JPS6340492B2 - - Google Patents

Info

Publication number
JPS6340492B2
JPS6340492B2 JP4441781A JP4441781A JPS6340492B2 JP S6340492 B2 JPS6340492 B2 JP S6340492B2 JP 4441781 A JP4441781 A JP 4441781A JP 4441781 A JP4441781 A JP 4441781A JP S6340492 B2 JPS6340492 B2 JP S6340492B2
Authority
JP
Japan
Prior art keywords
axis
vibration
sub
symmetrical
central
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4441781A
Other languages
Japanese (ja)
Other versions
JPS57159111A (en
Inventor
Hirofumi Yanagi
Hitoshi Ikeno
Tetsuo Konno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikosha KK
Original Assignee
Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikosha KK filed Critical Seikosha KK
Priority to JP4441781A priority Critical patent/JPS57159111A/en
Publication of JPS57159111A publication Critical patent/JPS57159111A/en
Publication of JPS6340492B2 publication Critical patent/JPS6340492B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/132Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials characterized by a particular shape

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は厚みすべり振動を行う圧電振動子に関
するものである。 水晶振動子などの圧電振動子は、一般に主振動
の他に数多くの副振動を持つている。一例として
厚みすべり振動を行うプラノコンベツクス状の
ATカツト水晶振動子で、主振動の発振周波数が
4.2MHz付近のものは、4.6MHz付近および4.7MHz
付近に副振動がある。 これらの主振動および副振動は、電気探針法な
どにより表面電荷分布を測定すると、第1,3,
5図のような電荷集中領域および第2,4,6図
のような電荷分布曲線を示す。第1図は主振動1
の電荷集中領域1aを示し、第2図は主振動1の
Z軸上における電荷分布曲線を示している。そし
て第1,2図より主振動1においては、電荷が中
央部の領域1aに集中していることがわかる。第
3図は副振動2の電荷集中領域2a,2b,2c
を示し、第4図は副振動2のZ軸上における電荷
分布曲線を示している。そして第3,4図より副
振動2においては、電荷が中央部の領域2aに集
中し、極性の異なる電荷が領域2aのZ軸上の両
側部の領域2b,2cに集中していることがわか
る。また第5図は他の副振動3の電荷集中領域3
a,3b,3cを示し、第6図は副振動3のX軸
上における電荷分布曲線を示している。そして第
5,6図より副振動3においては、電荷が中央部
の領域3aに集中し、極性の異なる電荷が領域3
aのX軸上の両側部の領域3b,3cに集中して
いることがわかる。 そして主振動の発振周波数と副振動の発振周波
数とが接近している場合、水晶振動子は副振動で
発振してしまつたり、また主振動が副振動の影響
を受けるという欠点があつた。 また第7,8図は他の従来例を示すものである
が、この従来の水晶振動子は一つの副振動を抑制
するのに効果があつたが、他の副振動の抑制には
効果が小さかつた。 本発明の主振動を効率よく駆動できるとともに
他の複数の副振動を抑制する駆動電極を有する厚
みすべり圧電振動子を提供することを目的とする
ものである。 また本発明は圧電振動子のQ値を向上させるこ
とを他の目的とするものである。 以下本発明の一実施例を図面にもとづいて詳細
に説明する。 第9,10図において、4は圧電振動子である
水晶振動子であり、圧電素子である水晶片5と、
この水晶片の対向する面に設けた駆動電極6,7
とからなる。水晶片5は円板状をしているが、こ
れに限らずベベスング状、プラノコンベツク状、
バイコンベツク状でもよい。水晶片5の対向する
面上には、駆動電極6,7が真空蒸着などにより
形成してあり、これらの駆動電極は外周方向に延
びており同時に形成した引出し電極6a,7aを
含む。引出し電極6a,7aの外周部には水晶片
5の保持部材(図示せず。)が固着され、これら
の保持部材より駆動電極6,7に電圧が印加され
る。そして一方の駆動電極6には中央部に中央透
孔8が設けてあるとともに二つの対称透孔9,1
0が設けてある。まず中央透孔8について詳述す
ると、中央透孔8はその中心部がX軸方向に幅狭
W2となつており、Z軸上における上記中心部の
両側部がX軸方向に幅広W1となつている。そし
て幅狭の中心部は第1図示の主振動1の電荷奉中
領域1aに対応しており、幅広の両側部は第3図
示の副振動2の電荷が集中している三つの領域2
a,2b,2cのうち両側の二つの領域2b,2
cに対応している。なお電荷集中領域とは換言す
ると振動エネルギの大きい領域である。そして第
9図示のように中央透孔8の右方部分は駆動電極
6の一部が削除された削除部8aとなつており、
中央透孔8は削除部8aにより開口している。こ
の削除部8aは真空蒸着などにより水晶片5に駆
動電極6を形成するとき、中央透孔8を形成する
マスクの支持部材に対応するものである。したが
つて適当な方法でマスクを支持できれば、削除部
8aは不要である。つぎに対称透孔9,10につ
いて詳述すると、この二つの対称透孔はZ軸に関
して対称であり、X軸上に位置している。この対
称透孔9,10は第5図示の他の副振動3の電荷
が集中している三つの領域3a,3b,3cのう
ちの両側の二つの領域3b,3cに対応してい
る。そして第9図示のように対称透孔9の上方部
分および対称透孔10の下方部分は、駆動電極6
の一部が削除された削除部分9a,10aとなつ
ており、対称透孔9は削除部9aにより上方に開
口し、対称透孔10は削除部10aにより下方に
開口している。この削除部9a,10も前記削除
部8aと同様に真空蒸着などにより水晶片5に駆
動電極6を形成するとき、対称透孔9,10を形
成するマスクの支持部材に対応するものである。
したがつて削除部9a,10aも必ずしも必要で
なく、対称透孔9,10は少くとも上記した領域
3b,3cと同様の円形とすることができる。中
央透孔8と対称透孔9,10との間の駆動電極6
のアーチ状部6a,6cは、駆動電極7とともに
この水晶振動子を主振動にて効率よく駆動する電
極である。 この水晶振動子の駆動電極6,7に電圧を印加
すると、この水晶振動子4は主振動1にて効率よ
く駆動され、副振動2,3にて駆動されることは
ほとんどない。そして副振動2,3の影響をほと
んど受けない。またこの水晶振動子4の一方の駆
動電極6は振動変位の大きい水晶片5の中心部に
電極膜がないため、この水晶振動子はエージング
による発振周波数の変動が極めて小さい。さらに
この水晶振動子の他方の駆動電極7は振動変位の
大きい水晶片5の中心部に電極膜があるため、こ
の水晶振動子は付加質量による発振周波数調整が
効率よく行える。 つぎに第11図にもとづいて本発明の他の実施
例を説明する。 水晶振動子14は、水晶片15と、水晶片15
の一方の面に設けた第9図示と同様の駆動電極
(図示せず。)および他方の面に設けた駆動電極1
7とからなる。駆動電極17は他の副振動3の電
荷が集中しているX軸上に並んだ三つの領域3
a,3b,3cのうち両側の二つの領域3b,3
cを避けるように上下端部がZ軸方向に平行に削
除され、細長くなつている。このため前記実施例
の水晶振動子4と比較してこの水晶振動子14は
他の副振動3の影響をより受けにくくなつてい
る。 さらに第12図にもとづいて本発明のさらに他
の実施例を説明する。 水晶振動子24は、水晶片25と、この水晶片
の一方の面に設けた第9図示と同様の駆動電極
(図示せず。)および他方の面に設けた駆動電極2
7とからなる。駆動電極27には二つの対向透孔
28,29が設けてあり、この対向透孔は第9図
示の対称透孔9,10と対向している。すなわち
対向透孔28,29は水晶片25の他方の面にお
いて他の副振動3の電荷が集中しているX軸上に
並んだ三つの領域3a,3b,3cのうち両側の
二つの領域3b,3cに対応している。このため
この水晶振動子24も前記実施例の水晶振動子4
と比較し、この副振動3の影響をより受けにくく
なつている。 ここで第7,8図示の従来の水晶振動子、第
9,10図示の水晶振動子4、第11図示の水晶
振動子14、第12図示の水晶振動子24につい
て、主振動1、副振動2、副振動3におけるクリ
スタルインピーダンスR1,R2,R3および主振動
1におけるQ値の実験データを示すと下表とな
る。
The present invention relates to a piezoelectric vibrator that performs thickness-shear vibration. A piezoelectric resonator such as a crystal resonator generally has many sub-vibrations in addition to the main vibration. As an example, a planoconvex structure with thickness-shear vibration
