JPS63119957A - Manufacture of rapid cooling metal thin strip and its device - Google Patents

Manufacture of rapid cooling metal thin strip and its device

Info

Publication number
JPS63119957A
JPS63119957A JP26556386A JP26556386A JPS63119957A JP S63119957 A JPS63119957 A JP S63119957A JP 26556386 A JP26556386 A JP 26556386A JP 26556386 A JP26556386 A JP 26556386A JP S63119957 A JPS63119957 A JP S63119957A
Authority
JP
Japan
Prior art keywords
slit
molten metal
ribbon
cooling roll
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26556386A
Other languages
Japanese (ja)
Other versions
JPH0523864B2 (en
Inventor
Nobuyuki Morito
森戸 延行
Toru Sato
徹 佐藤
Shinji Kobayashi
真司 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP26556386A priority Critical patent/JPS63119957A/en
Publication of JPS63119957A publication Critical patent/JPS63119957A/en
Publication of JPH0523864B2 publication Critical patent/JPH0523864B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/064Accessories therefor for supplying molten metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent the generation of a paddle rake and to obtain a thick metal thin strip by tilting backward the flow path of the molten metal flowing out from the slit like orifice located at an upper stream side for the vertical face including the rotary shaft of a roll. CONSTITUTION:The flow path in parallel to the vertical face including the rotary shaft of a cooling roll 2 is formed by a slit like orifice 3 at a downstream side, on the other hand the flow path tilting backward at the angle thetafor the vertical face is formed by a slit like orifice 4 at an upper stream side. The backward tilting angle theta of the upper stream side slit like orifice 4 is regulated in the range of 5-70 deg.. The rapid cooling thin strip which is thick and of good surface state is stably obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は溶融金属を急冷凝固させることにより、溶湯
から直接、結晶質または非晶質の金属薄帯を製造するの
に有利な急冷金属薄帯の製造方法およびその実施に用い
て好適な製造装置に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a rapidly solidified metal thin strip which is advantageous for producing a crystalline or amorphous metal thin strip directly from a molten metal by rapidly cooling and solidifying the molten metal. The present invention relates to a method for manufacturing a band and a manufacturing device suitable for carrying out the method.

(従来の技術) 結晶質や非晶質の金属薄帯を連続して製造する方法とし
て、近年、溶融金属(溶融合金を含む。
(Prior Art) In recent years, molten metal (including molten alloy) has been used as a method for continuously manufacturing crystalline or amorphous metal ribbons.

以下同じ)を冷却体表面で急速凝固させ、直接連続薄帯
を製造するいわゆる急冷薄帯法が数多く提案されている
。特に非晶質合金薄帯を作る場合には、必要とされる1
04〜106 ℃/S程度の冷却速度が容易に得られ、
また操作、取扱いも簡便なことから単ロール法が多用さ
れ、0.02〜0.05aua程度の板厚を有する連続
金属薄帯がこの方法で製造されている。
A number of so-called quenched ribbon methods have been proposed, in which a continuous ribbon is directly produced by rapidly solidifying (the same applies hereinafter) on the surface of a cooling body. Especially when making an amorphous alloy ribbon, the required 1
A cooling rate of about 04 to 106 °C/S can be easily obtained,
Furthermore, since it is easy to operate and handle, the single roll method is often used, and continuous metal ribbons having a thickness of about 0.02 to 0.05 aua are manufactured by this method.

単ロール法による代表的な非晶質金属薄帯の製造方法と
しては、たとえば特開昭53−53525号公報に開示
されている方法がある。この製造法では注湯ノズルのス
リット状オリフィスは、冷却表面の移動方向に対して、
はぼ直角の配置とされ、またノズル底面と冷却体表面と
の間隔は0.03ないし1manに設定されている。
A typical method for producing an amorphous metal ribbon using a single roll method is, for example, the method disclosed in Japanese Patent Application Laid-open No. 53525/1983. In this manufacturing method, the slit-shaped orifice of the pouring nozzle is
The nozzle is arranged at a nearly right angle, and the distance between the nozzle bottom and the cooling body surface is set to 0.03 to 1 man.

ところで一般に単ロール法では、加圧されてスリットか
ら射出される溶融金属は冷却ロールの回転方向に引き出
されるばかりでなく、ロールの回転の向きとは逆方向に
も飛赦し、パドルブレークが発生し易いという欠点があ
った。飛敗した溶融金属は、作業性を著しく損なうだけ
でなく、急冷金属薄帯の形成には関与しないから、歩留
りの著しい低下を招くことは云うまでもない。
By the way, in general, in the single roll method, the molten metal that is pressurized and injected from the slit is not only drawn out in the rotational direction of the cooling roll, but also flies in the opposite direction to the rotational direction of the roll, causing paddle break. It had the disadvantage of being easy. Needless to say, the blown molten metal not only significantly impairs workability, but also causes a significant decrease in yield since it does not participate in the formation of the quenched metal ribbon.

