness of an amorphous alloy depends on the alloy composition and the cooling capacity of the device. The composition dependence of the plate thickness that can be made amorphous has been investigated mainly for iron-based alloys, which are of practical importance, and Hagiw
Ara et al.'s report Sc1. Rep+ Re+.

Inat、 Tohoku Univ、 A−29(1
981)、 351によれば鉄基半金属系合金で最も非
晶質化しやすいのはFe −8I−BおよびFe−P−
C系合金で、最大板厚はFe−8i−Bの場合Fe75
SljDB15の250 μmと報告されている。
Inat, Tohoku Univ, A-29(1
981), 351, the iron-based semimetallic alloys that are most likely to become amorphous are Fe-8I-B and Fe-P-
For C-based alloys, the maximum plate thickness is Fe75 for Fe-8i-B.
It is reported to be 250 μm for SljDB15.

しかしながらこの方法は厚い板厚の試料を得るために冷
却基板(ロール)の回転に急ブレーキをかけることによ
って、回転速度を落とすという特別の手段を講じており
、はじめに設定した一定条件では厚い非晶質材料が得ら
れず、このような非定常状態でのみ厚手の非晶質薄帯が
得られることも明らかにしている。したがってHagi
waraらの方法によって得られる材料は工業的に利用
可能な材料ではないことは明らかである。しかも、この
報告にある最大板厚250μmという値については異論
が唱えられている。すなわちLuborskyらの報告
IEEE Trans、 Magnatlcs+ MA
G−18(1982)1385によればFe−8i−B
合金で実質的に完全な非晶質状態で得られる最大板厚は
Fe74Si1oB16の42μmで、これ以上板厚が
大きくなると微細結晶の形成によると考えられる保磁力
の増加が認められると述べている。Luborskyら
はまたHagiwaraらとの結果の食い違いについて
、Hagiwara I−、が非晶質化の判定に光学顕
微煉(倍率100倍)を用いたことを挙げ、光学顕微鏡
で検出できない程度の微址の結晶でも、磁性などの特性
を劣化させると指摘している。
However, this method takes special measures to reduce the rotation speed by suddenly applying a brake to the rotation of the cooling substrate (roll) in order to obtain a thick sample. It has also been revealed that thick amorphous ribbons can only be obtained under such unsteady conditions, without the ability to obtain solid materials. Therefore, Hagi
It is clear that the material obtained by the method of Wara et al. is not an industrially applicable material. Furthermore, there are disputes regarding the maximum plate thickness of 250 μm in this report. That is, the report of Luborsky et al. IEEE Trans, Magnatlcs+ MA
According to G-18 (1982) 1385, Fe-8i-B
The maximum plate thickness that can be obtained in a substantially completely amorphous alloy is 42 μm for Fe74Si1oB16, and it is stated that if the plate thickness becomes larger than this, an increase in coercive force is observed, which is thought to be due to the formation of fine crystals. Regarding the discrepancy in the results with Hagiwara et al., Luborsky et al. pointed out that Hagiwara I- used optical microscopy (100x magnification) to determine amorphization, and that microscopic microstructures that could not be detected with an optical microscope were used by Luborsky et al. It has been pointed out that even in crystals, it deteriorates properties such as magnetism.

Luborakyらの説が正しいとする々らば、Hag
iwaraらの報告にある250μmの板厚の非晶質材
料には光学顕微鏡では観察されないが、特性を劣化させ
る微結晶が含着れていることになる。
If Luboraky et al.'s theory is correct, then Hag
The 250 μm thick amorphous material reported by Iwara et al. contains microcrystals that degrade the properties, although they are not observed with an optical microscope.

またもしHagiwaraらの厚い試、料が完全に非晶
質であったとしても、彼らの実験は幅約1脇の狭い試料
で行なわれたものであり幅広の材料で同じ厚さは保証さ
れない。狭幅材料の場合基板を伝わる熱の流れは2次元
的であるのに対して、幅広材料では基板を伝わる熱の流
れが1次元的となり、結果として冷却速度は大幅に低下
するためである。
Also, even if Hagiwara et al.'s thick sample were completely amorphous, their experiments were conducted with a narrow sample, about 1 inch wide, and the same thickness cannot be guaranteed with a wider material. This is because in the case of a narrow material, the heat flow across the substrate is two-dimensional, whereas in the case of a wide material, the heat flow across the substrate is one-dimensional, and as a result, the cooling rate is significantly reduced.

ところで非晶質合金のうちFe基合金は安価で特性もす
ぐれておシ実用的に極めて有用な材料であるが、非晶質
形成能が低いため薄いものしか得られず、従って用途と
して非常に有用とされているトランス用鉄心に使用する
場合にも巻鉄心の形でしか使用できない等の問題があっ
た。いずれにしても現在の技術では板厚が大きくかつ幅
の広いFe基非晶質合金薄帯を工業的に生産することは
困難とされていた。
By the way, among amorphous alloys, Fe-based alloys are inexpensive, have excellent properties, and are extremely useful materials from a practical standpoint. Even when used in transformer cores, which are considered useful, there are problems such as they can only be used in the form of wound cores. In any case, it has been difficult to industrially produce a thick and wide Fe-based amorphous alloy ribbon using current technology.