AT-cut crystal resonators have a main oscillation frequency of
Those around 4.2MHz are around 4.6MHz and 4.7MHz
There is secondary vibration nearby. When measuring the surface charge distribution using an electric probe method, these main vibrations and sub-vibrations are found to be the first, third, and third vibrations.
A charge concentration region as shown in Fig. 5 and charge distribution curves as shown in Figs. 2, 4, and 6 are shown. Figure 1 shows main vibration 1
FIG. 2 shows a charge distribution curve of the main vibration 1 on the Z-axis. From FIGS. 1 and 2, it can be seen that in the main vibration 1, the charges are concentrated in the central region 1a. Figure 3 shows charge concentration regions 2a, 2b, 2c of secondary vibration 2.
, and FIG. 4 shows the charge distribution curve on the Z-axis of the secondary vibration 2. From Figures 3 and 4, it can be seen that in secondary vibration 2, charges are concentrated in the central region 2a, and charges with different polarities are concentrated in regions 2b and 2c on both sides of the region 2a on the Z axis. Recognize. In addition, Fig. 5 shows the charge concentration region 3 of other sub-vibration 3.
a, 3b, and 3c, and FIG. 6 shows the charge distribution curve on the X-axis of the sub-oscillation 3. 5 and 6, in sub-vibration 3, charges are concentrated in the central region 3a, and charges with different polarities are concentrated in the region 3a.
It can be seen that they are concentrated in regions 3b and 3c on both sides of the X-axis of a. If the oscillation frequency of the main vibration and the oscillation frequency of the sub-vibration are close to each other, the crystal resonator may oscillate due to the sub-vibration, or the main vibration may be influenced by the sub-vibration. Also, Figures 7 and 8 show other conventional examples, and although this conventional crystal resonator was effective in suppressing one sub-vibration, it was not effective in suppressing other sub-vibrations. It was small. It is an object of the present invention to provide a thickness-shear piezoelectric vibrator having a drive electrode that can efficiently drive the main vibration and suppress a plurality of other sub-vibrations. Another object of the present invention is to improve the Q value of a piezoelectric vibrator. An embodiment of the present invention will be described in detail below based on the drawings. In FIGS. 9 and 10, 4 is a crystal resonator which is a piezoelectric vibrator, and a crystal piece 5 which is a piezoelectric element,
Drive electrodes 6 and 7 provided on opposing surfaces of this crystal piece
It consists of. Although the crystal piece 5 has a disc shape, it is not limited to this, but may have a bebesung shape, a planoconvex shape, or a planoconvex shape.
It may be biconvex-shaped. Drive electrodes 6 and 7 are formed on opposing surfaces of the crystal blank 5 by vacuum evaporation or the like, and these drive electrodes extend in the outer circumferential direction and include extraction electrodes 6a and 7a formed at the same time. Holding members (not shown) for the crystal piece 5 are fixed to the outer peripheries of the extraction electrodes 6a, 7a, and a voltage is applied to the drive electrodes 6, 7 from these holding members. One of the drive electrodes 6 is provided with a central through hole 8 in the center and two symmetrical through holes 9, 1.
0 is set. First, to explain the central through hole 8 in detail, the central through hole 8 has a narrow center in the X-axis direction.
W2 , and both sides of the center on the Z-axis are wide W1 in the X-axis direction. The narrow central part corresponds to the charge concentrated region 1a of the main vibration 1 shown in the first diagram, and the wide side parts correspond to the three regions 2 where the charges of the sub vibration 2 shown in the third diagram are concentrated.
Two areas 2b, 2 on both sides of a, 2b, 2c
It corresponds to c. Note that the charge concentration region is, in other words, a region where vibration energy is large. As shown in FIG. 9, the right part of the central through hole 8 is a deleted part 8a where a part of the drive electrode 6 is deleted.