この点上掲の特開昭53−53525号公報においては
、溶融金属流をロー ルの回転方向により容易に引き出
すために、ロールの回転方向から見て、上流側の注湯ノ
ズルのスリットの縁を第1リツプ、下流側のスリット縁
を第2リツプと定義したとき、第2リツプと冷却体表面
との間隔を、第1リツプと冷却体表面との間隔よりも大
きく設定して、パドルブレークの発生防止を図っている
In this regard, in the above-mentioned Japanese Patent Application Laid-open No. 53-53525, in order to draw out the molten metal flow more easily in the rotational direction of the roll, the edge of the slit of the pouring nozzle on the upstream side when viewed from the rotational direction of the roll is When the slit edge on the downstream side is defined as the first lip and the slit edge on the downstream side as the second lip, the distance between the second lip and the cooling body surface is set larger than the distance between the first lip and the cooling body surface, and the paddle break is performed. We are trying to prevent this from happening.

しかしながらこの製造法では、とくにFe系非晶質合金
の場合、得られる薄帯の厚みが最大でも50μm程度に
すぎないというところに欠点があった。
However, this manufacturing method has a drawback in that the thickness of the obtained ribbon is only about 50 μm at most, especially in the case of Fe-based amorphous alloys.

一方特開昭55−18582号公報には、板厚の大きな
非晶質合金薄帯を得るために、複数個のスリット状ノズ
ル口を有するノズル容器を使用した非晶質金属の製造方
法が提案されている。この方法は、冷却体の移動方向に
複数個の開口部が並設されたノズルを使用することで、
100μmないし150μmの非晶質合金薄帯を得よう
とするものである。
On the other hand, JP-A-55-18582 proposes a method for manufacturing amorphous metal using a nozzle container having multiple slit-shaped nozzle openings in order to obtain a thick amorphous alloy ribbon. has been done. This method uses a nozzle with multiple openings arranged in parallel in the direction of movement of the cooling body.
The aim is to obtain an amorphous alloy ribbon of 100 μm to 150 μm.

さらに特開昭60−108144号、同60−1995
53号各公報には、注湯ノズルの先端に複数のスリット
開口部を設けて、溶融金属を高速回転する冷却ロール表
面上に射出し、上流のスリットから形成された薄帯が未
凝固状態のうちに、その自由面側に下流のスリットから
溶融金属を射出して、その圧力により未凝固の薄帯を冷
却ロールに押しつけることによって熱伝達を向上させ厚
肉の金属薄帯を得る製造方法が提案されていて、かかる
方法により70μm近い板厚を有する非晶質合金薄帯を
製造できると報告されている。
Furthermore, JP-A-60-108144 and JP-A No. 60-1995
53 publications, a plurality of slit openings are provided at the tip of a pouring nozzle, molten metal is injected onto the surface of a cooling roll rotating at high speed, and the ribbon formed from the upstream slit is in an unsolidified state. We have developed a manufacturing method in which molten metal is injected onto the free surface side from a slit downstream, and the unsolidified ribbon is pressed against a cooling roll by the pressure of the molten metal, improving heat transfer and producing a thick metal ribbon. It is reported that an amorphous alloy ribbon having a thickness of nearly 70 μm can be produced by this method.

(発明が解決しようとする問題点) 上掲した従来法により、板厚のより大きな薄帯を作製で
きるようにはなったけれども、依然として以下に述べる
ような問題を残していた。
(Problems to be Solved by the Invention) Although it has become possible to produce a thin ribbon with a larger thickness by the conventional method listed above, the following problems still remain.

すなわち、複数の開口部からの注湯流はパドルで合流す
ることになり、しかもより狭いスリットから注湯される
ので、射出圧力も単スリット方式よりも高く設定する必
要があるが、このように射出圧力を高めた場合には、最
上流側に位置するスリットから射出された注湯流がノズ
ル後方に飛敗し、パドルブレークの多発傾向がより一層
助長されていたのである。
In other words, the poured metal flows from multiple openings merge at the paddle, and the metal is poured from a narrower slit, so the injection pressure needs to be set higher than in the single-slit method. When the injection pressure was increased, the pouring metal flow injected from the slit located on the most upstream side flew to the rear of the nozzle, further increasing the tendency for paddle breaks to occur frequently.

