JPS6340465B2 - - Google Patents

Info

Publication number
JPS6340465B2
JPS6340465B2 JP58053224A JP5322483A JPS6340465B2 JP S6340465 B2 JPS6340465 B2 JP S6340465B2 JP 58053224 A JP58053224 A JP 58053224A JP 5322483 A JP5322483 A JP 5322483A JP S6340465 B2 JPS6340465 B2 JP S6340465B2
Authority
JP
Japan
Prior art keywords
carbonization
coke
amount
heat
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58053224A
Other languages
Japanese (ja)
Other versions
JPS59179582A (en
Inventor
Mitsumasa Seizan
Akira Kitahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP5322483A priority Critical patent/JPS59179582A/en
Publication of JPS59179582A publication Critical patent/JPS59179582A/en
Publication of JPS6340465B2 publication Critical patent/JPS6340465B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Description

【発明の詳細な説明】 本発明はコークスの製造法に係わる。更に詳し
くは、本発明は乾留用燃料ガスの節減を可能なら
しめるコークスの製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing coke. More specifically, the present invention relates to a method for producing coke that enables saving of fuel gas for carbonization.

コークスは通常複数銘柄の原料石炭を配合し
て、これをコークス炉炭化室に装入し、加熱乾留
することによつて生産される。かくして、生産さ
れたコークスは、鉄鉱石の還元剤としての用途に
供される。
Coke is usually produced by blending multiple brands of raw coal, charging this into a coke oven carbonization chamber, and heating and carbonizing it. The coke thus produced is used as a reducing agent for iron ore.

コークスは、上述のとおり、原料石炭をコーク
ス炭化室に装入して、隣接する燃焼室で燃料ガス
を大量に燃焼させて乾留することにより得られる
ものである故、燃料ガスの使用量はコークスの生
産コストを左右する要因であるばかりでなく、コ
ークスの品質にも大きな影響を及ぼすものであ
る。
As mentioned above, coke is obtained by charging raw coal into a coke carbonization chamber and burning a large amount of fuel gas in an adjacent combustion chamber to carbonize it. Therefore, the amount of fuel gas used is It is a factor that not only affects the production cost of coke, but also has a great influence on the quality of coke.

従来、原料石炭を乾留してコークスを製造する
に当つては、加熱用燃料ガスの燃焼室への供給
は、保持されるコークス炉温、原料石炭の装入
量、乾留終了後における生成コークスの養生時間
等専ら炉の操業上の要因のみを中心にして決定さ
れていたが、同じ操業条件であつても実際の消費
熱量は予め予想したものとは大きくずれ、結果と
して加熱用燃料ガスの所要供給量、言い替えれば
実効所要熱量を前もつて予測した上で最適量の燃
料ガスを供給するといつたことはできなかつた。
そのため、燃料ガスの無駄な消費を招き、コーク
ス生産コストの上昇、ひいては省エネルギーとい
う国家的政策にも反する結果となつていた。
Conventionally, when producing coke by carbonizing coking coal, the supply of heating fuel gas to the combustion chamber depends on the coke oven temperature to be maintained, the amount of coking coal charged, and the amount of coke produced after carbonization. The curing time and other factors were determined solely based on operational factors of the furnace, but even under the same operating conditions, the actual amount of heat consumed deviated significantly from what was predicted in advance, and as a result, the required amount of fuel gas for heating It is not possible to supply the optimum amount of fuel gas by predicting the amount of fuel gas to be supplied, in other words, the effective amount of heat required.
This led to wasteful consumption of fuel gas, increased coke production costs, and went against the national policy of energy conservation.

本発明者らは、従来法におけるこのような問題
点を解消すべく、原料石炭の物性を中心とした熱
量供給法につき種々検討の結果、原料石炭の乾留
における実効所要乾留熱量と原料石炭の物性との
間には一定の関係があり、この関係を示す回帰式
を予め作成しておき、これに基づいて原料石炭を
選択することにより乾留の際に用いる燃料ガス供
給量を適正ならしめ、その節減が可能となるとの
知見を得て本発明に到達した。
In order to solve these problems in the conventional method, the present inventors conducted various studies on heat supply methods focusing on the physical properties of coking coal. There is a certain relationship between The present invention was developed based on the knowledge that savings can be achieved.