The central through hole 8 is opened by a removed portion 8a. This removed portion 8a corresponds to a support member of a mask that forms the central hole 8 when forming the drive electrode 6 on the crystal piece 5 by vacuum deposition or the like. Therefore, if the mask can be supported by an appropriate method, the removed portion 8a is not necessary. Next, the symmetrical through holes 9 and 10 will be explained in detail. These two symmetrical through holes are symmetrical about the Z axis and are located on the X axis. These symmetrical holes 9, 10 correspond to two regions 3b, 3c on both sides of the three regions 3a, 3b, 3c shown in FIG. 5 where the charges of the other sub-vibration 3 are concentrated. As shown in FIG. 9, the upper part of the symmetrical through hole 9 and the lower part of the symmetrical through hole 10 are connected to the driving electrode
The symmetrical through hole 9 is opened upward by the deleted part 9a, and the symmetrical through hole 10 is opened downward by the deleted part 10a. Similar to the removed portion 8a, these removed portions 9a and 10 also correspond to support members for a mask that forms symmetrical through holes 9 and 10 when forming the drive electrode 6 on the crystal piece 5 by vacuum deposition or the like.
Therefore, the deleted portions 9a, 10a are not necessarily necessary, and the symmetrical through holes 9, 10 can be made circular at least similar to the regions 3b, 3c described above. Drive electrode 6 between central through hole 8 and symmetrical through holes 9 and 10
The arched portions 6a and 6c are electrodes that, together with the drive electrode 7, efficiently drive this crystal resonator with its main vibration. When a voltage is applied to the drive electrodes 6 and 7 of this crystal resonator, this crystal resonator 4 is efficiently driven by the main vibration 1 and is hardly driven by the sub vibrations 2 and 3. And it is hardly affected by secondary vibrations 2 and 3. Further, since one drive electrode 6 of this crystal resonator 4 does not have an electrode film at the center of the crystal piece 5 where the vibration displacement is large, the fluctuation in the oscillation frequency of this crystal resonator due to aging is extremely small. Furthermore, since the other drive electrode 7 of this crystal oscillator has an electrode film at the center of the crystal piece 5 which has a large vibrational displacement, the oscillation frequency of this crystal oscillator can be efficiently adjusted by the added mass. Next, another embodiment of the present invention will be described based on FIG. The crystal resonator 14 includes a crystal piece 15 and a crystal piece 15.
A drive electrode (not shown) similar to that shown in FIG. 9 provided on one surface of the drive electrode 1 provided on the other surface of the
It consists of 7. The drive electrode 17 has three regions 3 lined up on the X-axis where charges of other sub-oscillations 3 are concentrated.
Two areas 3b, 3 on both sides of a, 3b, 3c
The upper and lower ends are removed in parallel to the Z-axis direction to avoid c, making it elongated. Therefore, compared to the crystal resonator 4 of the embodiment described above, this crystal resonator 14 is less susceptible to the influence of other sub-oscillations 3. Further, another embodiment of the present invention will be described based on FIG. 12. The crystal resonator 24 includes a crystal piece 25, a drive electrode (not shown) similar to that shown in FIG. 9 provided on one side of the crystal piece, and a drive electrode 2 provided on the other side of the crystal piece.
It consists of 7. The drive electrode 27 is provided with two opposing through holes 28, 29, which are opposed to the symmetrical through holes 9, 10 shown in FIG. That is, the opposing through holes 28 and 29 are located in two regions 3b on both sides of the three regions 3a, 3b, and 3c lined up on the X-axis where the charges of other sub-oscillations 3 are concentrated on the other surface of the crystal piece 25. , 3c. Therefore, this crystal oscillator 24 is also the same as the crystal oscillator 4 of the above embodiment.
Compared to this, it is less susceptible to the influence of this sub-vibration 3. Here, regarding the conventional crystal resonator shown in the seventh and eighth figures, the crystal resonator 4 shown in the ninth and tenth figures, the crystal resonator 14 shown in the eleventh figure, and the crystal resonator 24 shown in the twelfth figure, the main vibration 1, the sub-vibration 2. Experimental data of crystal impedance R 1 , R 2 , R 3 in sub-vibration 3 and Q value in main vibration 1 are shown in the table below.