したがって、複数スリット方式においては、パドルの安
定化を確実にするとともに、このパドルブレークを抑制
することが極めて重要な課題として残っていた。
Therefore, in the multiple slit system, ensuring the stability of the paddle and suppressing this paddle break remained extremely important issues.

この発明は、上記の問題を有利に解決するもので、パド
ルブレークを発生することなしに、効果的に厚肉の金属
薄帯を得ることができる急冷金属薄帯の製造方法を、そ
の実施に直接用いて好適な製造装置と共に提案すること
を目的とする。
The present invention advantageously solves the above-mentioned problems, and provides a method for producing a quenched metal ribbon that can effectively obtain a thick metal ribbon without causing paddle break. The purpose is to propose this method along with suitable manufacturing equipment for direct use.

(問題点を解決するための手段) すなわちこの発明は、横軸のまわりに高速回転する冷却
ロールの外周表面上に、複数のスリット状開口部を有す
る注湯ノズルから溶融金属を流出させ、急冷凝固によっ
て溶融金属から直接、金属薄帯を製造するに当り、 上記複数のスリット状開口部のうち少なくとも最上流側
のスリット状開口部につき、高速回転する冷却ロールの
回転軸を含む鉛直面に対し後傾するノズル流路を通して
溶融金属を射出すると共に、かかる射出溶融金属により
ノズル・ロール間に形成された湯だまりが未凝固のう−
ちに、下流側に位置するスリット状開口部からの注湯流
を順次に合流させることから成る急冷金属薄帯の製造方
法である。
(Means for Solving the Problems) That is, the present invention allows molten metal to flow out from a pouring nozzle having a plurality of slit-like openings onto the outer circumferential surface of a cooling roll that rotates at high speed around a horizontal axis, and rapidly cools the metal. When producing a metal ribbon directly from molten metal by solidification, at least the most upstream slit-shaped opening of the plurality of slit-shaped openings is placed against a vertical plane that includes the rotation axis of the cooling roll that rotates at high speed. Molten metal is injected through a nozzle channel that tilts backwards, and the molten metal formed between the nozzle and the roll is an unsolidified puddle.
This is a method for producing a rapidly solidified metal ribbon, which comprises sequentially merging pouring flows from slit-shaped openings located downstream.

またこの発明は、溶融金属の落下流を受け、その急冷凝
固を強いて薄帯化を導く冷却ロールと、この冷却ロール
の外周表面上に溶融金属を供給する複数のスリット状オ
リフィスをそなえる注湯ノズルとからなり、 該注湯ノズルを冷却ロールのロール中心のほぼ直上に配
置すると共に、該注湯ノズルの複数のスリット状オリフ
ィスのうち少なくとも最上流側のスリット状オリフィス
については、冷却ロールの回転軸を含む鉛直面に対し5
〜70°の範囲の角度で後傾させたことから成る急冷金
属薄帯の製造装置である。
The present invention also provides a cooling roll that receives a falling flow of molten metal and forces the metal to rapidly solidify into a thin ribbon, and a pouring nozzle that is provided with a plurality of slit-like orifices on the outer peripheral surface of the cooling roll that supplies the molten metal. The pouring nozzle is arranged almost directly above the center of the roll of the cooling roll, and at least the most upstream slit-shaped orifice of the plurality of slit-shaped orifices of the pouring nozzle is aligned with the rotation axis of the cooling roll. 5 for the vertical plane containing
This is an apparatus for producing quenched metal ribbon, which is tilted backward at an angle in the range of ~70°.

以下この発明を具体的に説明する。This invention will be specifically explained below.

まず、この発明を由来するに到った実験結果について説
明する。
First, the experimental results that led to this invention will be explained.

2個のスリット状開口部を有する注湯ノズルの位置を、
高速回転する冷却ロール中心のほぼ直上に設置した配置
において、ノズル後方への溶融金属の飛散、すなわちパ
ドルブレークを抑制すべく種々検討したところ、第1図
に示したように上流側に位置するスリット状のオリフィ
スから流出すべき溶融金属の流路をロールの回転軸を含
む鉛直面に対して後傾させることにより所期した目的が
極めて有利に達成されたのである。
The position of the pouring nozzle with two slit-shaped openings is
After conducting various studies to suppress the scattering of molten metal toward the rear of the nozzle, that is, paddle break, in a configuration installed almost directly above the center of the cooling roll rotating at high speed, we found that a slit located on the upstream side as shown in Figure 1 was used. By tilting the flow path of the molten metal flowing out from the shaped orifice backwards with respect to the vertical plane containing the axis of rotation of the rolls, the intended purpose was very advantageously achieved.

