KR20000041662A - Method for estimating total amount of generation of coke oven gas of carbonization chamber - Google Patents

Method for estimating total amount of generation of coke oven gas of carbonization chamber Download PDF

Info

Publication number
KR20000041662A
KR20000041662A KR1019980057616A KR19980057616A KR20000041662A KR 20000041662 A KR20000041662 A KR 20000041662A KR 1019980057616 A KR1019980057616 A KR 1019980057616A KR 19980057616 A KR19980057616 A KR 19980057616A KR 20000041662 A KR20000041662 A KR 20000041662A
Authority
KR
South Korea
Prior art keywords
coal
temperature
coal gas
gas generation
coke oven
Prior art date
Application number
KR1019980057616A
Other languages
Korean (ko)
Inventor
이성영
Original Assignee
이구택
포항종합제철 주식회사
신현준
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사, 신현준, 재단법인 포항산업과학연구원 filed Critical 이구택
Priority to KR1019980057616A priority Critical patent/KR20000041662A/en
Publication of KR20000041662A publication Critical patent/KR20000041662A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • G01N33/225Gaseous fuels, e.g. natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Coke Industry (AREA)

Abstract

PURPOSE: A method for estimating the total amount of generation of coke oven gases of a carbonization chamber is provided which makes it possible to estimate the total amount of coke oven gases more accurately and simply. CONSTITUTION: A method comprises (1) obtaining the temperature of a second thermal cracking furnace by use of the amount of a volatile component of a mixed coal without making an experiment for obtaining a temperature of a second thermal cracking furnace again even when a kind of a mixed coal and its mixing ratio are changed in the manufacture of coke and (2) estimating the total amount of generation of coke oven gases based on the obtained temperature.

Description

코크스 로 탄화실의 석탄가스 발생량 예측방법Estimation of Coal Gas Generation in Coke Furnace Carbonization Chamber

본 발명은 코크스로 탄화실의 석탄가스 발생량을 예측하는 방법에 관한 것으로서, 보다 상세하게는 코크스 제조시 배합탄의 탄종 및 배합비 변동시에도 보다 간단하게 탄화실 석탄가스 발생량을 예측할 수 있는 방법에 관한 것이다.The present invention relates to a method for estimating the amount of coal gas generated in a coke furnace carbonization chamber, and more particularly, to a method for more easily predicting the amount of coal gas generated in a coke production even when the coal type and blending ratio of the coal mixture are changed. will be.

코코스 로에 장입되는 석탄은 가열벽으로 부터의 전열에 의하여 열분해되어 코크스를 생성함과 동시에 타르와 다량의 코크스 로(오븐) 가스(COG)를 발생시킨다.Coal charged into the cocos furnace is pyrolyzed by heat transfer from the heating wall to produce coke and at the same time generates tar and a large amount of coke furnace (oven) gas (COG).

이들 타르와 COG는 분리 포집되어 타르는 화학제품의 원료로 사용되고 있으며 석탄 톤당 약 300∼360Nm3발생하는 코크스 로 가스는 제철소 전공정의 연료로 사용되어 전 제철소 에너지 공급의 93%를 차지하며 그 조성은 건류조건, 건류방식, 조업조건, 원료탄의 조건에 따라 변화가 많지만 대략적으로 수소 50∼55%, 메탄 약 28∼33%, CO 6∼8%, CO22∼3%등이다.The tar and the COG is collected tar is separated into coke, which is used as raw material for chemicals and about 300~360Nm coal per ton of produced gas is 3 accounted for 93% of the mill energy supply is used to define the composition of the steel mill major fuel There are many variations depending on the distillation conditions, distillation methods, operating conditions, and raw coal conditions, but they are approximately 50 to 55% hydrogen, about 28 to 33% methane, 6 to 8% CO, and 2 to 3% CO2.

상기와 같이 에너지원으로서 사용되는 COG의 발열량 및 발생량을 예측하는 것은 제철소내 타공장에서의 조업안정과 직결되는 매우 중요한 사항이다.Predicting the calorific value and generation amount of COG used as an energy source as described above is a very important matter directly connected to the operation stability at other plants in the steel mill.

