JPS6340305B2 - - Google Patents

Info

Publication number
JPS6340305B2
JPS6340305B2 JP4217681A JP4217681A JPS6340305B2 JP S6340305 B2 JPS6340305 B2 JP S6340305B2 JP 4217681 A JP4217681 A JP 4217681A JP 4217681 A JP4217681 A JP 4217681A JP S6340305 B2 JPS6340305 B2 JP S6340305B2
Authority
JP
Japan
Prior art keywords
silicon
silicide
pattern
metal
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4217681A
Other languages
Japanese (ja)
Other versions
JPS57157247A (en
Inventor
Nobuhiro Endo
Katsumi Mori
Yasuo Iida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4217681A priority Critical patent/JPS57157247A/en
Publication of JPS57157247A publication Critical patent/JPS57157247A/en
Publication of JPS6340305B2 publication Critical patent/JPS6340305B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/76Patterning of masks by imaging
    • G03F1/78Patterning of masks by imaging by charged particle beam [CPB], e.g. electron beam patterning of masks
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials

Description

【発明の詳細な説明】 この発明は光学露光用マスクにかかり、特に荷
電ビームを用いてパターン描画する光学露光用マ
スクの構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical exposure mask, and more particularly to the structure of an optical exposure mask that uses a charged beam to draw a pattern.

従来、光学露光用マスクはクロム等の遮光材料
からなる薄膜を被着させたガラス基板を用い、遮
光材料の上に光もしくは荷電ビームにそれぞれ感
応するような有機高分子レジストを塗布し、光も
しくは荷電ビームなる手段で、パターン描画およ
び現像し、そのレジストパターンをエツチング保
護マスクとして遮光材料を除去することにより遮
光材料にパターン転写して製作されていた。
Conventionally, optical exposure masks use a glass substrate covered with a thin film made of a light-shielding material such as chromium, and an organic polymer resist that is sensitive to light or a charged beam is coated on top of the light-shielding material. They were manufactured by drawing and developing a pattern using a charged beam, and using the resist pattern as an etching protection mask to remove the light-shielding material and transferring the pattern onto the light-shielding material.

しかし、これらのマスクが半導体装置の製造に
用いられる場合、半導体装置の高集積化、高性能
化にしたがい、マスク上のパターンが微細化され
ていくため、描画手段として光より荷電ビーム、
エツチング方法として湿式法よりも乾式法が用い
られることが多くなつてきている。現在では荷電
ビームのうち電子ビームが実用化の段階で、この
場合近接効果とドライエツチングに対する耐性と
が大きな問題となつていた。すなわち、近接効果
とは電子ビームが照射されると、レジストや基板
等で発生した2次電子がレジスト中で散乱される
ため、近接したパターンの大小によつて、入射さ
れた領域のレジスト感度が変化するという作用で
ある。第1図は従来の光学露光用マスクの製造プ
ロセスを示す模式的な断面図で、1はガラス基
板、2は遮光材料、3は有機高分子レジストをそ
れぞれ示している。最小線幅1μm程度のパター
ン形成を実現するため、描画手段として電子ビー
ムを用いた例を示した。4つの微細で同じ寸法を
もつパターンをそれに隣接して比較的大きなパタ
ーンを電子ビームで描画した場合、近接した大き
なパターンの2次電子分散の影響を受け、第1図
bのAで表示された領域の寸法が他の寸法よりも
大きくなり、この結果第1図cの如く、一部設計
寸法と異なるマスクパターンとなつてしまう。こ
のため、近接効果を受け易いパターンを描画する
場合は電子ビーム入射量を減少させる等、ソフト
ウエアで近接効果補正プログラムが開発されてい
るが、この補正に要する時間は莫大なものとな
り、電子ビームによるパターン描画法の実用化を
遅らせている原因となつていた。
However, when these masks are used to manufacture semiconductor devices, the pattern on the mask becomes finer as semiconductor devices become more highly integrated and performant.
As an etching method, a dry method is being used more often than a wet method. Currently, among the charged beams, electron beams are at the stage of practical use, and in this case, the proximity effect and resistance to dry etching have become major problems. In other words, the proximity effect means that when an electron beam is irradiated, secondary electrons generated in the resist, substrate, etc. are scattered in the resist, so the resist sensitivity of the area where the electron beam is irradiated changes depending on the size of the nearby pattern. It is the action of changing. FIG. 1 is a schematic cross-sectional view showing the manufacturing process of a conventional optical exposure mask, in which 1 indicates a glass substrate, 2 indicates a light-shielding material, and 3 indicates an organic polymer resist. In order to form a pattern with a minimum line width of about 1 μm, an example was shown in which an electron beam was used as the drawing means. When four fine patterns with the same dimensions are drawn with a relatively large pattern adjacent to them using an electron beam, the pattern shown in A in Figure 1b is affected by the secondary electron dispersion of the nearby large pattern. The dimensions of the area become larger than the other dimensions, resulting in a mask pattern that partially differs from the designed dimensions, as shown in FIG. 1c. For this reason, proximity effect correction programs have been developed using software, such as reducing the amount of electron beam incident when drawing patterns that are susceptible to the proximity effect, but the time required for this correction is enormous, and the electron beam This was the cause of the delay in the practical application of the pattern drawing method.