第1図において、番号1は注湯ノズノペ2は冷却ロール
、3は下流側スリット状オリフィスであって、冷却ロー
ル20回転軸を含む鉛直面に平行な流路を形成し、他方
4は上流側スリット状オリフィスであって上記鉛直面に
対しθの角度で後傾する流路を形成している。5がパド
ノペそして6が得られた急冷金属薄帯である。ここに、
上流側スリット状オリフィス4の後傾角度θが5°より
も小さいとパドルブレークの発生防止効果に乏しく、一
方70@を超えて傾けると、パドルブレークは発生しな
いものの、パドル後面での空気巻込みが多くなって得ら
れた薄帯のロール面側の表面粗さが大きくなり、薄帯表
面を製品として許容される平均粗さRaで1.0 μm
以下にすることができなくなるので、上流側スリット状
オリフィス4の後傾角度θは5〜70°の範囲に制限す
ることが肝要である。
In FIG. 1, number 1 is a pouring nozzle 2 is a cooling roll, 3 is a slit-shaped orifice on the downstream side, which forms a flow path parallel to the vertical plane including the rotation axis of the cooling roll 20, and 4 is on the upstream side. The slit-like orifice forms a flow path that is inclined backward at an angle θ with respect to the vertical plane. 5 is the padnope and 6 is the obtained quenched metal ribbon. Here,
If the backward inclination angle θ of the upstream slit-shaped orifice 4 is smaller than 5°, the effect of preventing paddle break will be poor, whereas if it is inclined more than 70°, paddle break will not occur, but air entrainment at the rear surface of the paddle will occur. As a result, the surface roughness on the roll surface side of the obtained ribbon increases, and the average roughness Ra of the ribbon surface is 1.0 μm, which is acceptable as a product.
Therefore, it is important to limit the backward inclination angle θ of the upstream slit-shaped orifice 4 to a range of 5 to 70°.

なお下流側スリット状オリフィス3の無い、単一後傾ス
リット方式の場合には、パドル後面からの空気巻込みを
完全に防止することは難しく、とくに後傾角度60〜7
0°では、薄帯のロール面側の表面粗さをRaで1.0
 μ以下にすることはできなかった。これに対し、かか
るロール面側の表面粗さを軽減し、平滑な薄帯を作製で
きるのが、この発明の大きな利点である。
In addition, in the case of a single backward-tilting slit system without the downstream slit-shaped orifice 3, it is difficult to completely prevent air entrainment from the rear surface of the paddle, especially when the backward tilt angle is 60 to 7.
At 0°, the surface roughness of the roll surface side of the ribbon is 1.0 in Ra.
It was not possible to make it less than μ. On the other hand, the great advantage of the present invention is that the surface roughness on the roll side can be reduced and a smooth ribbon can be produced.

第2図に、Fe7aB+oSl 12組成(at豹の合
金溶湯を溶融石英製の2スリット方式ノズルから周速3
5m/sで高速回転する調合金製の冷却ロール表面上に
、上流側流路の後傾角度θを種々に変化させて供給し、
急冷凝固させて非晶質金属薄帯を製造した場合の製造状
況について調べた結果を、上流側スリット状オリフィス
の後傾角度θとの関係で示す なおその他の実験条件は次のとおりであり、・リップ先
端と冷却ロール表面との距m : 0.25mm。
Figure 2 shows that Fe7aB+oSl 12 composition (at leopard) alloy molten metal is passed through a two-slit nozzle made of fused silica at a circumferential speed of 3.
On the surface of a cooling roll made of prepared alloy that rotates at a high speed of 5 m/s, the upstream flow channel is supplied with various backward inclination angles θ,
The results of investigating the manufacturing situation when manufacturing an amorphous metal ribbon by rapid solidification are shown in relation to the backward inclination angle θ of the upstream slit-shaped orifice.Other experimental conditions are as follows: - Distance between lip tip and cooling roll surface: 0.25mm.

・スリット状開口部形状:0.4 mmxlOmm、・
ノズル先端での両スリット状オリフィス間の距離:2m
m。
・Slit-shaped opening shape: 0.4 mmxlOmm,・
Distance between both slit orifices at the nozzle tip: 2m
m.

1等られた金属薄帯の板厚は65〜70μmであった。The thickness of the first-ranked metal ribbon was 65 to 70 μm.