(発明の目的) 本発明は前記のような従来技術では達成できなかった厚
くて幅の広いFe基非晶質合金薄帯を提供するものであ
る。
(Objective of the Invention) The present invention provides a thick and wide Fe-based amorphous alloy ribbon that could not be achieved with the prior art as described above.

(発明の構成、作用) 本発明のFe基非晶質合金薄帯は広幅で従来のものに比
べて板厚が大きいのが特徴である。板厚の大きさは少な
くとも45μm1幅は少なくとも20咽である。
(Structure and operation of the invention) The Fe-based amorphous alloy ribbon of the present invention is characterized by being wide and thicker than conventional ribbons. The plate thickness is at least 45 μm and the width is at least 20 μm.

本発明のFe基非晶質合金薄帯はさらにその表面が、従
来の単ロール法で作製される薄帯に比べて、ロール面、
フリー面ともに滑らかである。
The Fe-based amorphous alloy ribbon of the present invention further has a surface that is smoother than the roll surface, compared to a ribbon produced by the conventional single roll method.
Both free surfaces are smooth.

JIS BO2旧に規定された方法で測定したカットオ
フ値0.8wnにおける中心線平均粗さRaは第1表に
示す通りいずれもロール面、フリー面ともに(5) 0.5μm以下であった。この値は従来材のC−ル面0
.6〜1.3μm1フリ一面0.6〜1.5 fimに
比べて小さくすぐれた値となっている。
As shown in Table 1, the centerline average roughness Ra at a cutoff value of 0.8wn measured by the method prescribed in JIS BO2 old was (5) 0.5 μm or less for both the roll surface and the free surface. This value is the C-rule surface 0 of the conventional material.
.. This is a smaller and better value than 0.6 to 1.5 fim per surface of 6 to 1.3 μm.

板厚が大きく、表面が滑らかな特徴を反映して本発明の
非晶質合金薄帯は積層したときの占積率がきわめて高い
。従来材の占積率75〜85係であるのに対し、本発明
の非晶質合金薄帯は85〜95壬である。
Reflecting the large thickness and smooth surface, the amorphous alloy ribbon of the present invention has an extremely high space factor when laminated. While the space factor of the conventional material is 75-85, the amorphous alloy ribbon of the present invention has a space factor of 85-95.

本発明の非晶質合金薄帯は、板厚が大きいにもかかわら
ず、特性の劣化が々い。理由は、厚くても全板厚を通し
て実質的に非晶質状態にあるため、非晶質特有の性質を
保持しているからである。例えば、磁性に関して、Fe
ao 、 ss l b 、 5Bi 2CI (at
%)の25μm厚、25咽幅の非晶質合金薄帯の50H
z (ヘルツ)、10e(エルステッド)における磁束
密度は、1.53 T (テスラ)であるが、同じ組成
で65μm厚、25咽幅の本発明の非晶質合金薄帯は、
50Hz、10eにおいて同じ1.53Tを示し、劣化
のないことが明らかである。
Although the amorphous alloy ribbon of the present invention has a large thickness, its properties often deteriorate. The reason is that even if the material is thick, it remains substantially amorphous throughout the entire thickness and thus retains properties unique to amorphous materials. For example, regarding magnetism, Fe
ao, ss l b, 5Bi 2CI (at
%) of 25μm thick, 25mm wide amorphous alloy ribbon 50H
The magnetic flux density at z (hertz) and 10e (oersted) is 1.53 T (tesla), but the amorphous alloy ribbon of the present invention with the same composition and 65 μm thickness and 25 mm width is
It shows the same 1.53T at 50Hz and 10e, and it is clear that there is no deterioration.

次に本発明の厚手非晶質合金薄帯をつくる方法(6) について述べる。Next, the method for producing the thick amorphous alloy ribbon of the present invention (6) Let's talk about.

本発明の非晶質合金薄帯は次のような本質的に冷却速度
を高める手段によって作製することができる。
The amorphous alloy ribbon of the present invention can be produced by the following means that essentially increase the cooling rate.