가열온도는 석탄의 열분해 생성물 조성에 가장 큰 영향을 미치는 변수이다. 즉, 상기 가열온도는 두가지 영향을 미치는데 첫째는 석탄의 분해이고, 둘째는 휘발분의 2차 반응에 대한 영향이다.The heating temperature is the most influential variable for the pyrolysis product composition. In other words, the heating temperature has two effects: first, the decomposition of coal, and second, the effect on the secondary reaction of volatile matter.

일반적으로, 메탄의 형성은 2개 또는 4개의 반응이 평행하게 발생하여 중복적으로 겹치게 되는 것으로 해석되며, 건류온도가 낮아지면 메탄의 조성이 높아지고 온도가 높으면 작아진다.In general, the formation of methane is interpreted as two or four reactions occur in parallel to overlap overlapping, the lower the dry distillation temperature, the higher the composition of methane, the lower the temperature.

이것은 메탄이 석탄열분해시 1차 생성물이기 때문이다. 이러한 1차 생성물이 가열 죤(hot zone)을 지날 때 분해되어 다시 수소로 전환되기 때문이다. 수소는 약 400℃부터 발생하여 약 700℃부근에서 최대를 보이며 이후 서서히 감소하지만 1000℃이상에서도 계속 발생하며 이는 통계적 활성화 에너지 분포를 갖는 수많은 1차반응의 조합이기 때문이다.This is because methane is the primary product in coal pyrolysis. This is because these primary products decompose and pass back to hydrogen as they pass through the hot zone. Hydrogen occurs from about 400 ° C, peaks around 700 ° C, and then decreases slowly, but continues to rise above 1000 ° C, because it is a combination of numerous first-order reactions with statistical activation energy distributions.

단위 중량의 석탄에서 열분해에 의하여 발생하는 가스의 발생속도를 석탄온도의 함수로 나타냄으로써 석탄온도가 T1에서 T2로 상승하는 사이에 발생하는 가스의 양을 구하는 것이 가능하며 수식으로는 하기 식(1)및(2)와 같이 나타낼 수 있다.By expressing the generation rate of gas generated by pyrolysis in unit weight coal as a function of coal temperature, it is possible to calculate the amount of gas generated while the coal temperature rises from T 1 to T 2 . It can be represented as (1) and (2).

여기서, g: 단위중량 석탄의 가스 발생량Where g: gas generation amount of unit weight coal

T :석탄온도T: coal temperature

ψ(T) : 석탄 단위중량당 가스 발생속도ψ (T): gas generation rate per unit weight of coal

여기서, g: 석탄온도가 T1에서 T2로 상승하는 사이에 단위중량의 석탄에서 발 생하는 가스 양Where g is the amount of gas from the unit weight of coal while the coal temperature rises from T 1 to T 2

석탄가스의 발생속도를 석탄온도의 함수로 나타내는 방법으로는 1차분해로 및 2차분해로를 이용하여 온도에 따른 석탄가스의 발생속도를 직접 측정하는 방법이 알려져 있는데, 석탄가스의 발생패턴이 도 1에 나타난 바와 같이 2차 분해로의 온도에 따라 매우 다양하게 변화하기 때문에 2차 분해로의 온도 설정이 매우 중요하다.As a method of expressing the generation rate of coal gas as a function of coal temperature, a method of directly measuring the generation rate of coal gas according to temperature using a primary cracking furnace and a secondary cracking furnace is known. As shown in Fig. 2, the temperature setting of the secondary cracking furnace is very important because the temperature varies greatly depending on the temperature of the secondary cracking furnace.

상기 석탄가스 발생패턴은 경우에 따라 한달 3∼4번씩 변화하는 탄종 배합비에 의해서 매우 큰 폭으로 변화하기 때문에 상기 방법에서와 같이 고정된 2차 분해로값을 사용하는 경우에는 정확한 예측을 할 수 없게 된다.Since the coal gas generation pattern varies greatly depending on the coal type compounding ratio which changes from 3 to 4 times a month in some cases, when the fixed secondary cracking furnace value is used as in the above method, accurate prediction cannot be made. do.