第2図から明らかなように、上流側スリット状オリフィ
スの後頭角度θを5″より小さくして鉛直に近づけると
、パドルブレークの発生頻度が急・激に上昇した。なお
後傾角度を大きくするに従い、パドル後面での空気巻込
みによる薄帯ロール面側の凹凸が幾分かは生じたけれど
も、第1図のような2スリット方式の場合、この影響は
単スリット方式の場合に比べてさほど大きくはなかった
As is clear from Figure 2, when the occipital angle θ of the upstream slit-shaped orifice was made smaller than 5'' and brought closer to vertical, the frequency of occurrence of paddle breaks suddenly and sharply increased. Accordingly, some unevenness occurred on the ribbon roll surface side due to air entrainment at the rear surface of the paddle, but in the case of the two-slit method as shown in Figure 1, this effect was not as great as in the case of the single-slit method. It wasn't big.

(作 用) この発明に従い、上流側のスリット状オリフィスを後傾
させることによって厚肉でしかも表面性状が良好な急冷
薄帯が安定して得られる理由は、次のとおりと考えられ
る。
(Function) The reason why a thick quenched ribbon with good surface quality can be stably obtained by tilting the slit-shaped orifice on the upstream side in accordance with the present invention is considered to be as follows.

すなわち上記の如き方法で注湯した場合には、パドル全
体が下流側性渦流によって冷却ロール面に強く押しつけ
られることになるので、冷却ロールと溶融金属間の熱伝
達係数が顕著に増大し、それに伴って冷却速度が大きく
なるため、得られる非晶質合金薄帯の板厚も通常の単ス
リット方式に比較して大きくなる。
In other words, when pouring metal using the method described above, the entire paddle is strongly pressed against the cooling roll surface by the downstream eddy current, which significantly increases the heat transfer coefficient between the cooling roll and the molten metal. Since the cooling rate increases accordingly, the thickness of the obtained amorphous alloy ribbon also increases compared to the usual single-slit method.

例えば通常の単スリット方式でFe基非晶質合金薄帯を
連続的に製造する場合、板厚はほとんど20〜40μm
にすぎないが、この発明によれば、パドルブレーク等の
発生もなく、50ないし90μmの非晶質合金薄帯を製
造することができた。
For example, when manufacturing Fe-based amorphous alloy ribbon continuously using the normal single-slit method, the thickness of the sheet is usually 20 to 40 μm.
However, according to the present invention, an amorphous alloy ribbon of 50 to 90 μm could be produced without occurrence of paddle breaks or the like.

またこの発明では、下流側性渦流によるパドル抑圧作用
が働くので、パドル後面での空気巻き込みも効果的に抑
制される。
Further, in this invention, since the paddle suppressing effect is exerted by the downstream vortex flow, air entrainment at the rear surface of the paddle is also effectively suppressed.

ところでこの発明では、スリット状オリフィスは注湯ノ
ズル先端に2個以上設けることができるが、この場合、
上流側で形成されたパドルが未凝固のうちに下流側性渦
流を順次に合流させることが肝要である。さもなければ
、冷却ロールに押しつけて冷却速度を高めようとしても
、薄帯表面形状が既に固まっているので、熱伝達係数の
増大が不充分であり50μm以上の板厚を有する非晶質
合金薄帯を作製することはできない。
By the way, in this invention, two or more slit-shaped orifices can be provided at the tip of the pouring nozzle, but in this case,
It is important that the paddles formed on the upstream side sequentially merge the downstream vortices while they are still unsolidified. Otherwise, even if you try to increase the cooling rate by pressing it against a cooling roll, the surface shape of the ribbon has already hardened, so the increase in the heat transfer coefficient will be insufficient, and the amorphous alloy thin film with a thickness of 50 μm or more will It is not possible to make a belt.

そのためには各スリット状オリフィスの間隔は、1〜5
ffII11程度とするのが好ましい。
For this purpose, the interval between each slit orifice should be 1 to 5.
It is preferable to set it to about ffII11.

FetaB+oSl 12組成の合金溶湯を、前掲第1
図に示したような複スリットノズルから連続供給し、冷
却ロール表面上で急冷凝固させて、非晶質金属薄帯を製
造する際、上流側オリフィスを20°後傾させ、一方下
流側オリフイスは鉛直にすると共に、両オリフィス間の
距離を15mmにしたところ、1尋られた金属薄帯の板
厚は約66μmであったが、脆く、結晶化していた。
A molten alloy having a composition of FetaB+oSl 12 was
When producing an amorphous metal ribbon by continuous supply from a multi-slit nozzle as shown in the figure and rapid solidification on the surface of a cooling roll, the upstream orifice is tilted backwards by 20 degrees, while the downstream orifice is When the orifices were made vertical and the distance between the two orifices was set to 15 mm, the thickness of the metal thin strip was about 66 μm, but it was brittle and crystallized.