また、高解像性のPMMAやPGMAという電子
ビーム用レジストはドライエツチングにおけるエ
ツチング速度が大きく、遮光材料のエツチングマ
スクとして十分ではなく、高解像性を犠牲にして
もドライエツチング耐性の比較的大きいレジスト
を用いる必要があつた。これらの問題点のため
に、制御性や再現性のすぐれた微細なパターンを
有する光学用マスクを製作することが困難となつ
ていた。
In addition, high-resolution electron beam resists such as PMMA and PGMA have a high etching speed during dry etching, and are not sufficient as etching masks for light-shielding materials.They have relatively high dry etching resistance even at the expense of high resolution. It was necessary to use resist. These problems have made it difficult to manufacture optical masks having fine patterns with excellent controllability and reproducibility.

本発明はレジストを用いないで、パターン形成
された新規な構造を有する光学露光用マスクを提
供するにある。すなわち、本発明の要旨は、透明
基板と、該基板上にシリコン層および該シリコン
層と反応して金属シリサイドを形成する金属層を
積層した複層によつて、又は上記金属のシリサイ
ド層によつて転写すべきパターンを形成してなる
ことを特徴とする光学露光用マスクにある。
The present invention provides an optical exposure mask having a novel patterned structure without using a resist. That is, the gist of the present invention is to provide a transparent substrate, a silicon layer on the substrate, and a metal layer that reacts with the silicon layer to form a metal silicide, or by a multi-layer structure, or by a silicide layer of the metal. The present invention relates to an optical exposure mask, characterized in that a pattern to be transferred is formed on the mask.

この発明によれば、ガラス基板の表面が遮光材
料としてシリコンと金属から構成されており、荷
電ビームを用いたパターン描画によつてシリサイ
ド化反応を起し、金属シリサイドを形成すること
を特徴としている。荷電ビームがシリコン又は金
属表面に入射することによつてビームエネルギー
は衝突による熱エネルギーに変換され、比較的低
温で起こる金属シリサイド反応が生じる。しかも
従来のような熱伝導性の小さい有機高分子レジス
トが表面にないので、瞬間的に熱エネルギーは金
属やシリコン膜を通して放熱されるために、荷電
蓄積による近接効果も生じ難い。形成されたシリ
サイドがシリコン又は金属に対してエツチング比
の小さいエツチング液を用いれば、電子ビームの
入射領域のみシリサイドが残され、遮光領域とな
すことができる。また逆にシリサイドがシリコン
又は金属に対して、エツチング比の大きいエツチ
ング液を用いれば、電子ビームの入射領域のみ遮
光材料が除去され、シリコンと金属の2層構造領
域を遮光領域となすことができる。
According to this invention, the surface of the glass substrate is made of silicon and metal as a light-shielding material, and a silicidation reaction is caused by pattern drawing using a charged beam to form metal silicide. . When a charged beam is incident on a silicon or metal surface, the beam energy is converted into thermal energy by collision, resulting in a metal silicide reaction that occurs at a relatively low temperature. Furthermore, since there is no organic polymer resist with low thermal conductivity on the surface as in the prior art, thermal energy is instantaneously dissipated through the metal or silicon film, so proximity effects due to charge accumulation are less likely to occur. If an etching solution is used in which the formed silicide has a low etching ratio with respect to silicon or metal, the silicide will remain only in the area where the electron beam is incident, and it can be used as a light-shielding area. Conversely, if an etching solution with a high etching ratio for silicide to silicon or metal is used, the light-shielding material is removed only in the area where the electron beam is incident, and the two-layer structure region of silicon and metal can be made into a light-shielding area. .