왜냐하면, 탄종 및 배합비가 바뀐경우에는 석탄 조성변화에 따른 석탄의 물리, 화학적 특성이 달라지므로 석탄조성변화에 따른 석탄가스발생속도가 변화하게 되기 때문이다.This is because, when the coal type and the mixing ratio are changed, the physical and chemical properties of the coal are changed according to the change in the composition of the coal, and thus, the rate of coal gas generation due to the change in coal composition is changed.

또한, 탄종 및 배합비는 석탄의 하적상황에 따라 월 3-4번도 바뀔 수 있으므로 배합비가 변경될때 마다 석탄가스 발생속도실험을 다시 수행하여 온도의 함수로서의 석탄가스 발생속도에 대한 데이타를 얻어야 하는 번거러움이 있다.In addition, the type of coal and the mixing ratio may change 3-4 times a month depending on the loading condition of the coal, so when the mixing ratio is changed, it is necessary to perform the coal gas generation rate test again to obtain data on the coal gas generation rate as a function of temperature. have.

본 발명자는 상기한 종래기술의 제반 문제점을 해결하기 위하여 연구 및 실험을 행하고, 그 결과에 근거하여 본 발명을 행하게 된 것으로서, 본 발명은 코크스 제조시 배합탄의 탄종 및 배합비 변동시에도 2차 분해로 온도를 구하기 위한 실험을 다시 행하지 않고 배합탄중의 휘발분의 함량을 이용하여 2차 분해로 온도를 구하고 이를 근거로하여 탄화실 석탄가스 발생량을 예측하므로서, 보다 정확하고, 보다 간단하게 탄화실 석탄가스 발생량을 예측할 수 있는 방법을 제공하고자 하는데, 그 목적이 있다.The present inventors have conducted research and experiments to solve the above-mentioned problems of the prior art, and based on the results, the present invention provides secondary decomposition even when the coal type and blending ratio of the coal blended during coke production are varied. Instead of conducting the experiment to find the furnace temperature again, the temperature of the secondary cracking furnace is calculated using the volatile content of the coal mixture, and the carbon dioxide gas is predicted more accurately and more simply. It aims to provide a method for predicting the amount of occurrence, and its purpose is.

도 1은 배합탄의 2차 분해로 온도에 대한 1차 분해로 온도변화에 따른 석탄가스 발생량 변화를 나타내는 그래프1 is a graph showing the change in coal gas generation rate according to the temperature change in the primary cracking furnace to the secondary cracking furnace temperature of the coal blend;

도 2는 휘발분이 25.3%인 배합탄을 사용하여 본 발명에 의해 예측한 석탄가스 발생량과 실제측정한 석탄가스 발생량의 변화를 나타내는 그래프FIG. 2 is a graph showing changes in coal gas generation amount and actual measured coal gas generation amount predicted by the present invention using a coal mixture having 25.3% of volatile matter.

본 발명은 1차 열분해로와 2차 열분해로로 이루어진 탄화실험장치를 이용하여 코크스 로 탄화실의 석탄가스 발생량을 예측하는 방법에 있어서,The present invention provides a method for predicting the amount of coal gas generated in a coke oven carbonization chamber using a carbonization experiment apparatus consisting of a primary pyrolysis furnace and a secondary pyrolysis furnace.

2차 열분해로 온도를 변화시키면서 배합탄을 탄화실험하여 석탄가스 발생속도를 측정하여 2차 열분해로 온도(T)의 함수로 하는 석탄가스 발생속도(F)모델을 구하는 단계;Carbonizing the blended coals while varying the temperature by the secondary pyrolysis to measure coal gas generation rate to obtain a coal gas generation rate (F) model as a function of the temperature (T) of the secondary pyrolysis;

상기 단계를 배합탄중의 휘발분 함량을 변화시키면서 수행하는 단계;Performing the step while varying the volatile content in the coal blend;

상기 석탄가스 발생속도(F)모델를 석탄가스 발생량(G)모델로 변환하는 단계;Converting the coal gas generation rate (F) model to a coal gas generation amount (G) model;