また、スリット状オリフィスの後頭角度は、下流側にい
くほど次第に小さくする必要がある。というのは下流側
のスリット状オリフィスの後傾角度が、上流側のスリッ
ト状オリフィスよりも大きくした場合には、薄帯のロー
ル面側の表面粗度の改善効果が劣化するからであり、と
くに最下流側のスリット状オリフィスは鉛直面に平行と
するか、または後傾させるとしてもその後傾角度は10
°以下程度とするのが好ましい。
Further, the occipital angle of the slit-shaped orifice needs to be gradually reduced toward the downstream side. This is because if the backward inclination angle of the slit orifice on the downstream side is made larger than that of the slit orifice on the upstream side, the effect of improving the surface roughness of the roll surface side of the ribbon deteriorates. The slit-shaped orifice on the most downstream side should be parallel to the vertical plane, or even if it is tilted backwards, the backward tilt angle is 10
It is preferable to set it to about 100°C or less.

さらに薄帯の自由面側表面粗度は下流側流路の前リップ
先端の表面粗度に影響される割合が大きいので、リップ
先端は平滑に具体的には平均表面粗さRaで1.0 μ
m以下程度とするのが好ましい。
Furthermore, the surface roughness of the free surface of the ribbon is largely influenced by the surface roughness of the front lip tip of the downstream flow path, so the lip tip should be smooth and specifically have an average surface roughness Ra of 1.0. μ
It is preferable to set it to about m or less.

なおノズル・ロール間ギャップが大きすぎると薄帯に穴
の発生しがちな不利があり、一方狭すぎてもノズル先端
が摩耗する問題が生じるので、上記ギャップは0.1〜
0.5mn+程度とするのが好ましい。
Note that if the gap between the nozzle and the roll is too large, holes tend to form in the ribbon, while if it is too narrow, the nozzle tip will wear out, so the above gap should be between 0.1 and 0.1.
It is preferable to set it to about 0.5 mn+.

(実施例) 実施例1 FetJ+。5laC+組成(at%)の合金溶湯から
、以下の要領で非晶質合金薄帯を製造した。
(Example) Example 1 FetJ+. An amorphous alloy ribbon was produced from a molten alloy having a composition of 5laC+ (at%) in the following manner.

ノズルとしては窒化けい素製のものを、また冷却ロール
としては内部強制冷却式のCu−Be合金製のものを用
い、下記の条件下に前掲第1図に示したような配置とし
た。
The nozzle was made of silicon nitride, and the cooling roll was made of Cu-Be alloy with internal forced cooling, and the arrangement was as shown in FIG. 1 above under the following conditions.

・上流側オリフィスの後傾角度θ:30゜・下流側オリ
フィスの後頭角度θ:0゜・ノズル先端と冷却ロール表
面との距離:0.3mm・上流側スリット状開口部の寸
法+0.5 mmx50mm・下流側スリット状開口部
の寸法:0.3 ++t+nX50mm・両オリフィス
間の距離:1mm ・冷却ロールの周速: 27m/s 上記の条件下に急冷金属薄帯の製造を開始したところ、
製造期間中パドルブレークは全く発生せず、板厚二62
μmで表面性状も良好(Ra:0,7μm)な厚肉広幅
の非晶質合金薄帯が連続的に得られた。
・Backward tilt angle θ of upstream orifice: 30° ・Occipital angle θ of downstream orifice: 0° ・Distance between nozzle tip and cooling roll surface: 0.3 mm ・Dimensions of upstream slit-shaped opening + 0.5 mm x 50 mm・Dimensions of downstream slit-shaped opening: 0.3 ++t+nX50 mm ・Distance between both orifices: 1 mm ・Circumferential speed of cooling roll: 27 m/s When manufacturing of the rapidly cooled metal ribbon was started under the above conditions,
No paddle break occurred during the manufacturing period, and the plate thickness was 262 mm.
A thick and wide amorphous alloy ribbon with a diameter of .mu.m and good surface quality (Ra: 0.7 .mu.m) was continuously obtained.

なおX線回折により得られた薄帯は非晶質であることが
確認された。
Note that the ribbon obtained by X-ray diffraction was confirmed to be amorphous.

比較例1 ・上流側オリフィスの後頭角度θ:0゜とする以外は実
施例1と同一条件で注湯したところ、ノズル後方へのパ
ドルブレークが発生した。
Comparative Example 1 When pouring was performed under the same conditions as in Example 1 except that the occipital angle θ of the upstream orifice was 0°, paddle break toward the rear of the nozzle occurred.