即ち本発明は、原料石炭を乾留してコークスを
製造するに当り、実効所要乾留熱量を従属変数と
し、原料石炭中の揮発分及び元素分析値のうち、
水素対炭素比並びに酸素対炭素比を独立変数の項
に含ませてなる重回帰式を予め統計的手法により
求めておき、該重回帰式に基づいて原料石炭を選
択し乾留することを特徴とするコークスの製造法
を要旨とするものである。
That is, in producing coke by carbonizing coking coal, the present invention uses the effective required carbonization heat as a dependent variable, and calculates the volatile content and elemental analysis value of the coking coal as a dependent variable.
A multiple regression equation in which the hydrogen-to-carbon ratio and the oxygen-to-carbon ratio are included in independent variable terms is determined in advance by a statistical method, and raw coal is selected and carbonized based on the multiple regression equation. The gist of this paper is a method for producing coke.

以下本発明方法を更に詳細に説明する。 The method of the present invention will be explained in more detail below.

原料石炭を乾留してコークスを生産するに要す
る実効所要乾留熱量(以下N―HCと略記する)
は常温から各乾留生成物が生成する温度まで昇温
する熱量(顕熱)と石炭から乾留生成物が生成す
る変動熱量(反応熱)との和、即ち乾留所要熱量
(以下HCと略記する)、と乾留の結果発生する諸
ガス中水蒸気と生成コークスとの間の水性ガス生
成による吸熱反応で持ち去られる熱量を補填する
熱量との総和と解することができる。
Effective amount of heat of carbonization required to produce coke by carbonizing raw coal (hereinafter abbreviated as N-HC)
is the sum of the amount of heat raised from room temperature to the temperature at which each carbonization product is produced (sensible heat) and the fluctuating amount of heat (reaction heat) generated from coal to the carbonization product, that is, the amount of heat required for carbonization (hereinafter abbreviated as HC) , and the amount of heat that compensates for the amount of heat carried away by the endothermic reaction between the water vapor in the gases generated as a result of carbonization and the produced coke due to the production of water gas.

そこで、本発明者らはコークス製造用として市
場で入手できる一般の原料石炭について、種々の
乾留操作条件(例えば乾留温度、乾留終了後の養
生時間等)を変え、顕熱及び反応熱を求めその総
和からHCをもとめた。ここで顕熱は、例えば乾
留生成物の乾留歩留と生成物の比熱と温度差を乗
じて求め、また反応熱は乾留生成物の発熱量と乾
留歩留とを乗じ、これより石炭の発熱量を差し引
いた値及び液状乾留生成物の潜熱と乾留歩留とを
乗じた値の和で求めた。
Therefore, the present inventors changed various carbonization operation conditions (e.g. carbonization temperature, curing time after completion of carbonization, etc.) for general raw material coal available on the market for coke production, and determined the sensible heat and reaction heat. HC was obtained from the sum. Here, the sensible heat is calculated by multiplying the carbonization yield of the carbonization product by the specific heat of the product and the temperature difference, and the reaction heat is calculated by multiplying the calorific value of the carbonization product by the carbonization yield. It was determined by the sum of the value obtained by subtracting the amount and the value obtained by multiplying the latent heat of the liquid carbonization product by the carbonization yield.

一方、通常の方法によつて原料石炭中の揮発分
(以下VMと略記する)及び元素成分割合の分析
を行い、得られたデータについて該HCとの関係
を統計的手法により解析した。その結果、VM%
及び元素分析値中水素対炭素比(以下H/Cと略
記する)が最も相関係数が大きいことを知つた。
即ちこれを独立変数の項に含ませた重回帰式が精
度よく利用できるとの知見を得た。第1図は前記
データをグラフで示したものであり、これを統計
的に解析すると HC(Kcal/Kg)=20.6・VM―1440・H/C+798
なる式が得られ、重回帰一般式で表すと、 HC(Kcal/Kg)=a・VM+b・H/C+α
…… となる。
On the other hand, volatile matter (hereinafter abbreviated as VM) and elemental component ratios in the raw coal were analyzed using a conventional method, and the relationship between the obtained data and the HC was analyzed using a statistical method. As a result, VM%
It was also found that the hydrogen-to-carbon ratio (hereinafter abbreviated as H/C) among the elemental analysis values has the largest correlation coefficient.
In other words, we have found that a multiple regression equation that includes this in the independent variable term can be used with high accuracy. Figure 1 shows the above data in a graph, and when it is statistically analyzed, HC (Kcal/Kg) = 20.6・VM−1440・H/C+798
The formula is obtained, and when expressed as a general multiple regression formula, HC (Kcal/Kg) = a・VM+b・H/C+α
......