【表】 この表において、従来の水晶振動子と比較して
みると本発明の水晶振動子4,14,24はQ値
の向上を達成できたことがわかる。これは主振動
1におけるクリスタルインピーダンスR1が減少
しているためである。また水晶振動子14,24
は他の副振動3におけるクリスタルインピーダン
スR3が大幅に増加していることがわかる。この
ため水晶振動子14,24は他の副振動3におい
てさらに駆動されにくくなつているが、Q値は若
干減少している。 以上述べたように本発明の厚みすべり圧電振動
子は、主振動にて効率よく駆動でき、複数の副振
動では駆動されにくくなつている。このため主振
動におけるQ値が向上でき、副振動の影響を受け
にくくなつている。
[Table] In this table, when compared with the conventional crystal resonators, it can be seen that the crystal resonators 4, 14, and 24 of the present invention were able to achieve an improvement in the Q value. This is because the crystal impedance R 1 in the main vibration 1 is reduced. Also, crystal oscillators 14, 24
It can be seen that the crystal impedance R 3 in the other sub-oscillation 3 has increased significantly. For this reason, the crystal oscillators 14 and 24 are more difficult to be driven by the other sub-oscillations 3, but the Q value is slightly reduced. As described above, the thickness-shear piezoelectric vibrator of the present invention can be efficiently driven by the main vibration, and is difficult to be driven by the plurality of sub-vibrations. For this reason, the Q value of the main vibration can be improved, making it less susceptible to the influence of secondary vibrations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は主振動における表面電荷分布を示して
いる従来のATカツト水晶振動子の正面図、第2
図は第1図におけるZ軸上の表面電荷分布曲線図
第3図は副振動における表面電荷分布を示してい
る従来のATカツト水晶振動子の正面図、第4図
は第3図におけるZ軸上の表面電荷分布曲線図、
第5図は他の副振動における表面電荷分布を示し
ている従来のATカツト水晶振動子の正面図、第
6図は第5図におけるX軸上の表面電荷分布曲線
図、第7,8図は他の従来例の正面図および背面
図、第9図は本発明の一実施例の正面図、第10
図はその背面図、第11図は本発明の他の実施例
の背面図、第12図はさらに他の実施例の背面図
である。 4,14,24……水晶振動子、5,15,2
5……水晶片、6……一方の駆動電極、7,1
7,27……他方の駆動電極、8……中央透孔、
9,10……対称透孔、28,29……対向透
孔。
Figure 1 is a front view of a conventional AT-cut crystal resonator showing the surface charge distribution in the main vibration;
The figure is a surface charge distribution curve on the Z-axis in Figure 1. Figure 3 is a front view of a conventional AT cut crystal resonator showing the surface charge distribution in sub-vibration. Figure 4 is the Z-axis in Figure 3. Above surface charge distribution curve diagram,
Figure 5 is a front view of a conventional AT-cut crystal resonator showing the surface charge distribution in other sub-oscillations, Figure 6 is a surface charge distribution curve on the X axis in Figure 5, and Figures 7 and 8. 9 is a front view and a rear view of another conventional example, FIG. 9 is a front view of an embodiment of the present invention, and FIG. 10 is a front view of another conventional example.
11 is a rear view of another embodiment of the present invention, and FIG. 12 is a rear view of still another embodiment. 4, 14, 24...Crystal resonator, 5, 15, 2
5... Crystal piece, 6... One drive electrode, 7,1
7, 27...Other drive electrode, 8...Central through hole,
9, 10... Symmetrical through holes, 28, 29... Opposing through holes.