実施例2 Si:6.5wt%を含有する鉄合金溶湯を、0.5m
mx10mm幅のスリット状オリフィスを有する注湯ノ
ズルを介して、下記の条件下に前掲第1図に示したよう
な配置において、周速40m/sで回転する調合金製の
冷却ロール表面に注湯し、急冷凝固させて、結晶質の高
けい素鋼薄帯を製造した。
Example 2 Si: 0.5 m of molten iron alloy containing 6.5 wt%
Through a pouring nozzle having a slit-shaped orifice with a width of 10 mm x 10 mm, the molten metal was poured onto the surface of a cooling roll made of prepared alloy rotating at a peripheral speed of 40 m/s in the arrangement shown in Figure 1 above under the following conditions. This was then rapidly solidified to produce a crystalline high-silicon steel ribbon.

・上流側オリフィス後傾角度θ:50゜・下流側オリフ
ィス後傾角度θ:0゜ ・ノズル先端と冷却ロール表面との距if!t:0.2
ml・両オリフィス間の距離: 3 nun上記の条件
下に溶湯温度: 1550℃で注湯したところ、パドル
ブレークが発生ずることなしに、板厚:約78μm、板
幅10ma+の表面酸化のない美麗なけい素鋼薄帯を製
造することができた。
・Upstream orifice backward tilt angle θ: 50°・Downstream orifice backward tilt angle θ: 0°・Distance between the nozzle tip and the cooling roll surface if! t:0.2
ml/distance between both orifices: 3 nun When the molten metal was poured under the above conditions at a temperature of 1550°C, no puddle break occurred, and the plate thickness: approximately 78 μm, plate width 10 m+, with a beautiful surface without oxidation. We were able to produce silicon steel ribbon.

(発明の効果) 以上述べたようにこの発明によれば、パドルブレーク発
生による歩留り低下やパドルの不安定化を招く不利なし
に、表面性状に優れたしかも板厚の大きな急冷金属薄帯
を容易に得ることができる。
(Effects of the Invention) As described above, according to the present invention, it is easy to produce quenched metal ribbon with excellent surface quality and large thickness without the disadvantages of reducing yield or destabilizing the puddle due to occurrence of puddle break. can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明に従う製造装置の好適例の断面図、 第2図は、上流側スリット状オリフィスの後頭角度とパ
ドルブレークの発生頻度との関係を示したグラフである
。 ■・・・注湯ノズル   2・・・冷却ロール3・・・
下流側スリット状オリフィス 4・・・上流側スリット状オリフィス 5・・・パドル     6・・・急冷金属薄帯特許出
願人    川 崎製鉄株式会社第1図
FIG. 1 is a sectional view of a preferred example of the manufacturing apparatus according to the present invention, and FIG. 2 is a graph showing the relationship between the occipital angle of the upstream slit-shaped orifice and the frequency of occurrence of paddle breaks. ■...Pouring nozzle 2...Cooling roll 3...
Downstream slit orifice 4 Upstream slit orifice 5 Paddle 6 Rapidly cooled metal ribbon Patent applicant Kawasaki Steel Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】 1、横軸のまわりに高速回転する冷却ロールの外周表面
上に、複数のスリット状開口部を有する注湯ノズルから
溶融金属を流出させ、急冷凝固によって溶融金属から直
接、金属薄帯を製造するに当り、 上記複数のスリット状開口部のうち少なく とも最上流側のスリット状開口部につき、高速回転する
冷却ロールの回転軸を含む鉛直面に対し後傾するノズル
流路を通して溶融金属を射出すると共に、かかる射出溶
融金属によりノズル・ロール間に形成された湯だまりが
未凝固のうちに、下流側に位置するスリット状開口部か
らの注湯流を順次に合流させることを特徴とする、急冷
金属薄帯の製造方法。 2、溶融金属の落下流を受け、その急冷凝固を強いて薄
帯化を導く冷却ロールと、この冷却ロールの外周表面上
に溶融金属を供給する複数のスリット状オリフィスをそ
なえる注湯ノズルとからなり、 該注湯ノズルを冷却ロールのロール中心の ほぼ直上に配置すると共に、該注湯ノズルの複数のスリ
ット状オリフィスのうち少なくとも最上流側のスリット
状オリフィスについては、冷却ロールの回転軸を含む鉛
直面に対し5〜70°の範囲の角度で後傾させたことを
特徴とする急冷金属薄帯の製造装置。
[Claims] 1. Molten metal is poured out from a pouring nozzle having a plurality of slit-like openings onto the outer circumferential surface of a cooling roll that rotates at high speed around a horizontal axis, and the molten metal is directly poured out by rapid solidification. When manufacturing a metal ribbon, at least the most upstream slit-shaped opening of the plurality of slit-shaped openings is passed through a nozzle flow path that is tilted backward with respect to a vertical plane that includes the rotation axis of the cooling roll that rotates at high speed. While the molten metal is injected, the molten metal flow from the slit-shaped opening located on the downstream side is sequentially merged while the molten metal formed between the nozzle and the roll by the injected molten metal is not solidified. Features: A method for producing quenched metal ribbon. 2. Consists of a cooling roll that receives the falling flow of molten metal and forces it to rapidly solidify into a thin ribbon, and a pouring nozzle that is equipped with a plurality of slit-shaped orifices that supply the molten metal onto the outer peripheral surface of this cooling roll. , the pouring nozzle is arranged almost directly above the roll center of the cooling roll, and at least the most upstream slit-shaped orifice of the plurality of slit-shaped orifices of the pouring nozzle is arranged in a vertical direction including the rotation axis of the cooling roll. 1. An apparatus for producing a quenched metal ribbon, characterized in that the apparatus is tilted backward at an angle in the range of 5 to 70 degrees with respect to a plane.
JP26556386A 1986-11-10 1986-11-10 Manufacture of rapid cooling metal thin strip and its device Granted JPS63119957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26556386A JPS63119957A (en) 1986-11-10 1986-11-10 Manufacture of rapid cooling metal thin strip and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26556386A JPS63119957A (en) 1986-11-10 1986-11-10 Manufacture of rapid cooling metal thin strip and its device