次に図を用いて本発明の実施例を詳しく説明す
る。第2図は本発明による光学露光用マスクの製
造プロセスの概略断面図である。ガラス基板1に
シリコン102を500Å程度、白金103を500Å
程度連続的に真空蒸着法により堆積させると第2
図aを得る。次に電子ビーム露光技術を用いて、
パターン描画を行なう。この時用いるウエーハ寸
法内に収容できるチツプ数だけパターン描画の繰
り返しを行う。電子ビームの入射された領域のシ
リコン−白金構造は全面的に白金シリサイド
(Pt2Si又はPtSi)104に変化する。この状態を
第2図bに示した。その後、王水で白金を全面的
にエツチング除去し、更に永酢酸−硝酸−弗酸の
混合液を用いて同じく全面的にシリコンをエツチ
ング除去する。それぞれのエツチング液は白金シ
リサイドをほとんど攻撃しないので、ほぼ選択的
に白金やシリコンをエツチングするためのエツチ
ング時間は、さほど厳密でなくてよい。しかもパ
ターンの大小にかかわらず、一定の電子ビーム電
荷量を用いても近接効果の影響がなく、設計寸法
に近いパターンが全マスク上で得られる。仕上り
状態を第2図cに示す。
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 2 is a schematic cross-sectional view of the manufacturing process of an optical exposure mask according to the present invention. Glass substrate 1 is coated with silicon 102 of about 500 Å and platinum 103 of 500 Å.
When deposited by vacuum evaporation method to a certain degree continuously, the second
Obtain diagram a. Next, using electron beam exposure technology,
Perform pattern drawing. Pattern drawing is repeated as many times as the number of chips that can be accommodated within the wafer size used at this time. The silicon-platinum structure in the region where the electron beam is incident is completely changed to platinum silicide (Pt 2 Si or PtSi) 104 . This state is shown in FIG. 2b. Thereafter, platinum is completely etched away using aqua regia, and silicon is further etched off completely using a mixed solution of acetic acid, nitric acid, and hydrofluoric acid. Since each etching solution hardly attacks platinum silicide, the etching time for substantially selectively etching platinum and silicon does not have to be very strict. Furthermore, regardless of the size of the pattern, even if a constant electron beam charge amount is used, there is no influence of the proximity effect, and patterns close to the designed dimensions can be obtained on all masks. The finished state is shown in Figure 2c.

なお、本実施例ではシリコンを第1層にその上
に白金を第2層として形成したものについて説明
したが形成の順序を逆にしても同じ効果を出すこ
とができる。
Although this embodiment has been described in which silicon is formed as a first layer and platinum is formed as a second layer thereon, the same effect can be obtained even if the order of formation is reversed.

以上は金属として白金を用いた例であるが、比
較的低温でシリサイドを形成する他の金属に置き
かえてもよいことは類推される。例えば相当する
金属としてマグネシウム、ニツケル、ハフニウ
ム、チタン、鉄、タングステン、モリブデン等が
挙げられる。
Although the above is an example in which platinum is used as the metal, it can be inferred that it may be replaced with another metal that forms silicide at a relatively low temperature. For example, corresponding metals include magnesium, nickel, hafnium, titanium, iron, tungsten, molybdenum, and the like.

以上説明したとおり、本発明による光学露光用
マスクは透明基板上にシリコンおよびシリコンと
シリサイドを形成する金属が複層とされ、荷電ビ
ームによりパターンを描画し、描画された部分は
シリサイドに変換され、シリサイドとシリコンお
よび金属とシリサイドのエツチング速度の差を利
用しパターンを形成している。従つてこのマスク
は同一の荷電ビーム照射によりエツチング液を変
えることによりポジ型、ネガ型の何れのパターン
をも形成できる。
As explained above, the optical exposure mask according to the present invention has a multilayer structure of silicon and a metal that forms silicide with silicon on a transparent substrate, a pattern is drawn using a charged beam, and the drawn portion is converted into silicide. Patterns are formed by utilizing the difference in etching speed between silicide and silicon, and between metal and silicide. Therefore, this mask can form either a positive type or a negative type pattern by changing the etching solution using the same charged beam irradiation.

またシリコンと金属の複層およびシリサイド膜
の遮光特性は良好であり、荷電ビーム照射による
近接効果は生じないため高感度、高解像力化が可
能で、微細な寸法を高精度に実現できる。
In addition, the silicon-metal multilayer and silicide film have good light-shielding properties, and since there is no proximity effect due to charged beam irradiation, it is possible to achieve high sensitivity and high resolution, and it is possible to realize fine dimensions with high precision.