Claims (1)

【特許請求の範囲】 1 厚みすべり振動を行う圧電素子の対向する面
に駆動電極を設け、上記駆動電極の一方は中央透
孔と二つの対称透孔とを有し、上記中央透孔は中
心部がX軸方向に幅狭であり、この中心部は主振
動の電荷が集中している領域に対応しており、Z
軸上における上記中心部の両側部がX軸方向に幅
広であり、この両側部はZ軸上に並んでいる副振
動の電荷が集中している三つの領域のうちの両側
の二つの領域に対応しており、上記二つの対称透
孔はZ軸に関して対称でありX軸上に位置してお
り、X軸上に並んでいる他の副振動の電荷が集中
している三つの領域のうちの両側の二つの領域に
対応していることを特徴とする厚みすべり圧電振
動子。 2 特許請求の範囲第1項において、駆動電極の
他方はX軸上に並んでいる他の副振動の電荷が集
中している三つの領域のうちの両側の二つの領域
を避けるようにZ軸方向に細長いことを特徴とす
る厚みすべり圧電振動子。 3 特許請求の範囲第1項において、駆動電極の
他方は二つの対称透孔と対向する二つの対向透孔
を有することを特徴とする厚みすべり圧電振動
子。
[Claims] 1 Drive electrodes are provided on opposing surfaces of a piezoelectric element that performs thickness shear vibration, one of the drive electrodes has a central through hole and two symmetrical through holes, and the central through hole has a central through hole. The area is narrow in the X-axis direction, and this central area corresponds to the area where the charges of the main vibration are concentrated, and the Z
Both sides of the central part on the axis are wide in the X-axis direction, and these both sides are located in two areas on both sides of the three areas lined up on the Z-axis where charges of sub-vibration are concentrated. The above two symmetrical holes are symmetrical with respect to the Z-axis and located on the X-axis, and among the three regions lined up on the X-axis where charges of other sub-vibrations are concentrated. A thickness-slip piezoelectric vibrator characterized in that it corresponds to two regions on both sides of the oscillator. 2 In claim 1, the other drive electrode is arranged along the Z-axis so as to avoid two regions on both sides of the three regions arranged on the X-axis where charges of other sub-oscillations are concentrated. A thickness-shear piezoelectric vibrator characterized by being elongated in the direction. 3. The thickness-shear piezoelectric vibrator according to claim 1, wherein the other drive electrode has two symmetrical through-holes and two opposing through-holes facing each other.
JP4441781A 1981-03-26 1981-03-26 Thickness slip piezoelectric oscillator Granted JPS57159111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4441781A JPS57159111A (en) 1981-03-26 1981-03-26 Thickness slip piezoelectric oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4441781A JPS57159111A (en) 1981-03-26 1981-03-26 Thickness slip piezoelectric oscillator