単ロール法(又はベルト法)のように移動する冷却基板
の表面に噴出された溶融金属は基板上に湯溜り(以下パ
ドルと呼ぶ)を形成し、基板に接した部分から凝固が進
行する。大きな板厚を得るためには大きな凝固速度が必
要である。従来から採用されているような、噴出圧を高
める、冷却基板の移動速度を小さくする、ノズルと基板
間のギャップ距離を広げるなどの方法では作製できる薄
帯の厚さには限界(はぼ45μmまただし201幅以上
の場合)があり、無理にそれ以上の板厚をつくろうとす
ると形状や表面性状、特性が劣化する。したがって形状
や特性を損わずに厚い板厚を得るためには、本質的に凝
固速度を高める手段を講する必要がある。凝固速度を高
めるために本発明者らは次の方法を適用し、厚手幅広非
晶質合金薄帯を作製した。
Molten metal ejected onto the surface of a moving cooling substrate as in the single roll method (or belt method) forms a puddle (hereinafter referred to as a puddle) on the substrate, and solidification progresses from the portion in contact with the substrate. A high solidification rate is required to obtain a large plate thickness. There is a limit to the thickness of the thin strip that can be produced using conventional methods such as increasing the ejection pressure, reducing the moving speed of the cooling substrate, and increasing the gap distance between the nozzle and the substrate (approximately 45 μm). Also, if you try to make the board thicker than that (if the width is more than 201 mm), the shape, surface quality, and characteristics will deteriorate. Therefore, in order to obtain a thick plate without impairing the shape or properties, it is necessary to take measures to essentially increase the solidification rate. In order to increase the solidification rate, the present inventors applied the following method to produce a thick and wide amorphous alloy ribbon.

本発明の厚手幅広非晶質合金薄帯は凝固時の冷却速度を
高める方法によって作製される。す々わちパドルから引
き出された合金が未凝固状態にある間に、合金と冷却基
板との間の熱的接触を高める手段を有する方法による。
The thick and wide amorphous alloy ribbon of the present invention is produced by a method that increases the cooling rate during solidification. ie by means of increasing the thermal contact between the alloy and the cooled substrate while the alloy drawn from the paddle is in an unsolidified state.

具体的にはガス圧力、あるいは第2、第3のノズル開口
部から噴出される溶湯流の圧力を利用する。
Specifically, gas pressure or the pressure of the molten metal flow jetted from the second and third nozzle openings is used.

ガス圧力を利用する方法には2つの方法があり、1つは
パドルから引き出された合金薄帯の自由面側が未凝固状
態にある部分に直接ガス噴射によって圧力を加える方法
で、他はパドルを含む未凝固薄帯全体を囲む雰囲気の圧
力を高める方法である。
There are two methods to use gas pressure. One is to apply pressure directly to the unsolidified free side of the alloy ribbon pulled out from the paddle by gas injection, and the other is to apply pressure directly to the unsolidified free side of the alloy ribbon pulled out from the paddle. This method increases the pressure of the atmosphere surrounding the entire unsolidified ribbon.

前者は、従来から提案されている方法、例えば米国特許
第3862658号明細書記載の方法と一見似ているが
次の点で全く異なるものである。従来の方法はパドルか
ら引き出された非晶質合金薄帯が完全に凝固した部分に
ガス圧や補助ロール(又はベルト)などを押し付ける。
The former method appears to be similar to conventionally proposed methods, such as the method described in US Pat. No. 3,862,658, but is completely different in the following points. In the conventional method, a gas pressure or an auxiliary roll (or belt) is pressed against the completely solidified amorphous alloy ribbon pulled out from the paddle.

したがって凝固速度を高めるものではなく厚い板厚の非
晶質合金薄帯をつくることはできない。
Therefore, it does not increase the solidification rate and it is not possible to produce a thick amorphous alloy ribbon.

第2の方法は雰囲気全体を高圧にするもので、引き出さ
れた非晶質合金薄帯の部分だけでなくパドル自身に圧力
が加えられるので凝固速度はさらに大きく々す、厚い非
晶質合金薄帯の製造が一層容易になる。
The second method is to make the entire atmosphere high pressure, and since pressure is applied not only to the drawn amorphous alloy ribbon but also to the paddle itself, the solidification rate is even greater. Manufacture of the belt becomes easier.

ガスの圧力を利用しない方法としては、本発明者の発明
に係る溶湯流の圧力を利用する方法がある(特願昭58
−216287号)。この方法は1つの・セドルから引
き出された非晶質合金薄帯が未凝固にある間に第2のノ
ンドルを重ね合わせるもので、第2の・母ドルによって
加えられる押し圧によって冷却基板との熱的コンタクト
が高まυ凝固速度は増加する。このように次々とパドル
を重ね合わせることによって高められた冷却速度の下で
合金の非晶質臨界板厚に相当する厚い非晶質合金薄帯の
製造が可能である。
As a method that does not utilize gas pressure, there is a method that utilizes the pressure of the molten metal flow according to the invention of the present inventor (Japanese Patent Application No. 1983).
-216287). In this method, a second nondle is superimposed on the amorphous alloy ribbon drawn from one nondle while it is still unsolidified, and the pressure applied by the second nondle allows the noncrystalline alloy ribbon to be bonded to the cooling substrate. The thermal contact increases and the solidification rate increases. By stacking paddles one after another in this manner, it is possible to produce a thick amorphous alloy ribbon corresponding to the amorphous critical thickness of the alloy under the increased cooling rate.