また、従来用いられたクロムを使つたマスクは
洗滌は有機溶剤によつていたが、本発明のシリサ
イド等の酸洗滌が可能であるため露光工程の作業
を容易にできる効果がある。
Further, conventional masks using chromium were cleaned using organic solvents, but the present invention has the effect of making the exposure process easier because silicide and the like can be cleaned with acid.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光学露光用マスクの製造工程を
模式的に示した概略断面図で、第2図は本発明の
マスク構造を実現するための製造プロセスを第1
図に対比して示した概略断面図である。 図中の番号は、1,101……ガラス基板、2
……遮光材料、3……有機高分子レジスト、10
2……シリコン、103……シリサイドを形成す
る金属で、例えば白金、104……金属シリサイ
ド、をそれぞれ示している。第1図bでAは近接
効果により寸法変形した領域。
FIG. 1 is a schematic cross-sectional view schematically showing the manufacturing process of a conventional optical exposure mask, and FIG.
It is a schematic cross-sectional view shown in contrast with the figure. The numbers in the figure are 1,101...Glass substrate, 2
... Light shielding material, 3 ... Organic polymer resist, 10
2...silicon, 103...metal forming silicide, such as platinum, and 104...metal silicide, respectively. In Fig. 1b, A is a region whose dimensions have been deformed due to the proximity effect.

Claims (1)

【特許請求の範囲】[Claims] 1 透明基板上に、シリコン層および該シリコン
と反応してシリサイドを形成し得る金属の層を積
層した複層によつて、又は上記金属のシリサイド
層によつて、転写すべきパターンを形成してなる
ことを特徴とする光学露光用マスク。
1. A pattern to be transferred is formed on a transparent substrate by a multi-layer stack of a silicon layer and a metal layer that can react with the silicon to form silicide, or by a silicide layer of the metal. An optical exposure mask characterized by:
JP4217681A 1981-03-23 1981-03-23 Optical exposure mask Granted JPS57157247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4217681A JPS57157247A (en) 1981-03-23 1981-03-23 Optical exposure mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4217681A JPS57157247A (en) 1981-03-23 1981-03-23 Optical exposure mask

Publications (2)

Publication Number Publication Date
JPS57157247A JPS57157247A (en) 1982-09-28
JPS6340305B2 true JPS6340305B2 (en) 1988-08-10

Family

ID=12628667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4217681A Granted JPS57157247A (en) 1981-03-23 1981-03-23 Optical exposure mask

Country Status (1)

Country Link
JP (1) JPS57157247A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202441A (en) * 1984-03-27 1985-10-12 Mitsubishi Electric Corp Mask for forming pattern for semiconductor device
JPS61173249A (en) * 1985-01-28 1986-08-04 Mitsubishi Electric Corp Photomask
JPS61173251A (en) * 1985-01-28 1986-08-04 Mitsubishi Electric Corp Production of photomask
EP0213693B1 (en) * 1985-08-30 1991-08-21 Mitsubishi Denki Kabushiki Kaisha Photomask material
JPS6252550A (en) * 1985-08-30 1987-03-07 Mitsubishi Electric Corp Photomask material
JPS6252551A (en) * 1985-08-30 1987-03-07 Mitsubishi Electric Corp Photomask material

Also Published As

Publication number Publication date
JPS57157247A (en) 1982-09-28

Similar Documents

Publication Publication Date Title
US4288283A (en) Method of forming a microscopic pattern
JP2001308002A (en) Method of forming pattern by use of photomask and pattern-forming device
TWI753273B (en) Mask for euv lithography and method of manufacturing the same
JP3160332B2 (en) Halftone phase shift photomask
US6153361A (en) Method of removing photoresist at the edge of wafers
US20100273098A1 (en) Mask blank, production method of mask blank and production method of mask
JPS6340306B2 (en)
JPS6340305B2 (en)
JPH0210362A (en) Fine pattern forming method
US7316872B2 (en) Etching bias reduction
JPH0466345B2 (en)
JPS6211068B2 (en)
JPH11212250A (en) Mask blank and production of mask
JP2909317B2 (en) Photo mask
JP3308021B2 (en) Phase shift photomask blank and phase shift photomask
US3701659A (en) Photolithographic masks of semiconductor material
JPS61102738A (en) Method of forming pattern for resist film
WO1983003485A1 (en) Electron beam-optical hybrid lithographic resist process
KR100401517B1 (en) Method of fabricating exposure mask for semiconductor manufacture
JP2595886B2 (en) Method for manufacturing semiconductor device
JP2908649B2 (en) Phase shift mask and method of manufacturing the same
KR100272517B1 (en) Mask structuring method of semiconductor device
JPH10312994A (en) Manufacture of semiconductor device
JPH03257825A (en) Manufacture of semiconductor device
JP2544478B2 (en) Wet etching method