ここで、該式Ka,b,αは、それぞれ回帰係
数及び回帰常数であつて、ある特定の操業条件例
えば乾留温度、乾留終了後のコークスの養生時間
等が一定である場合には一定値を示す。従つてコ
ークス炉の操業条件がほぼ同一であるような場合
には、原料石炭中のVM%及び元素分析値の測定
を行うだけで、予め多数のデータを基にして得ら
れた上記回帰式からHCの推算が可能である。な
お操業条件が大巾に変わつたときには、その変わ
つた操業条件見合いの回帰式を多数のデータを基
に算出しなければならないが、通常要因の寄与の
度合を表現する回帰係数の値はそのままにして、
回帰常数を増減させる方法が採用される。
Here, the equations Ka, b, and α are regression coefficients and regression constants, respectively, and when certain operating conditions such as carbonization temperature and coke curing time after completion of carbonization are constant, they take constant values. show. Therefore, if the operating conditions of the coke oven are almost the same, all you need to do is measure the VM% and elemental analysis values in the coking coal, and the above regression equation obtained in advance based on a large amount of data can be used. It is possible to estimate HC. Note that when operating conditions change significantly, a regression equation commensurate with the changed operating conditions must be calculated based on a large amount of data, but the regression coefficient values that express the degree of contribution of factors are usually left unchanged. hand,
A method of increasing or decreasing the regression constant is adopted.

次に、同じ多数の市販原料石炭について、水性
ガス生成反応に基づく吸熱量(以下ACと略記す
る)を測定する一方、原料石炭のVM%及び元素
成分との分析を行い、得られたデータについて該
ACとの関係を統計的手法により解析した。その
結果VM%及び元素分析値中酸素対炭素比(以下
O/Cと略記する)が最も相関係数が大きいこと
が判明した。即ちこれを独立変数の項に含ませた
重回帰式が精度よく利用できるとの知見を得た。
第2図は、前記データをグラフで示したもので、
これを統計的に解析すると、 AC(Kcal/Kg)=0.42・VM+319.7・0/C−12
なる式が得られ、これを一般重回帰式で表すと AC(Kcal/Kg)a1・VM+c・0/C+β …… となる。
Next, we measured the endothermic amount (hereinafter abbreviated as AC) based on the water gas production reaction for the same large number of commercially available coking coals, and analyzed the VM% and elemental components of the coking coals. Applicable
The relationship with AC was analyzed using statistical methods. As a result, it was found that VM% and the oxygen to carbon ratio (hereinafter abbreviated as O/C) in the elemental analysis value had the largest correlation coefficient. In other words, we have found that a multiple regression equation that includes this in the independent variable term can be used with high accuracy.
Figure 2 shows the above data graphically.
Statistically analyzing this, AC (Kcal/Kg) = 0.42・VM+319.7・0/C-12
The following equation is obtained, and when expressed as a general multiple regression equation, it becomes AC (Kcal/Kg) a 1・VM+c・0/C+β . . .

ここで、該式中a1,c,βは、それぞれ回帰係
数及び回帰常数であつて、ある特定の操業条件例
えば乾留温度、乾留終了後のコークスの養生時間
等が一定である場合には一定値を示す。従つてコ
ークス炉の操業条件がほぼ同一であるような場合
には、原料石炭中のVM%及び元素分析値の測定
を行うだけで、予め多数のデータを基にして得ら
れた上記回帰式からACの推算が可能である。な
お操業条件が大巾に変わつたときには、その変わ
つた操業条件見合いの回帰式を多数のデータを基
に算出しなければならないが、通常、要因の寄与
の度合を表現する回帰係数の値はそのままにし
て、回帰常数を増減させる方法が採用される。
Here, a 1 , c, and β in the formula are a regression coefficient and a regression constant, respectively, and are constant when certain operating conditions such as carbonization temperature and coke curing time after completion of carbonization are constant. Show value. Therefore, if the operating conditions of the coke oven are almost the same, all you need to do is measure the VM% and elemental analysis values in the coking coal, and the above regression equation obtained in advance based on a large amount of data can be used. It is possible to estimate AC. Note that when operating conditions change drastically, a regression equation commensurate with the changed operating conditions must be calculated based on a large amount of data, but normally the value of the regression coefficient, which expresses the degree of contribution of a factor, remains unchanged. A method is adopted in which the regression constant is increased or decreased.