本発明の非晶質合金薄帯は板厚が大きいだけでなく表面
性状がすぐれている点が特徴である。すでに述べたよう
に、厚い板厚を得るために、非晶質合金薄帯と冷却基板
との熱的コンタクトを良くす(9) る手段が講じられるが、これは同時に基板面側に巻き込
む気泡のサイズおよび数を低減させる。この結果非晶質
合金薄帯の基板面は単ロール法など片面冷却法特有の気
泡によるくほみが小さく、かつ少ない滑らかな表面性状
を有する。非晶質合金薄帯と冷却基板との熱的接触が向
上した効果は自由面側の表面性状にも表われる。・ぐド
ル内における熱伝達の不均一性が減するので、凝固界面
は平坦になり、その結果、引き出される非晶質合金薄帯
の自由面も平滑になる。本発明の厚手幅広非晶質合金薄
帯の表面をJIS B12O3法で測るとカットオフ値
0.8 mmに対して基板側の面(単ロール法の場合、
ロール面側)のRaは02〜0.5μm1自由面は0.
1〜0.5μmであり、従来の片面冷却法で作製される
非晶質合金薄帯の基板面0.6〜1.38m1自由面0
.6〜1.5μmに比べてきわめて清めらかなことが明
らかである。
The amorphous alloy ribbon of the present invention is characterized not only by its large thickness but also by its excellent surface quality. As already mentioned, in order to obtain a thick plate, measures are taken to improve the thermal contact between the amorphous alloy ribbon and the cooling substrate (9), but this also reduces air bubbles that are drawn into the substrate surface. reduce the size and number of As a result, the substrate surface of the amorphous alloy ribbon has a smooth surface with fewer bubbles, which are characteristic of single-sided cooling methods such as a single roll method. The effect of improved thermal contact between the amorphous alloy ribbon and the cooling substrate is also reflected in the surface texture of the free surface side. - Since the non-uniformity of heat transfer within the grain is reduced, the solidification interface becomes flat, and as a result, the free surface of the drawn amorphous alloy ribbon also becomes smooth. When the surface of the thick and wide amorphous alloy ribbon of the present invention is measured using the JIS B12O3 method, the cutoff value is 0.8 mm, and the surface on the substrate side (in the case of the single roll method,
The Ra of the roll surface side is 02 to 0.5 μm, and the free surface is 0.
1 to 0.5 μm, and the substrate surface of the amorphous alloy ribbon produced by the conventional single-sided cooling method is 0.6 to 1.38 m1, and the free surface is 0.
.. It is clear that it is extremely smooth compared to 6-1.5 μm.

本発明の非晶質合金薄帯は厚く、表面が平滑であること
に由来して、積層したときの占積率がきわめて高い。本
発明の板厚平均60μm1幅25覇(10) の非晶質合金薄帯を外径40咽のボビンに750gを2
 kQの張力で巻き取ったときの占積率は91係であっ
た。これに対して従来材の占積率は30μm厚の場合8
0〜85係が普通である。占積率の高い材料は磁気コア
などに用いる場合、小型化でき実用上有利である。
Since the amorphous alloy ribbon of the present invention is thick and has a smooth surface, it has an extremely high space factor when laminated. 750 g of the amorphous alloy ribbon of the present invention with an average thickness of 60 μm and a width of 25 mm (10 mm) was placed on a bobbin with an outer diameter of 40 mm.
The space factor was 91 when wound up with a tension of kQ. In contrast, the space factor of conventional material is 8 when the thickness is 30 μm.
0 to 85 is normal. When a material with a high space factor is used for a magnetic core or the like, it is practically advantageous because it can be miniaturized.

本発明の非晶質合金薄帯はFeを主成分とし、B 、 
St 、 C、P等の1棟′!l:たけ2種以上を半金
属として含む合金であり、また要求される特性に応じて
Feを一部他の金属と置換してもよい。すなわち磁気特
性を要求される場合にはFeの1重2以内の量をCo 
、 Niの1種または2種と置換してもよい。ま之磁気
特性改善のためにMo 、 Nb 。
The amorphous alloy ribbon of the present invention has Fe as a main component, B,
One building for St, C, P, etc.'! l: An alloy containing two or more metals as metalloids, and Fe may be partially replaced with other metals depending on the required characteristics. In other words, when magnetic properties are required, Co
, may be replaced with one or two types of Ni. Mo and Nb to improve magnetic properties.

Mn 、 Snの1種または2種以上、耐食性改善のた
めにMo、Cr、Ti lZr1VIHf、Ta、Wの
1種または2種以上、機械的特性改善のためにMn+A
t、Cu、Sn等を添加してもよい。なお含有量の範囲
はFeは40〜82%(at4、以下同じ)(但しFe
の1重2以内をCo、Niの1種または2種と置換可能
)、Bは8〜17qb、Siは、1〜15%、Cは3%
以下、その他の元素は合計10チ以下の範囲で用途に応
じて選択される。また合金を構成する全元素の合計を1
00%とする。
One or more types of Mn, Sn, one or more types of Mo, Cr, TilZr1VIHf, Ta, W to improve corrosion resistance, Mn+A to improve mechanical properties
t, Cu, Sn, etc. may be added. The content range for Fe is 40 to 82% (at4, the same applies hereinafter) (however, Fe
can be replaced with one or two of Co and Ni), B is 8 to 17 qb, Si is 1 to 15%, and C is 3%.
Hereinafter, other elements will be selected depending on the purpose within a total amount of 10 or less. Also, the total of all elements constituting the alloy is 1
00%.