Publications (2)

Publication Number Publication Date
JPS63119957A true JPS63119957A (en) 1988-05-24
JPH0523864B2 JPH0523864B2 (en) 1993-04-06

Family

ID=17418848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26556386A Granted JPS63119957A (en) 1986-11-10 1986-11-10 Manufacture of rapid cooling metal thin strip and its device

Country Status (1)

Country Link
JP (1) JPS63119957A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05329587A (en) * 1992-04-10 1993-12-14 Nippon Steel Corp Production of thin strip of amorphous alloy having large thickness

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108144A (en) * 1983-11-18 1985-06-13 Nippon Steel Corp Production of thin metallic strip
JPS60177936A (en) * 1984-02-25 1985-09-11 Nippon Steel Corp Thin strip consisting of fe-base amorphous alloy having large thickness
JPS61159246A (en) * 1984-12-28 1986-07-18 Hitachi Metals Ltd Production of amorphous metallic ribbon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108144A (en) * 1983-11-18 1985-06-13 Nippon Steel Corp Production of thin metallic strip
JPS60177936A (en) * 1984-02-25 1985-09-11 Nippon Steel Corp Thin strip consisting of fe-base amorphous alloy having large thickness
JPS61159246A (en) * 1984-12-28 1986-07-18 Hitachi Metals Ltd Production of amorphous metallic ribbon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05329587A (en) * 1992-04-10 1993-12-14 Nippon Steel Corp Production of thin strip of amorphous alloy having large thickness

Also Published As

Publication number Publication date
JPH0523864B2 (en) 1993-04-06

Similar Documents

Publication Publication Date Title
US4142571A (en) Continuous casting method for metallic strips
US4221257A (en) Continuous casting method for metallic amorphous strips
GB1592256A (en) Continuously cast amorphous metal strip
US4479528A (en) Strip casting apparatus
US4408653A (en) Method for making serrated metal ribbon
US4331739A (en) Amorphous metallic strips
KR960003714B1 (en) Method and apparatus for manufacturing a thin metal strip by quenching and solidification
JPS63119957A (en) Manufacture of rapid cooling metal thin strip and its device
JPS6015049A (en) Continuous casting device
EP0099599A1 (en) Method of forming continuous strip of amorphous metal
EP0040073B1 (en) Strip casting apparatus
US4475583A (en) Strip casting nozzle
KR20230164182A (en) Continuous casting method of metal strip using momentum distribution
JPS6238745A (en) Method and apparatus for direct production of thin metallic sheet
JPS63286246A (en) Method of casting aluminum alloy
JPH0455043A (en) Method and device for casting strip
JPS62259645A (en) Method and apparatus for producing papidly cooled sheet metal
JPS60108144A (en) Production of thin metallic strip
JPS6397342A (en) Pouring nozzle for producing rapidly cooled metal strip and production thereof
JPH04197560A (en) Method for continuously casting metal sheet
EP0040069B1 (en) Strip casting apparatus
JPS6038224B2 (en) Method and apparatus for producing wide thin strips directly from molten metal
JPS63235045A (en) Production of wide strip
JPH0615099B2 (en) Amorphous metal ribbon manufacturing method
JP2878480B2 (en) Manufacturing equipment for amorphous alloy ribbons