先に述べたように、原料石炭の乾留に要するN
―HC(実効所要乾留熱量)は、前記HC(乾留所
要熱量)とAC(水性ガス生成反応に基づく吸熱
量)との総和と考えられるから、以上のような二
つの式から次の重回帰式で示されることとなる。
As mentioned earlier, the N required for carbonization of coking coal
- HC (effective heat of carbonization) can be considered to be the sum of the above-mentioned HC (required heat of carbonization) and AC (endothermic amount based on water gas production reaction), so from the above two equations, the following multiple regression equation can be calculated. It will be shown as follows.

N−HC(Kcal/Kg)=(a+a1)・VM +b・H/C +c・0/C +(α+β) …… なお、上記式は、各々別個に求めた式と
式とを加算して得たものであるが、当初から
VM,H/C,0/Cを独立変数の要因とし、N
―HCを従属変数として、実験データ又は実操業
データをもとに直接式を求めてよいのは当然で
ある。
N-HC (Kcal/Kg) = (a+a 1 )・VM +b・H/C +c・0/C + (α+β)... The above formula is calculated by adding the separately calculated formula and the formula. However, from the beginning
VM, H/C, 0/C are independent variable factors, N
-It is natural to use HC as the dependent variable and directly calculate the equation based on experimental data or actual operation data.

従つて、多数の市販のコークス製造用原料石炭
を予め分析して、その分析データを解析すること
により、上記の形のような重回帰式を導いておく
ことにより、原料石炭中のVM%及び元素分析値
の測定だけで、N―HCを予測することができ
る。即ち、各単味原料石炭それぞれのVM、H/
C、0/Cを通常の方法により予め測定してお
き、これを配合して得られる配合原料石炭の想定
配合割合から該配合原料石炭のVM,H/C,
0/Cを算出してN―HCを計算する。そしてN
―HCが最低となるように想定配合を試行錯誤を
繰り返して原料石炭を選択し、乾留を行うのであ
る。
Therefore, by analyzing a large number of commercially available coking coals for coke production in advance and deriving a multiple regression equation as shown above by analyzing the analysis data, it is possible to calculate the VM% and N-HC can be predicted just by measuring elemental analysis values. In other words, the VM, H/
C, 0/C is measured in advance by a normal method, and VM, H/C,
Calculate 0/C and calculate N-HC. and N
-Coking coal is selected through repeated trial and error to create a hypothetical blend with the lowest HC, and carbonization is then carried out.

第3図は、本発明方法によつてコークスを生成
させる場合の計算による予想のN―HCと実績の
N―HCとグラフ化し グラフからも判るとおり、両者の間には大きな
相関のあることが判る。
Figure 3 is a graph of the predicted N-HC calculated and the actual N-HC when coke is produced by the method of the present invention.As can be seen from the graph, there is a large correlation between the two. I understand.

本発明は以上述べたように、実効所要乾留熱量
と原料石炭の物性値との関係を解析し、その結果
求められる重回帰式を予め多数のデータから作成
しておき、原料石炭を選択配合することにより乾
留に要する燃料ガスを最少量で供給することを可
能とするものであり、その工業的価値は大きい。
As described above, the present invention analyzes the relationship between the effective amount of carbonization heat required and the physical property values of the raw material coal, creates a multiple regression equation obtained as a result from a large amount of data in advance, and selects and blends the raw material coal. This makes it possible to supply the minimum amount of fuel gas required for carbonization, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は原料石炭のVM,H/CとHCとの関
係を示す散布図である。第2図は原料石炭の
VM,0/CとACとの関係を示す散布図である。
第3図は本発明による計算N―NCと実績N―
HCとの関係を示す散布図である。
Figure 1 is a scatter diagram showing the relationship between VM, H/C and HC of raw coal. Figure 2 shows raw coal
It is a scatter diagram showing the relationship between VM, 0/C and AC.
Figure 3 shows calculation N-NC and actual N- according to the present invention.
It is a scatter diagram showing the relationship with HC.