本発明の非晶質合金薄帯を例えば鉄心材料として用いる
場合の組成はFeaBbSicC4が好適であり、各成
分の範囲はaニア7〜82.b二8〜]、 5 、 c
 : 4〜]−5、a : o〜3である。
When the amorphous alloy ribbon of the present invention is used, for example, as an iron core material, the preferred composition is FeaBbSicC4, and the range of each component is a-nea 7 to 82. b28~], 5, c
: 4~]-5, a: o~3.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

実施例I Cu製の単ロールを用いて、第1表の組成の合金を幅2
5 mNの非晶質合金薄帯に鋳造した。但しノズルは第
1図に示すような3重のスロット状の開口部(幅d 0
.4 mm +長さ7125 mm +間隔a1mm)
を有するものを用い、製造条件は噴出圧020〜0、3
5 kg/cm2、ロール周速20〜28m/sec%
ノズルとロールの間隔0.15〜0.25 mmで行な
った。
Example I Using a single roll made of Cu, an alloy having the composition shown in Table 1 was rolled in a width of 2
A 5 mN amorphous alloy ribbon was cast. However, the nozzle has a triple slot-shaped opening (width d 0
.. 4 mm + length 7125 mm + spacing a1 mm)
The manufacturing conditions are: jet pressure 020~0,3
5 kg/cm2, roll peripheral speed 20-28 m/sec%
The test was carried out with a distance between the nozzle and the roll of 0.15 to 0.25 mm.

各組成の非晶質合金薄帯の板厚、表面粗さ、占積率を第
1表に示した。
Table 1 shows the plate thickness, surface roughness, and space factor of the amorphous alloy ribbon of each composition.

また第1表には、単ロール法を用いて作製される、従来
材の代表的特性を比較例として挙げた。
Furthermore, Table 1 lists typical characteristics of conventional materials produced using the single roll method as comparative examples.

本発明の非晶質合金薄帯は従来材に比べて、板厚が大き
く表面粗さが小さく、占積率が高いことが明らかである
。本発明非晶質合金薄帯(板厚62μm)と比較材(板
厚40μm)の表面粗さのプロフィルの例を第2図(a
)〜(d)に示した。(IL)は本発明非晶質合金薄帯
の自由面、(b)は同上ロール面、(C)は比較材の自
由面、(d)は同上ロール面である。
It is clear that the amorphous alloy ribbon of the present invention has a larger thickness, lower surface roughness, and higher space factor than conventional materials. Figure 2 (a) shows an example of the surface roughness profile of the amorphous alloy ribbon of the present invention (thickness: 62 μm) and the comparative material (thickness: 40 μm).
) to (d). (IL) is the free surface of the amorphous alloy ribbon of the present invention, (b) is the roll surface of the same as above, (C) is the free surface of the comparative material, and (d) is the roll surface of same as above.

また、実施例1の方法によって作製された本発明の非晶
質合金に従来材にはない次の特徴がある。
Furthermore, the amorphous alloy of the present invention produced by the method of Example 1 has the following characteristics not found in conventional materials.

すなわち第1表の合金A1の鋳造捷まの非晶質合金薄帯
の磁区構造は第3図(a)のようである。第3図(b)
に示す従来材の鋳造ままの磁区構造に比べて本発明の非
晶質合金薄帯のそれは全く異なる様相をしている。すな
わち従来材は複雑々迷路状の磁区模様を示すのに対して
、本発明の非晶質合金薄帯は鋳造ま壕ですでに長さ方向
に揃った1 80’ai区から成っている。これは非晶
質合金薄帯内部のひずみ量、分布などが両者全く異なる
ことを示すものである。
That is, the magnetic domain structure of the cast and unrolled amorphous alloy ribbon of alloy A1 in Table 1 is as shown in FIG. 3(a). Figure 3(b)
Compared to the as-cast magnetic domain structure of the conventional material shown in Figure 1, the amorphous alloy ribbon of the present invention has a completely different aspect. That is, while the conventional material exhibits a complicated labyrinth-like magnetic domain pattern, the amorphous alloy ribbon of the present invention consists of 180'ai sections already aligned in the length direction in the casting trench. This shows that the amount and distribution of strain inside the amorphous alloy ribbon are completely different.

本発明の非晶質合金薄帯は第3図(a)の磁区模様(]
3) から示唆されるように鋳造ま1でも高周波トランスの鉄
心など多様な磁気応用が考えられる。
The amorphous alloy ribbon of the present invention has a magnetic domain pattern (] as shown in FIG. 3(a).
As suggested by 3), various magnetic applications such as iron cores of high-frequency transformers can be considered even with casting.

