JPS59179582A - Production of coke - Google Patents

Production of coke

Info

Publication number
JPS59179582A
JPS59179582A JP5322483A JP5322483A JPS59179582A JP S59179582 A JPS59179582 A JP S59179582A JP 5322483 A JP5322483 A JP 5322483A JP 5322483 A JP5322483 A JP 5322483A JP S59179582 A JPS59179582 A JP S59179582A
Authority
JP
Japan
Prior art keywords
carbonization
raw material
coke
material coal
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5322483A
Other languages
Japanese (ja)
Other versions
JPS6340465B2 (en
Inventor
Mitsumasa Hijiriyama
聖山 光政
Akira Kitahara
北原 彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP5322483A priority Critical patent/JPS59179582A/en
Publication of JPS59179582A publication Critical patent/JPS59179582A/en
Publication of JPS6340465B2 publication Critical patent/JPS6340465B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Abstract

PURPOSE:To minimize the amount of a fuel gas required for carbonization, by analyzing the relation between the effective necessary quantity of heat and physical properties of raw material coal, obtaining a multiple regression formula, and selecting and mixing the raw material coal, etc. CONSTITUTION:A multiple regression formula containing an effective necessary quantity for carbonization as an independent variable and the ratio between hydrogen and carbon and ratio between oxygen and carbon in the terms of independent variables in the volatile content and elementary analytical values in the raw material coal is previously determined by the statistical technique, and the raw material coal is selected and carbonized to give the aimed coke. A multiple regression formula expressed by the formula (N-HC is the effective quantity of heat necessary for carbonization; VM is the volatile content in the raw material coal; H/C is the ratio between the hydrogen and carbon in the elementary analytical values; O/C is the ratio between the oxygen and carbon in the elementary analytical values; a, a1, b and c are the regression coefficients; alpha and beta are regression constants) is used as the above-mentioned regression formula.

Description

【発明の詳細な説明】 本発明はコークスの製造法に係わる。更に詳しくは、本
発明は乾留用燃料ガスの節減を可能ならしめるコークス
の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing coke. More specifically, the present invention relates to a method for producing coke that enables saving of fuel gas for carbonization.

コークスは通常複数銘柄の原料石炭を配合して、これを
コークス炉炭化室に装入し、加熱乾留することによって
生産される。かくして、生産されたコークスは、鉄鉱石
の還元剤としての用途に供される。
Coke is usually produced by blending multiple brands of raw coal, charging it into a coke oven carbonization chamber, and heating and carbonizing it. The coke thus produced is used as a reducing agent for iron ore.

コークスは、上述のとおり、原料石炭をコークス炭化室
に装入して、隣接する燃焼室で燃料ガスを大量に燃焼さ
一辻て乾留することにより得られるものである故、燃料
ガスの使用量はコークスの生産コス1−を左右する要因
であるばかりでなく、コークスの品質にも大きな影響を
及はずものである。
As mentioned above, coke is obtained by charging raw coal into a coke carbonization chamber, burning a large amount of fuel gas in an adjacent combustion chamber, and then carbonizing it. Therefore, the amount of fuel gas used is is not only a factor that influences the production cost of coke, but also has a great influence on the quality of coke.

従来、原料石炭を乾留してコークスを製造するに当たっ
ては、加熱用燃料ガスの燃焼室への供給は、保持される
コークス炉温、原料石炭の装入量、乾留終了後における
生成コークスの養生時間等専ら炉の操業上の要因のみを
中心にして決定されていたが、同じ操業条件であっても
実際の/lIi費熱票は予め予想したものとは大きくす
れ、結果として加熱用燃料ガスの所要供給量、言い替え
れば実効所要熱量を前もって予測した」二で最適量の燃
料ガスを供給するといったことはできなかった。
Conventionally, when producing coke by carbonizing coking coal, the supply of heating fuel gas to the combustion chamber depends on the coke oven temperature to be maintained, the amount of coking coal charged, and the curing time of the produced coke after carbonization. However, even under the same operating conditions, the actual /lIi cost was significantly different from what was predicted, and as a result, the heating fuel gas was It was not possible to supply the optimal amount of fuel gas by predicting the required supply amount, in other words, the effective required amount of heat in advance.

そのため、燃料ガスの無駄な消費を招き、コークス生産
コストの上昇、ひいては省エネルギーという国家的政策
にも反する結果となっていた。
This resulted in wasteful consumption of fuel gas, increased coke production costs, and went against the national policy of energy conservation.