Publications (2)

Publication Number Publication Date
JPS57159111A JPS57159111A (en) 1982-10-01
JPS6340492B2 true JPS6340492B2 (en) 1988-08-11

Family

ID=12690914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4441781A Granted JPS57159111A (en) 1981-03-26 1981-03-26 Thickness slip piezoelectric oscillator

Country Status (1)

Country Link
JP (1) JPS57159111A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572679B2 (en) * 2004-12-22 2010-11-04 株式会社村田製作所 Piezoelectric thin film resonator

Also Published As

Publication number Publication date
JPS57159111A (en) 1982-10-01

Similar Documents

Publication Publication Date Title
US6362561B1 (en) Piezoelectric vibration device and piezoelectric resonance component
JPH0927729A (en) Thickness-mode piezoelectric vibrator
JPS6013608B2 (en) Thickness sliding piezoelectric vibrator
JPH0514442B2 (en)
JPS62230108A (en) Piezoelectric viblator
JPH0884044A (en) High frequency piezoelectric vibration device
JPS6340492B2 (en)
JPH07336184A (en) Energy confining type piezoelectric resonator
JPH07212171A (en) Thickness-shear crystal oscillator
JPH0124368B2 (en)
JPH09172344A (en) Piezoelectric resonator
JP2929107B2 (en) Manufacturing method of crystal unit
JPS58141021A (en) Thickness sliding crystal oscillator
JPS5936018Y2 (en) piezoelectric vibrator
JPS5912805Y2 (en) Width shear oscillator
JPH06209225A (en) Piezoelectric vibrator for overtone oscillation
JPS5827552Y2 (en) piezoelectric vibrator
JPS63156413A (en) Multiplex mode piezoelectric filter
JPS60242713A (en) Electrode structure of piezoelectric transducer
JPS6246090B2 (en)
JPS605619A (en) Thickness-shear piezoelectric vibrator
JPS5852366B2 (en) Havasu Berria Tsuden Shindoushi
JPH0349467Y2 (en)
JPS6058709A (en) Piezoelectric vibrator
JPH04222108A (en) Thickness-shear vibrator