Claims (1)

【特許請求の範囲】[Claims] 1 原料石炭を乾留してコークスを製造するに当
り、実効所要乾留熱量を従属変数とし、原料石炭
中の揮発分及び元素分析値のうち、水素対炭素比
並びに酸素対炭素比を独立変数の項に含ませてな
る重回帰式を予め統計的手法により求めておき、
該重回帰式に基づいて原料石炭を選択し乾留する
ことを特徴とするコークスの製造法。
1. When producing coke by carbonizing coking coal, the effective amount of carbonization heat required is the dependent variable, and the hydrogen-to-carbon ratio and oxygen-to-carbon ratio of the volatile content and elemental analysis values in the coking coal are used as independent variables. A multiple regression equation including
A method for producing coke, characterized in that raw coal is selected and carbonized based on the multiple regression equation.
JP5322483A 1983-03-28 1983-03-28 Production of coke Granted JPS59179582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5322483A JPS59179582A (en) 1983-03-28 1983-03-28 Production of coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5322483A JPS59179582A (en) 1983-03-28 1983-03-28 Production of coke

Publications (2)

Publication Number Publication Date
JPS59179582A JPS59179582A (en) 1984-10-12
JPS6340465B2 true JPS6340465B2 (en) 1988-08-11

Family

ID=12936850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5322483A Granted JPS59179582A (en) 1983-03-28 1983-03-28 Production of coke

Country Status (1)

Country Link
JP (1) JPS59179582A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637277A (en) * 1979-08-31 1981-04-10 Matsushita Electric Works Ltd Lightweight exterior wall material and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637277A (en) * 1979-08-31 1981-04-10 Matsushita Electric Works Ltd Lightweight exterior wall material and its manufacture

Also Published As

Publication number Publication date
JPS59179582A (en) 1984-10-12

Similar Documents

Publication Publication Date Title
Chen et al. Effect of raw materials on the production process of the silicon furnace
CN107525882A (en) A kind of method for predicting sulfur content in coke
CN116499272B (en) Intelligent kiln control method for tracking multi-energy combustion carbon emission
JPS6340465B2 (en)
JPH06207933A (en) Estimation of yield of product through carbonization of coal
KR100321064B1 (en) Apparatus for measuring volume of gas generated in coke oven
CN114236089B (en) Evaluation method and system for coke maturity
JPS60240789A (en) Method for forecasting change of coke oven gas with time
KR20000041662A (en) Method for estimating total amount of generation of coke oven gas of carbonization chamber
KR101466481B1 (en) Method for forecasting generating quantity of hydrogen sulfide in cokes process
CN206244713U (en) A kind of top collaboration bottom regulation coke oven structure to distribution of air flow long
JPH06201681A (en) Method for estimating calorific value and volume of coal gas
KR100384122B1 (en) Control method of stop time combustion in coke furnace combustion management system
KR100691514B1 (en) Combustion air control method by measuring of fuel calorific value
JP4050989B2 (en) Coke oven gas generation amount and heat amount prediction method, information processing method, and information processing apparatus
KR100481295B1 (en) Coke strength prediction method from coal charging and coking condition
Chesnokov et al. Models and analyses of the emission of carbon dioxide in relation to metallurgical processes
JPS6320479B2 (en)
JPS6340833B2 (en)
KR101435271B1 (en) Method for predicting coke replacement ratio of furnace pulverized coal
RU2036735C1 (en) Method of regulating fuel agent supply to blast furnace
Patil et al. Case Study of SPRERI natural draft gasifier installation at a ceramic industry
Jha et al. Investigation of Thermal and Hydraulic Regime of CDCP for Higher Throughput in SAIL Plant
JPS59145283A (en) Preparation of dry distilled product
Malik et al. The effect of agitation on the char combustion characteristics of large coal particles