本発明者らは、従来法におけるこのような問題点を解消
すべく、原料石炭の物性を中心とした熱甲、供給法につ
き種々検討の結果、原料石炭の乾留におしJる実効所要
乾留熱量と原料石炭の物性との間には一定の関係があり
、この関係を示す回帰式を予め作成しておき、これに基
づいて原料石炭を選択することにより乾留の際に用いる
燃料力′ス供給量を適正ならしめ、その節減が可能とな
るとの知見を得て本発明に到達した。
In order to solve these problems in the conventional method, the present inventors have conducted various studies on heating and feeding methods, focusing on the physical properties of coking coal, and have determined the effective carbonization requirements for coking coal. There is a certain relationship between the calorific value and the physical properties of coking coal, and by creating a regression equation that shows this relationship in advance and selecting coking coal based on this, the fuel power used during carbonization can be adjusted. The present invention was developed based on the knowledge that it is possible to reduce the supply amount by adjusting the supply amount appropriately.

即ら本発明は、原料石炭を乾留してコークスを製造する
に当り、実効所要乾留熱量を従属変数とし、原料石炭中
の揮発分及び元、÷1分析値のうち、水素対炭素比並び
に酸素対炭素比を独立変数の項に含ませてなる重回帰式
を予め統δ1的手法により求めておき、該重回帰式に基
づいて原料石炭を選択し乾留することを特徴とする二1
−クスの製造法を要旨とするものである。
That is, in producing coke by carbonizing coking coal, the present invention uses the effective required carbonization heat as a dependent variable, and calculates the hydrogen-to-carbon ratio and the oxygen A multiple regression equation in which the carbon ratio is included in the independent variable term is determined in advance by a systematic δ1 method, and raw coal is selected and carbonized based on the multiple regression equation.
- The gist is the method for producing sugar.

以下本発明方法を更に詳細に説明する。The method of the present invention will be explained in more detail below.

原料石炭を乾留してコークスを生産するに要する実効所
要乾留熱量(以下N−11Cと略記する)は常温から各
乾留生成物が生成する温度まで昇温する熱量(顕熱)と
石炭から乾留生成物が生成する変動熱M(反応熱)との
和、即ち乾留所要熱量(以下11Cと略記する)と、乾
留の結果発生する諸ガス中水蒸気と生成コークスとの間
の水性ガス生成による吸熱反応で持ち去られる熱量を補
填するi%lJとの総和と解することができる。
The effective amount of heat of carbonization (hereinafter abbreviated as N-11C) required to carbonize raw coal to produce coke is the amount of heat (sensible heat) required to raise the temperature from room temperature to the temperature at which each carbonization product is produced, and the amount of heat produced by carbonization from coal. The endothermic reaction between the sum of the fluctuating heat M (reaction heat) generated by a substance, that is, the required heat amount for carbonization (hereinafter abbreviated as 11C), and the water vapor generated in the gases generated as a result of carbonization and the produced coke due to the production of water gas. It can be understood as the sum of i%lJ, which compensates for the amount of heat carried away.

そこで、本発明者らはコークス製造用として市場で入手
できる一般の原料石炭について、種々の乾留操作条件(
例えば乾留温度、乾留終了後の養生時間等)を変え、顕
熱及び反応熱を求めその総和からIIcをもとめた。こ
こで顕熱は、例えば乾留生成物の乾留歩留と生成物の比
熱と温度差を乗じて求め、また反応熱は乾留生成物の発
熱酸と乾留歩留とを乗じ、これより石炭の発p%59f
tを差し引いた値及び液状乾留生成物の潜熱と乾留歩留
とを乗じた値の和で求めた。
Therefore, the present inventors investigated various carbonization operation conditions (
For example, the temperature of carbonization, the curing time after completion of carbonization, etc.) were varied, the sensible heat and the heat of reaction were determined, and IIc was determined from the summation of the sensible heat and reaction heat. Here, the sensible heat is calculated by multiplying the carbonization yield of the carbonization product by the specific heat of the product and the temperature difference, and the reaction heat is calculated by multiplying the carbonization yield of the carbonization product by the exothermic acid and the carbonization yield. p%59f
It was determined by the sum of the value obtained by subtracting t and the value obtained by multiplying the latent heat of the liquid carbonization product by the carbonization yield.