상기 각각의 휘발분을 갖는 배합탄을 코크스로에서 건류할 때 발생되는 석탄가스발생량을 측정하고, 이 측정된 석탄가스발생량모델을 이용하여 최적 2차 열분해로 온도(T1)를 구하는 단계;Measuring the amount of coal gas generated when the coal briquettes having the respective volatiles are carbonized in a coke oven, and obtaining an optimal secondary pyrolysis temperature (T1) using the measured coal gas generation model;

배합탄중의 휘발분 함량과 최적 2차 열분해로 온도(T1)와의 상관관계를 구하는 단계; 및Obtaining a correlation between the volatile matter content of the coal briquettes and the temperature (T1) by an optimum secondary pyrolysis; And

배합탄 변경시 배합탄의 휘발분을 측정하여 휘발분 함량과 최적 2차 열분해로 온도(T1)와의 상관관계에 대입하여 최적 2차분해로 온도(T1)를 구한 다음, 상기 석탄가스 발생량(G)모델에 대입하여 석탄가스 발생량을 구하고, 이를 탄화실 석탄가스 발생량으로 예측하는 단계를 포함하여 구성되는 코크스 로 탄화실의 석탄가스 발생량 예측방법에 관한 것이다.When the coal mixture is changed, the volatilization of the coal mixture is measured, and the optimum secondary pyrolysis temperature (T1) is obtained by substituting the correlation between the volatile content and the optimum secondary pyrolysis temperature (T1), and then the coal gas generation (G) model is used. The present invention relates to a method for predicting the amount of coal gas generated in a coke oven carbonization chamber including the step of obtaining the coal gas generation amount and estimating the amount of coal gas generated therein.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 1차 열분해로와 2차 열분해로로 이루어진 탄화실험장치를 이용하여 코크스 오븐의 탄화실 석탄가스 발생량을 예측하는 방법에 적절히 적용된다.The present invention is suitably applied to a method for predicting the amount of coal gas generation in a coke oven using a carbonization experiment apparatus consisting of a primary pyrolysis furnace and a secondary pyrolysis furnace.

2차 열분해로 온도를 변화시키면서 배합탄을 석탄 탄화실험하여 석탄가스 발생속도를 측정하여 2차 열분해로 온도(T)의 함수가 되는 석탄가스 발생속도(F)모델을 구한다.Coal carbonization experiment is carried out while varying the temperature by secondary pyrolysis to measure coal gas generation rate, and a model of coal gas generation rate (F) which is a function of temperature (T) is obtained by secondary pyrolysis.

상기 단계를 배합탄중의 휘발분 함량을 변화시키면서 수행한다.This step is carried out while varying the volatile content in the coal blend.

상기 석탄가스 발생속도(F)모델을 석탄가스 발생량(G)모델로 변환한다.The coal gas generation rate (F) is converted into a coal gas generation amount (G) model.

상기 각각의 휘발분을 갖는 배합탄을 코크스로에서 건류할 때 발생되는 석탄가스발생량을 측정하고, 이 측정된 석탄가스발생량모델을 이용하여 최적 2차 열분해로 온도(T1)를 구한다.The amount of coal gas generated when the mixed coal having each of the volatile matters is dried in a coke oven is measured, and the temperature (T1) of the optimum secondary pyrolysis is obtained using the measured coal gas generation model.

배합탄중의 휘발분 함량과 최적 2차 열분해로 온도(T1)와의 상관관계를 구하는데, 이에 대하여 상세히 설명하면 다음과 같다.The correlation between the volatile matter content in the coal blended and the temperature (T1) by the optimum secondary pyrolysis is described as follows.

예를 들면, 휘발분(VM)의 함량이 다른 4개의 배합탄에 대한 배합탄중의 휘발분 함량과 최적 2차 열분해로 온도(T1)를 상기와 같은 방법으로 구하여 배합탄중의 휘발분 함량과 최적 2차 열분해로 온도(T1)와의 상관관계를 구하면 하기 식(3)과 같으며, 4개의 휘발분 함량과 2차 열분해로 온도 데이타쌍의 회귀분석을 통하여 하기 식(3)의 상수a,b,c를 구한다.For example, the volatile matter content in the coal briquettes of four coal briquettes having different volatile matter (VM) contents and the temperature (T1) by the optimum secondary pyrolysis are obtained in the same manner as described above. Correlation with furnace temperature (T1) is given by Equation (3), and the constants a, b, and c in Equation (3) are obtained through regression analysis of four volatile matter contents and temperature data pairs by secondary pyrolysis. .