第4図(a) 、 (b)は磁界中焼鈍後の磁区構造を
比較したものである。本発明の非晶質合金薄帯(a)は
従来材(b)に比べて磁区の幅が数倍に大きい。これは
表面の滑らかさに由来して、磁壁の移動を抑える表面欠
陥が少ないためと考えられる。
FIGS. 4(a) and 4(b) compare the magnetic domain structures after annealing in a magnetic field. The amorphous alloy ribbon (a) of the present invention has a magnetic domain width several times larger than that of the conventional material (b). This is thought to be due to the smoothness of the surface, which has fewer surface defects that inhibit the movement of domain walls.

実施例2 実施例1と同じ単ロール、ノズル、製造条件により笛2
表の組成の合金を幅25朋の非晶質合金薄帯に鋳造した
。各組成の非晶質合金薄帯の板厚、表面粗さ、占積率を
比較例とともに第2表に示した。本発明の非晶質合金薄
帯は従来桐に比べて、板厚が大きく、表面粗さが小さく
、かつ占積率が高いことが明らかである。従って種々の
用途に活用することができる。
Example 2 Whistle 2 was produced using the same single roll, nozzle, and manufacturing conditions as Example 1.
An alloy having the composition shown in the table was cast into an amorphous alloy ribbon having a width of 25 mm. The plate thickness, surface roughness, and space factor of the amorphous alloy ribbon of each composition are shown in Table 2 along with comparative examples. It is clear that the amorphous alloy ribbon of the present invention has a larger thickness, smaller surface roughness, and higher space factor than conventional paulownia. Therefore, it can be used for various purposes.

(発明の効果) 以上説明したように本発明のFe基非晶質合金薄帯は板
厚が大きくかつ表面が滑らかであるので、例えばトラン
スの鉄心に用いる場合従来の薄い非(14) 品質合金薄帯は積層作業の能率、鉄心の機械強度など問
題が多く積鉄心方式への採用は不可と考えられ巻鉄心の
形で用いさるを得なかったが、本発明の非晶質合金薄帯
は積鉄心に適用することが可能となり、しかも積層[7
たときの材料の占積率を大幅に向上式せ鉄心を小型化す
ることができる。
(Effects of the Invention) As explained above, the Fe-based amorphous alloy ribbon of the present invention has a large plate thickness and a smooth surface, so that when it is used, for example, in the iron core of a transformer, it can be used as a conventional thin non-(14) quality alloy. Thin ribbon has many problems such as the efficiency of lamination work and the mechanical strength of the core, so it was thought that it was impossible to use it in the stacked core system, and it was impossible to use it in the form of a wound core. However, the amorphous alloy ribbon of the present invention It can be applied to laminated iron cores, and moreover, it can be applied to laminated iron cores [7
The space factor of the material can be greatly improved when the iron core is compacted.

捷た鉄心以外の用途に使用する場合にも板厚が大きいの
で機械的強度が高く、−1だ表面が平滑であるため種々
の用途に活用することができる等その効果は極めて大き
い。
Even when used for purposes other than cutting iron cores, the large plate thickness provides high mechanical strength, and the smooth -1 surface allows for use in a variety of applications, making it extremely effective.

(]5) −10り− B、: 50HzlOeにおける磁束密度Ra: カッ
トオフ値0,8mi、測定長さ8m+占積率:外径40
wφの巻き粋に幅25+w+のリデン巻いたときの占積
率。次の式から算出 R:リング外径 r:リング内径 W:リボン幅 ρ:比重 (16) 1R1i− を約700gr したO
(]5) -10ri- B: Magnetic flux density Ra at 50HzlOe: Cutoff value 0.8mi, measurement length 8m + space factor: outer diameter 40
The space factor when the width of 25+w+ is wrapped around the width of wφ. Calculated from the following formula R: Ring outer diameter r: Ring inner diameter W: Ribbon width ρ: Specific gravity (16) 1R1i- is approximately 700 gr O