一方、通常の方法によって原料石炭中の揮発分(以下V
Mと略記する)及び元素成分割合の分析を行い、得られ
たデータについて該11cとの関係を統計的手法により
解析した。その結果、VM%及び元素分析鎖中水素対炭
素比(以下H/Cと略記する)が最も相関係数が大きい
ことを知った。即ちこれを独立変数の項に含まゼた重回
帰式が精度よく利用できるとの知見を得た。第1図は前
記データをグラフで示したものであり、これを統計的に
解析すると It(’、  (local/Kg)  −20,6・
 VM   1440 ・  If/C−ドア98なる
式が得られ、重回帰一般式で表すと、11c (Kca
l/Kg) = a−VM4− b・It/C+α −
■となる。
On the other hand, volatile matter (hereinafter referred to as V
(abbreviated as M) and elemental component ratios were analyzed, and the relationship between the obtained data and 11c was analyzed by statistical methods. As a result, it was found that VM% and elemental analysis chain hydrogen to carbon ratio (hereinafter abbreviated as H/C) had the largest correlation coefficient. In other words, we have found that a multiple regression equation that includes this in the independent variable term can be used with high accuracy. Figure 1 shows the above data in a graph, and when this is statistically analyzed, It(', (local/Kg) -20,6・
VM 1440 ・If/C-door 98 formula is obtained, and when expressed by a general multiple regression formula, 11c (Kca
l/Kg) = a-VM4- b・It/C+α −
■It becomes.

ここで、該式中a、b、αは、それぞれ回帰係数及び回
帰常数であって、ある特定の操業条件例えば乾留温度、
乾留終了後のコークスの養生時間等が一定である場合に
は一定値を示す。従ってコークス炉の操業条件がほぼ同
一であるような場合には、原料石炭中のVM%及び元素
分析値の測定を行うだけで、予め多数のデータを基にし
て得られた」二記回帰式からIIcのtti *が可能
である。なお操業条件が大巾に変わったときには、その
変わつた操業条件見合いの回帰式を多数のデータを基に
算出しなければならないが、通常要因の寄与の度合を表
現する回帰係数の値はそのままにして、回帰常数を増減
させる方法が採用される。
Here, a, b, and α in the formula are a regression coefficient and a regression constant, respectively, and are determined under certain operating conditions, such as carbonization temperature,
If the curing time of coke after carbonization is constant, it shows a constant value. Therefore, if the operating conditions of the coke oven are almost the same, all you need to do is measure the VM% and elemental analysis values in the coking coal. tti * of IIc is possible from . Note that when operating conditions change drastically, a regression equation that corresponds to the changed operating conditions must be calculated based on a large amount of data, but the regression coefficient values that express the degree of contribution of factors are usually left unchanged. Therefore, a method of increasing or decreasing the regression constant is adopted.

次に、同じ多数の市販原料石炭について、水性ガス生成
反応に基づく吸熱量(以下ACと略記する)を測定する
一方、原料石炭中のVM%及び元素成分の分析を行い、
得られたデータについて該ACとの関係を統計的手法に
より解析した。その結果VM%及び元素分析鎖中酸素対
炭素比(以下0/Cと略記する)が最も相関係数が大き
いことが判明した。即ちこれを独立変数の項に含ませた
重回帰式が精度よく利用できるとの知見を得た。第2図
は、前記データをグラフで示したもので、これを統計的
に解析すると、 八C(Kcal/ Kg)  −0,42・ VM→−
319,7−0/C−12なる式が得られ、これを一般
重回帰式で表すと八C(Kcal/Kg)  −a  
1   ・ VM+  r、・  0/C+ β −−
−■となる。
Next, while measuring the endothermic amount (hereinafter abbreviated as AC) based on the water gas production reaction for the same large number of commercially available coking coals, we also analyzed the VM% and elemental components in the coking coals.
The relationship between the obtained data and the AC was analyzed by statistical methods. As a result, it was found that VM% and the elemental analysis chain oxygen to carbon ratio (hereinafter abbreviated as 0/C) had the largest correlation coefficient. In other words, we have found that a multiple regression equation that includes this in the independent variable term can be used with high accuracy. Figure 2 shows the above data in a graph, and when this is statistically analyzed, 8C (Kcal/Kg) -0,42・VM→-
The formula 319,7-0/C-12 is obtained, and when expressed as a general multiple regression formula, 8C(Kcal/Kg) -a
1 ・VM+ r, 0/C+ β −−
−■ becomes.