T = a(VM)2+ b(VM) + cT = a (VM) 2 + b (VM) + c

(a,b,c: 회귀분석에 의해 구해지는 상수)(a, b, c: constants obtained by regression analysis)

다음에, 배합탄 변경시 배합탄의 휘발분을 측정하여 휘발분 함량과 최적 2차 열분해로 온도(T1)와의 상관관계에 대입하여 최적 2차분해로 온도(T1)를 구한 다음, 상기 석탄가스 발생량(G)모델에 대입하여 석탄가스 발생량을 구하고, 이것을 탄화실 석탄가스 발생량으로 예측한다.Next, the volatile fraction of the coal mixture when the coal mixture is changed is determined by substituting the correlation between the volatile content and the optimal secondary pyrolysis temperature (T1) to obtain the optimum secondary cracking furnace temperature (T1), and then the amount of coal gas generated (G). The coal gas generation amount is calculated by substituting the model, and the coal gas generation amount is estimated.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예Example

휘발분(VM)이 25.3%인 배합탄을 사용하여 본 발명법에 따라 탄화실 석탄가스 발생량을 예측하고, 그 예측결과를 도 2에 나타내었다.The coal charcoal gas generation amount was predicted according to the present invention using a coal mixture containing 25.3% of volatile matter (VM), and the prediction result is shown in FIG. 2.

이때,상기 배합탄에 대하여 하기 식(4)를 이용하여 최적 2차열분해온도를 구하였는데, 2차열분해온도는 873.4℃였다.At this time, the optimum secondary pyrolysis temperature was calculated using the following formula (4) for the blended coal, and the secondary pyrolysis temperature was 873.4 ° C.

T = 25(VM)2+ 1221.5(VM) + 15775.1T = 25 (VM) 2 + 1221.5 (VM) + 15775.1

상기 식(4)는 하기 표1에 제시되어 있는 배합탄을 이용하여 구했다.Formula (4) was obtained using the coal briquettes shown in Table 1 below.

휘발분(VM)(%)Volatility (VM) (%) 2차분해온도(℃)Secondary decomposition temperature (℃) 1One 25.225.2 870870 22 24.824.8 858858 33 25.525.5 883883 44 25.125.1 865865

도 2에 나타난 바와 같이, 본 발명에 따라 탄화실 석탄가스 발생량을 예측하는 경우는 예측정도에 큰 변화 없이 배합탄의 정보만으로 실험 없이 석탄가스 발생량을 예측할 수 있음을 알 수 있다.As shown in FIG. 2, in the case of predicting the carbonization chamber coal gas generation amount according to the present invention, it can be seen that the coal gas generation amount can be predicted without experiment by the information of the coal blended without any significant change in the prediction degree.

상술한 바와 같이, 본 발명은 코크스로 가스의 발생량을 보다 정확하고 보다 간단하게 예측할 수 있으므로, 석탄 가스 발생량의 탄력적인 수급관리를 하여 코크스로가스를 에너지원으로 사용하는 여러 설비의 안정적이고 계획적인 조업이 가능하도록 하는 효과가 있는 것이다.As described above, the present invention can more accurately and more easily predict the amount of coke oven gas generated, so that the flexible supply and demand management of coal gas generation amount can be used to stably and deliberately use the coke oven gas as an energy source. It is effective to enable operation.

Claims (1)

1차 열분해로와 2차 열분해로로 이루어진 탄화실험장치를 이용하여 코크스 로 탄화실의 석탄가스 발생량을 예측하는 방법에 있어서,In the method for predicting the amount of coal gas generated in the coke oven carbonization chamber using a carbonization experiment device consisting of a primary pyrolysis furnace and a secondary pyrolysis furnace, 2차 열분해로 온도를 변화시키면서 배합탄을 탄화실험하여 석탄가스 발생속도를 측정하여 2차 열분해로 온도(T)의 함수로 하는 석탄가스 발생속도(F)모델을 구하는 단계;Carbonizing the blended coals while varying the temperature by the secondary pyrolysis to measure coal gas generation rate to obtain a coal gas generation rate (F) model as a function of the temperature (T) of the secondary pyrolysis; 상기 단계를 배합탄중의 휘발분 함량을 변화시키면서 수행하는 단계;Performing the step while varying the volatile content in the coal blend; 상기 석탄가스 발생속도(F)모델를 석탄가스 발생량(G)모델로 변환하는 단계;Converting the coal gas generation rate (F) model to a coal gas generation amount (G) model; 상기 각각의 휘발분을 갖는 배합탄을 코크스로에서 건류할 때 발생되는 석탄가스발생량을 측정하고, 이 측정된 석탄가스발생량모델을 이용하여 최적 2차 열분해로 온도(T1)를 구하는 단계;Measuring the amount of coal gas generated when the coal briquettes having the respective volatiles are carbonized in a coke oven, and obtaining an optimal secondary pyrolysis temperature (T1) using the measured coal gas generation model; 배합탄중의 휘발분 함량과 최적 2차 열분해로 온도(T1)와의 상관관계를 구하는 단계; 및Obtaining a correlation between the volatile matter content of the coal briquettes and the temperature (T1) by an optimum secondary pyrolysis; And 배합탄 변경시 배합탄의 휘발분을 측정하여 휘발분 함량과 최적 2차 열분해로 온도(T1)와의 상관관계에 대입하여 최적 2차분해로 온도(T1)를 구한 다음, 상기 석탄가스 발생량(G)모델에 대입하여 석탄가스 발생량을 구하고, 이를 탄화실 석탄가스 발생량으로 예측하는 단계를 포함하여 구성되는 코크스 로 탄화실의 석탄가스 발생량 예측방법When the coal mixture is changed, the volatilization of the coal mixture is measured, and the optimum secondary pyrolysis temperature (T1) is obtained by substituting the correlation between the volatile content and the optimum secondary pyrolysis temperature (T1), and then the coal gas generation (G) model is used. Coal gas generation forecasting method of coke oven carbonization chamber comprising the step of obtaining coal gas generation and predicting it as carbonization chamber coal gas generation
KR1019980057616A 1998-12-23 1998-12-23 Method for estimating total amount of generation of coke oven gas of carbonization chamber KR20000041662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980057616A KR20000041662A (en) 1998-12-23 1998-12-23 Method for estimating total amount of generation of coke oven gas of carbonization chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980057616A KR20000041662A (en) 1998-12-23 1998-12-23 Method for estimating total amount of generation of coke oven gas of carbonization chamber

Publications (1)

Publication Number Publication Date
KR20000041662A true KR20000041662A (en) 2000-07-15

Family

ID=19564904

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980057616A KR20000041662A (en) 1998-12-23 1998-12-23 Method for estimating total amount of generation of coke oven gas of carbonization chamber

Country Status (1)

Country Link
KR (1) KR20000041662A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100568331B1 (en) * 1999-12-28 2006-04-05 주식회사 포스코 Method for controlling flow of gas in oven chamber
KR101466481B1 (en) * 2013-04-30 2014-12-01 현대제철 주식회사 Method for forecasting generating quantity of hydrogen sulfide in cokes process
KR101466475B1 (en) * 2013-03-29 2014-12-01 현대제철 주식회사 Method for ash predicting of cokes
KR101510287B1 (en) * 2013-11-11 2015-04-08 주식회사 포스코 Method for calculating gas generated in blast furnace and blast furnace installation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121088A (en) * 1981-01-21 1982-07-28 Kansai Coke & Chem Co Ltd Determination and estimation of the total volume of gas produced in coke furnace
JPS60240789A (en) * 1984-05-16 1985-11-29 Kawasaki Steel Corp Method for forecasting change of coke oven gas with time
JPH02102292A (en) * 1988-10-11 1990-04-13 Nkk Corp Method for estimation of quantity of gas generated in coke oven
JPH061980A (en) * 1992-06-19 1994-01-11 Sumitomo Metal Ind Ltd Method for predicting volume of produced gas in coke oven

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121088A (en) * 1981-01-21 1982-07-28 Kansai Coke & Chem Co Ltd Determination and estimation of the total volume of gas produced in coke furnace
JPS60240789A (en) * 1984-05-16 1985-11-29 Kawasaki Steel Corp Method for forecasting change of coke oven gas with time
JPH02102292A (en) * 1988-10-11 1990-04-13 Nkk Corp Method for estimation of quantity of gas generated in coke oven
JPH061980A (en) * 1992-06-19 1994-01-11 Sumitomo Metal Ind Ltd Method for predicting volume of produced gas in coke oven

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100568331B1 (en) * 1999-12-28 2006-04-05 주식회사 포스코 Method for controlling flow of gas in oven chamber
KR101466475B1 (en) * 2013-03-29 2014-12-01 현대제철 주식회사 Method for ash predicting of cokes
KR101466481B1 (en) * 2013-04-30 2014-12-01 현대제철 주식회사 Method for forecasting generating quantity of hydrogen sulfide in cokes process
KR101510287B1 (en) * 2013-11-11 2015-04-08 주식회사 포스코 Method for calculating gas generated in blast furnace and blast furnace installation

Similar Documents

Publication Publication Date Title
Jayaraman et al. Combustion mechanism and model free kinetics of different origin coal samples: Thermal analysis approach
Kök et al. Combustion characteristics of lignite and oil shale samples by thermal analysis techniques
Jayaraman et al. Energy recovery analysis from sugar cane bagasse pyrolysis and gasification using thermogravimetry, mass spectrometry and kinetic models
Czajka et al. Pyrolysis of solid fuels: Thermochemical behaviour, kinetics and compensation effect
Du et al. Pretreatment of biomass by torrefaction and carbonization for coal blend used in pulverized coal injection
Jaber et al. Non-isothermal thermogravimetry and decomposition kinetics of two Jordanian oil shales under different processing conditions
Magdziarz et al. Combustion process of torrefied wood biomass: a kinetic study
Niksa FLASHCHAIN theory for rapid coal devolatilization kinetics. 3. Modeling the behavior of various coals
Lin et al. Pyrolysates distribution and kinetics of Shenmu long flame coal
Qian et al. Pyrolysis and co-pyrolysis of lignite and plastic
Kök Thermal analysis applications in fossil fuel science. Literature survey
Lira et al. The use of nonlinearity measures in the estimation of kinetic parameters of sugarcane bagasse pyrolysis
Nsakala et al. Studies on Coal Reactivity: Kinetics of Lignite Pyrolysis in Nitrogen at808° C
Zhang et al. Comparative kinetics of coal and oil shale pyrolysis in a micro fluidized bed reaction analyzer
Stanger et al. Dynamic measurement of coal thermal properties and elemental composition of volatile matter during coal pyrolysis
Gürüz et al. Mathematical modeling of thermal decomposition of coal
Grigiante et al. Analysis of the impact of TG data sets on activation energy (E a) Case study applied to torrefaction of biomasses by means of isoconversional methods
Hu et al. Relevance between various phenomena during coking coal carbonization. Part 3: Understanding the properties of the plastic layer during coal carbonization
Casajus et al. Product distribution and kinetic scheme for the fixed bed thermal decomposition of sewage sludge
Niksa Predicting ultimate soot yields from any coal
KR20000041662A (en) Method for estimating total amount of generation of coke oven gas of carbonization chamber
Nasirudeen et al. Quality of some Nigerian coals as blending stock in metallurgical coke production
Carrasco et al. Observed kinetic parameters during the torrefaction of Red Oak (Quercus rubra) in a pilot rotary kiln reactor
KR100321064B1 (en) Apparatus for measuring volume of gas generated in coke oven
Orrego-Restrepo et al. Novel methodology for evaluation of cellulose pyrolysis kinetics implementing infrared spectroscopy in situ

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application