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明非晶質合金薄帯を製造するノズルを示す
下面図、第2図(a)〜(d)は本発明非晶質合金薄帯
((a):自由面、(b):ロール面)と比較材((c
):自由面、 (d) :ロール面)の表面粗さを示す
説明図、第3図(a) 、 (b)は本発明非晶質合金
薄帯と従来材の鋳造ままの自由面の金属磁区構造を示す
写真、第4図(a) 、 (b)は同じく焼鈍後の自由
面の金属磁区構造を示す写真である。 (18) −1と 第aし くa) (b ) 第4図 (a) (b) 手続補正書 (自発) ゛ 昭和60年5月13日 特許庁長官 志 賀 学 殿 ■、事件の表示 昭和59年特許願第033335号 2、発明の名称 板厚の大きなFe基非晶質合金薄帯 3、補正をする者 事件との関係 特許出願人 4代理人〒100 6、補正の対象 明細書の発明の詳細な説明の欄 7、補正の内容 明細書9頁9〜10行「未凝固にある間」を「凝固を完
了する前」に補正する。 (2)
FIG. 1 is a bottom view showing a nozzle for producing the amorphous alloy ribbon of the present invention, and FIGS. 2(a) to (d) are the amorphous alloy ribbon of the present invention ((a): free surface, (b) ): roll surface) and comparison material ((c
): free surface; (d): roll surface). The photographs showing the metal magnetic domain structure, FIGS. 4(a) and 4(b), are also photographs showing the metal magnetic domain structure of the free surface after annealing. (18) -1 and the a) (b) Figure 4 (a) (b) Procedural amendment (voluntary) ゛May 13, 1985 Mr. Manabu Shiga, Commissioner of the Patent Office■, Indication of the case Showa 1959 Patent Application No. 033335 2, Title of the invention: Fe-based amorphous alloy ribbon with large plate thickness 3, Relationship with the case of the person making the amendment 4th attorney for the patent applicant Address: 100 6, Description of the specification to be amended In Column 7 of the Detailed Description of the Invention, page 9, lines 9-10 of the Specification of Contents of the Amendment, ``while in the uncoagulated state'' is amended to ``before the coagulation is completed.'' (2)

Claims (2)

【特許請求の範囲】[Claims] (1)板厚が45μm以上、板幅が20闘以上であり、
かつ片面冷却法によって作製された板厚の大きなFe基
基孔晶質合金薄帯
(1) The plate thickness is 45 μm or more, the plate width is 20 mm or more,
A large Fe-based porous crystalline alloy ribbon manufactured by a single-sided cooling method.
(2) 板厚が45μm以上、板幅が20mm以上であ
り、表面粗さが、JIS−BO601法で測定し六とき
、カットオフ値0.8 mmに対して、フリー而のRa
が0.5μm以下、ロール面のRaが0.5μm以下で
あり、かつ片面冷却法によって作製された板〃の大きな
Fe基基孔晶質合金薄帯
(2) The plate thickness is 45 μm or more, the plate width is 20 mm or more, and the surface roughness is measured according to the JIS-BO601 method and has a cutoff value of 0.8 mm.
is 0.5 μm or less, Ra of the roll surface is 0.5 μm or less, and a large Fe-based porous crystalline alloy ribbon is produced by a single-sided cooling method.
JP59033335A 1983-11-18 1984-02-25 Thin strip consisting of fe-base amorphous alloy having large thickness Granted JPS60177936A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59033335A JPS60177936A (en) 1984-02-25 1984-02-25 Thin strip consisting of fe-base amorphous alloy having large thickness
DE19843442009 DE3442009A1 (en) 1983-11-18 1984-11-16 AMORPHOUS ALLOY TAPE WITH LARGE THICKNESS AND METHOD FOR THE PRODUCTION THEREOF
US07/102,274 US4865664A (en) 1983-11-18 1987-09-28 Amorphous alloy strips having a large thickness and method for producing the same
US08/083,851 US5301742A (en) 1983-11-18 1993-06-25 Amorphous alloy strip having a large thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59033335A JPS60177936A (en) 1984-02-25 1984-02-25 Thin strip consisting of fe-base amorphous alloy having large thickness

Publications (2)

Publication Number Publication Date
JPS60177936A true JPS60177936A (en) 1985-09-11
JPS6340624B2 JPS6340624B2 (en) 1988-08-11

Family

ID=12383685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59033335A Granted JPS60177936A (en) 1983-11-18 1984-02-25 Thin strip consisting of fe-base amorphous alloy having large thickness

Country Status (1)

Country Link
JP (1) JPS60177936A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6133740A (en) * 1984-07-26 1986-02-17 Nippon Steel Corp Thin amorphous fe alloy strip having large sheet thickness
JPS62250153A (en) * 1986-04-21 1987-10-31 Tdk Corp Amorphous thin body and its production
JPS63119957A (en) * 1986-11-10 1988-05-24 Kawasaki Steel Corp Manufacture of rapid cooling metal thin strip and its device
EP0670757A1 (en) * 1992-11-30 1995-09-13 Ishikawajima-Harima Heavy Industries Co., Ltd. Metal strip casting
WO1998007890A1 (en) * 1996-08-20 1998-02-26 Alliedsignal Inc. Thick amorphous alloy ribbon having improved ductility and magnetic properties
WO2007094502A1 (en) * 2006-02-17 2007-08-23 Nippon Steel Corporation Amorphous alloy thin band excellent in magnetic characteristics and space factor
JP2010184298A (en) * 1998-05-13 2010-08-26 Metglas Inc High stack factor amorphous metal ribbon and transformer core