ここで、該式中al、C2βは、それぞれ回帰係数及び
回帰常数であって、ある特定の操業条件例えば乾留温度
、乾留終了後のコークスの養生時間等が一定である場合
には一定値を示す。従ってコークス炉の操業条件がほぼ
同一であるような場合には、原料石炭中の1%及び元素
分析値の測定を行うだけで、予め多数のデータを基にし
て得られた上記回帰式からACの推算が可能である。な
お操業条件が犬l]に変わったときには、その変わった
操業条件見合いの回帰式を多数のデータを基に算出しな
げればならないが、通常、要因の寄与の度合を表現する
回帰係数の値はそのままにして、回帰常数を増減させる
方法が採用される。
Here, al and C2β in the formula are a regression coefficient and a regression constant, respectively, and exhibit constant values when certain operating conditions such as carbonization temperature and coke curing time after completion of carbonization are constant. . Therefore, if the operating conditions of the coke oven are almost the same, all you need to do is measure 1% of the coking coal and the elemental analysis value, and the AC It is possible to estimate Note that when operating conditions change, a regression equation commensurate with the changed operating conditions must be calculated based on a large amount of data, but usually the value of the regression coefficient that expresses the degree of contribution of a factor is calculated. A method is adopted in which the regression constant is increased or decreased while leaving it as is.

先に述べたように、原料石炭の乾留に要するN−11c
(実効所要乾留熱量)は、前記肛(乾留所要熱N)とA
C(水性ガス生成反応に基づく吸熱量)との総和と考え
られるから、以I−0+ 、l、・)な二つの式から次
の重回帰式で示されることとなる。
As mentioned earlier, the N-11c required for carbonization of coking coal
(Effective required carbonization heat amount) is the above-mentioned (required carbonization heat N) and A
Since it is considered to be the sum total of C (endothermic amount based on the water gas production reaction), it can be expressed by the following multiple regression equation from the two equations (I-0+, l, .).

N−11c (Kc81/h) = (a+a + )
  −VMトb・ 11/C →〜C・ 0/C + (α→−β)−−−−■ なお、上記0式は、各々別個に求めた0式と0式とを加
算して得たものであるが、当初がらVM、11/C10
/Cを独立変数の要因とし、N−11Gを従属変数とし
て、実験データ又は実操業データをもとに直接0式を求
めてよいのは当然である。
N-11c (Kc81/h) = (a+a + )
−VMtob・11/C →~C・0/C + (α→−β)−−−−■ The above formula 0 can be obtained by adding the separately calculated formulas 0 and 0. However, from the beginning, VM, 11/C10
It goes without saying that equation 0 may be directly determined based on experimental data or actual operation data, with /C as an independent variable factor and N-11G as a dependent variable.

従って、多数の市販のコークス製造用原料石炭を予め分
析して、その分析データ苓解析することにより、上記の
形のような重回帰式を導いておくことにより、原料石炭
中のVM%及び元素分析値の測定だけで、N−肛を予測
することができる。即ち、各中味原料石炭それぞれのV
M、II/C,0/Cを通常の方法により予め測定して
おき、これを配合して得られる配合原料石炭の想定配合
割合から該配合原料石炭のVM、  II/C8o、、
’cを算出してN−11cを81算する。そしてN−肛
が最低となるように想定配合を試行紹誤を繰り返して原
料石炭を選択し、乾留を行うのである。
Therefore, by analyzing a large number of commercially available coking coals for coke production in advance and analyzing the analytical data, a multiple regression equation like the one shown above can be derived. N-anus can be predicted just by measuring the analytical values. That is, V of each content raw material coal
M, II/C, 0/C is measured in advance by a normal method, and from the expected blending ratio of the blended raw material coal obtained by blending it, the VM of the blended raw material coal, II/C8o, .
'c is calculated and N-11c is calculated by 81. Then, the raw material coal is selected by repeating trial and error on the assumed blend so that the N-anal value is the lowest, and then carbonization is carried out.

第3図は、本発明方法によってコークスを生成させる場
合の計算による予想のN−11Gと実績のN−110と
をクラフ化し グラフからも判るとおり、両者の間には大きな相関のあ
ることが判る。
Figure 3 shows a graph of the predicted N-11G calculated and the actual N-110 when coke is produced by the method of the present invention, and as can be seen from the graph, there is a large correlation between the two. .

本発明は以上述べたように、実効所要乾留熱量と原料石
炭の物性値との関係を解析し、その結果求められる重回
帰式を予め多数のデータから作成しておき、原料石炭等
を選択配合することにより乾留に要する燃料ガスを最少
量で供給することを可能とするものであり、その工業的
価値は大きい。
As described above, the present invention analyzes the relationship between the effective amount of carbonization heat required and the physical property values of raw material coal, creates a multiple regression equation obtained as a result from a large amount of data in advance, and selects and blends raw material coal, etc. By doing so, it is possible to supply the minimum amount of fuel gas required for carbonization, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は原料石炭のVM、!I/CとIICとの関係を
示す散布図である。第2図は原料石炭のVM、0/Cと
ACとの関係を示す散布図である。第3図は本発明によ
る計$N−11cと実1jlN−11Cとの関係を示す
散布図である。
Figure 1 shows the VM of coking coal,! It is a scatter diagram showing the relationship between I/C and IIC. FIG. 2 is a scatter diagram showing the relationship between VM, 0/C and AC of raw coal. FIG. 3 is a scatter diagram showing the relationship between total $N-11c and actual 1j1N-11C according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)原料石炭を乾留してコークスを製造するに当り、
実効所要乾留熱量を従属変数とし、原料石炭中の揮発分
及び元単分析値のうち、水素対炭素比並びに酸素対炭素
社を独立変数の項に含ませてなる重回帰式を予め統計的
手法により求めておき、該重回帰式に基ついて原料石炭
を選択し乾留することを特徴とするコークスの製造法。
(1) In producing coke by carbonizing coking coal,
A multiple regression equation in which the effective required heat of carbonization is taken as the dependent variable and the hydrogen to carbon ratio and oxygen to carbon ratio of the volatile matter and elemental analysis values in raw coal are included as independent variables is prepared in advance using a statistical method. 1. A method for producing coke, characterized in that raw coal is selected based on the multiple regression equation and carbonized.
JP5322483A 1983-03-28 1983-03-28 Production of coke Granted JPS59179582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5322483A JPS59179582A (en) 1983-03-28 1983-03-28 Production of coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5322483A JPS59179582A (en) 1983-03-28 1983-03-28 Production of coke

Publications (2)

Publication Number Publication Date
JPS59179582A true JPS59179582A (en) 1984-10-12
JPS6340465B2 JPS6340465B2 (en) 1988-08-11

Family

ID=12936850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5322483A Granted JPS59179582A (en) 1983-03-28 1983-03-28 Production of coke

Country Status (1)

Country Link
JP (1) JPS59179582A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637277A (en) * 1979-08-31 1981-04-10 Matsushita Electric Works Ltd Lightweight exterior wall material and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637277A (en) * 1979-08-31 1981-04-10 Matsushita Electric Works Ltd Lightweight exterior wall material and its manufacture

Also Published As

Publication number Publication date
JPS6340465B2 (en) 1988-08-11

Similar Documents

Publication Publication Date Title
Niksa Predicting ultimate soot yields from any coal
CN107525882B (en) A method of prediction sulfur content in coke
JPS59179582A (en) Production of coke
KR101100589B1 (en) Method for predicting of coke strength after reaction
CN114236089B (en) Evaluation method and system for coke maturity
KR20000041662A (en) Method for estimating total amount of generation of coke oven gas of carbonization chamber
JPH06207933A (en) Estimation of yield of product through carbonization of coal
KR20160149648A (en) Method of manufacturing coke
JP4050989B2 (en) Coke oven gas generation amount and heat amount prediction method, information processing method, and information processing apparatus
JPH06201681A (en) Method for estimating calorific value and volume of coal gas
Gyul’maliev et al. Classification of fossil fuels according to structural-chemical characteristics
KR101466481B1 (en) Method for forecasting generating quantity of hydrogen sulfide in cokes process
KR100691514B1 (en) Combustion air control method by measuring of fuel calorific value
JPS6340833B2 (en)
JPS59145283A (en) Preparation of dry distilled product
JP5673441B2 (en) Solid fuel evaluation method
JPS58164686A (en) Preparation of dry distillation product
KR100384122B1 (en) Control method of stop time combustion in coke furnace combustion management system
JP3557631B2 (en) Operating method of blast furnace using molded coke
Jha et al. Investigation of Thermal and Hydraulic Regime of CDCP for Higher Throughput in SAIL Plant
RU2036735C1 (en) Method of regulating fuel agent supply to blast furnace
KR100489679B1 (en) Method For Producing Metallurgical Coke
Davis et al. Thermal reactions of coal during carbonization
CN117436921A (en) Rotary hearth furnace process parameter adjustment method based on cost accounting and operation interface
KR20040056282A (en) Method of measuring compression strength of the coal for producing cokes