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102618806B (en) * 2012-04-06 2014-01-29 东莞市晶磁科技有限公司 Manufacturing method of amorphous strip capable of increasing direct current superposition performance
US11427054B2 (en) 2020-01-16 2022-08-30 Honda Motor Co., Ltd. Vehicle sunshade assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5353525A (en) * 1976-10-22 1978-05-16 Allied Chem Method and device for continuously casting metal strip
JPS5518582A (en) * 1978-07-26 1980-02-08 Matsushita Electric Ind Co Ltd Manufacture of amorphous metal
JPS5877750A (en) * 1976-10-22 1983-05-11 アライド・コ−ポレ−シヨン Strip of slender or continuous isotropic amorphous metal
JPS6340629A (en) * 1986-08-02 1988-02-22 Enbishi Arumihoiile Kk Formation of divided type rim

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5353525A (en) * 1976-10-22 1978-05-16 Allied Chem Method and device for continuously casting metal strip
JPS5877750A (en) * 1976-10-22 1983-05-11 アライド・コ−ポレ−シヨン Strip of slender or continuous isotropic amorphous metal
JPS5518582A (en) * 1978-07-26 1980-02-08 Matsushita Electric Ind Co Ltd Manufacture of amorphous metal
JPS6340629A (en) * 1986-08-02 1988-02-22 Enbishi Arumihoiile Kk Formation of divided type rim

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6133740A (en) * 1984-07-26 1986-02-17 Nippon Steel Corp Thin amorphous fe alloy strip having large sheet thickness
JPS62250153A (en) * 1986-04-21 1987-10-31 Tdk Corp Amorphous thin body and its production
JPS63119957A (en) * 1986-11-10 1988-05-24 Kawasaki Steel Corp Manufacture of rapid cooling metal thin strip and its device
JPH0523864B2 (en) * 1986-11-10 1993-04-06 Kawasaki Steel Co
EP0670757A1 (en) * 1992-11-30 1995-09-13 Ishikawajima-Harima Heavy Industries Co., Ltd. Metal strip casting
EP0670757A4 (en) * 1992-11-30 1997-07-30 Ishikawajima Harima Heavy Ind Metal strip casting.
WO1998007890A1 (en) * 1996-08-20 1998-02-26 Alliedsignal Inc. Thick amorphous alloy ribbon having improved ductility and magnetic properties
US6103396A (en) * 1996-08-20 2000-08-15 Alliedsignal Inc. Thick amorphous metal strip having improved ductility and magnetic properties
JP2010184298A (en) * 1998-05-13 2010-08-26 Metglas Inc High stack factor amorphous metal ribbon and transformer core
WO2007094502A1 (en) * 2006-02-17 2007-08-23 Nippon Steel Corporation Amorphous alloy thin band excellent in magnetic characteristics and space factor
JP2007217757A (en) * 2006-02-17 2007-08-30 Nippon Steel Corp Amorphous alloy thin strip excellent in magnetic property and space factor
US7988798B2 (en) 2006-02-17 2011-08-02 Nippon Steel Corporation Amorphous alloy ribbon superior in magnetic characteristics and lamination factor

Also Published As

Publication number Publication date
JPS6340624B2 (en) 1988-08-11

Similar Documents

Publication Publication Date Title
JP4402960B2 (en) Fe-based amorphous alloy ribbon with excellent soft magnetic properties, iron core produced using the same, and master alloy for producing rapidly solidified ribbon used therefor
US5301742A (en) Amorphous alloy strip having a large thickness
JP2698369B2 (en) Low frequency transformer alloy and low frequency transformer using the same
US8968490B2 (en) Ferromagnetic amorphous alloy ribbon with reduced surface protrusions, method of casting and application thereof
TWI452147B (en) Ferromagnetic amorphous alloy ribbon with reduced surface defects and application thereof
JPS62988B2 (en)
JPS60177936A (en) Thin strip consisting of fe-base amorphous alloy having large thickness
KR101868013B1 (en) Ferromagnetic amorphous alloy ribbon and fabrication thereof
KR870002021B1 (en) Amorphous metals
WO2018062037A1 (en) Iron-based amorphous alloy ribbon
JP4037989B2 (en) Fe-based amorphous alloy ribbon with ultrathin oxide layer
US6103396A (en) Thick amorphous metal strip having improved ductility and magnetic properties
JP3366681B2 (en) Low iron loss iron-based amorphous alloy with high magnetic flux density and excellent insulation coating processability
JPS60255243A (en) Tough and strong fe-base thin amorphous alloy strip having large sheet thickness
JP3280778B2 (en) Thick amorphous metal / alloy ribbon with good thickness accuracy
JP2002283012A (en) Iron-base amorphous alloy having good strip forming performance
JP4037988B2 (en) Fe-based amorphous alloy ribbon with ultrathin oxide layer
JPH07113151A (en) Ferrous amorphous alloy
JPH02133523A (en) Production of non-oriented electrical steel having excellent magnetic characteristics
JPS6134909A (en) Laminated core for transformer
JPH01291408A (en) Multilayered magnetic alloy thin band and magnetic core
JPS6018128B2 (en) Manufacturing method of magnetic tape
JPH01228652A (en) Manufacture of amorphous alloy thin strip
JPS6032712B2 (en) In-plane non-oriented electrical steel strip and its manufacturing method
JPS5867846A (en) High permeability alloy thin strip

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees