JPS6340290Y2 - - Google Patents

Info

Publication number
JPS6340290Y2
JPS6340290Y2 JP18180782U JP18180782U JPS6340290Y2 JP S6340290 Y2 JPS6340290 Y2 JP S6340290Y2 JP 18180782 U JP18180782 U JP 18180782U JP 18180782 U JP18180782 U JP 18180782U JP S6340290 Y2 JPS6340290 Y2 JP S6340290Y2
Authority
JP
Japan
Prior art keywords
molten steel
electromagnet
continuous casting
mold
drive means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18180782U
Other languages
Japanese (ja)
Other versions
JPS5985653U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18180782U priority Critical patent/JPS5985653U/en
Publication of JPS5985653U publication Critical patent/JPS5985653U/en
Application granted granted Critical
Publication of JPS6340290Y2 publication Critical patent/JPS6340290Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

この考案は、連続鋳造における鋳込み溶鋼の撹
拌装置の改良に関するものである。 連続鋳造機による鋳造方法では、タンデイシユ
から連鋳モールド内へ溶鋼を直接的にまたは浸漬
ノズルを介して供給することが一般的である。 ところが、従来の連続鋳造にあつては、浸漬ノ
ズルの注入口角度その他を適宜に変更しても、連
鋳モールド内へ注入した鋳込み溶鋼流が未凝固鋳
造域へ比較的深く進入するため、それに付随する
スラグ、気泡もまた同様に深く進入してそれらが
凝固シエルに捕捉され、またそれらと溶鋼との比
重差に基づくそれらの溶鋼表面上への浮上脱出が
溶鋼の粘性によつて妨害され、製品品質が低下す
るという問題があつた。 そこで、かかる問題を解決するため、特開昭57
−17356号公報に開示されているように、連鋳モ
ールド内の溶鋼の流動を静磁界で減速して溶鋼の
分散撹拌せしめる技術が提案されている。これ
は、第1図に示すように溶鋼の連鋳モールド1へ
の流入直後の位置で、連鋳モールド1の外側にそ
れを挾む磁極を有する直流励磁電磁石または永久
磁石よりなる励起手段2を配置してなり、浸漬ノ
ズル3の各注入口4から連鋳モールド1内へ流入
する溶鋼5に、その流動方向と交差する向きに静
磁界6を作用させることにより、溶鋼5の流動を
減速して上向分散流7をもたらし、溶鋼に分散撹
拌を生じさせるものである。この技術によれば、
溶鋼5の上向分散流の発生により、スラグ、気泡
の巻き込みが有効に防止され、また流動の減速に
基づいて溶鋼流の未凝固鋳造域内部への進入深さ
が減少することおよびそれの凝固シエル8への衝
突が防止されることにより、スラグ、気泡の溶鋼
表面上への浮上脱出の妨害および凝固シエル8に
よるそれらの捕捉がそれぞれ防止される。 なお第1図中9は連鋳モールド1の幅方向に冷
却箱を示す。 しかしながら、かかる従来技術によれば、励起
手段が特定位置に固定されていることから、鋳造
幅の変更に対して有効に対処できないのみなら
ず、たとえば浸漬ノズルの浸漬深さの増加または
鋳造速度の増加に伴う溶鋼の流速および進入深さ
の増加に対処することができず、注入溶鋼を十分
に分散撹拌することができない結果として製品品
質の低下を余儀なくされるという問題があつた。 この考案は、従来技術のかかる問題を有利に解
決した鋳込み溶鋼の撹拌装置を提供するものであ
り、とくに、連鋳モールドの外側に配置した励起
手段を、連鋳モールドの幅方向へ拡縮するととも
に、高さ方向へ移動可能ならしめることにより、
励起手段を、鋳造幅の変更および溶鋼の進入深さ
の変更に十分に対応せしめて溶鋼に常に確実な分
散撹拌をもたらすものである。 以下にこの考案を図面に基づいて詳細に説明す
る。 第2図はこの考案の実施例を示す水平断面図で
ある。 図中11は内部冷却式の銅製の連鋳モールド、
12は連鋳モールド11を厚み方向に挾んでそれ
に隣接するガイド枠を示し、このガイド枠12に
は後述する直流励磁電磁石からなる励起手段を摺
動可能に収納する。 また13は連鋳モールド11内に侵入する2孔
浸漬ノズルを示し、さらに14は、連鋳モールド
11を厚さ方向に挾むガイド枠12内に配置され
てそれぞれ一対の磁極を有する直流励磁電磁石を
示し、これらの電磁石14は連鋳モールド11を
隔てて対抗する磁極を有する。 この電磁石14は、連鋳モールド11に向けて
ほぼコ字状をなす鉄心15とその中間部に巻回し
たコイル16とからなり、鉄心15は、第3図に
拡大して示すところから明らかなように、その長
さ方向に二分割されて嵌合穴17を有する半割部
分15aと、その嵌合穴17に嵌まり込んで穴内
を摺動する突起18を有する他の半割部分15b
とからなる。従つて、半割部分15a,15bは
ガイド枠12に案内されて嵌合穴17および突起
18の軸線方向へ相互に接近および離間すること
ができる。 一方、ガイド枠12の外側から半割部分15
a,15bのかかる相対変位をもたらすため、そ
れらの各々に、ガイド枠12の側壁を貫通して前
記軸線方向へ延在するロツド19a,19bをそ
れぞれ取り付け、ロツド19a,19bのガイド
枠12からの突出部を相互に同期する第1の駆動
手段20a,20bにそれぞれ連結する。ここで
第1の駆動手段20a,20bとしては、ラツク
とピニオン、シリンダー装置その他の既知の往復
駆動手段を用い得ることはもちろんであるが、こ
の例では電動機で駆動されるめねじ部材をロツド
19a,19bの端部に設けたおねじ部分に螺合
させることにより、半割部分15a,15bのゆ
つくりした正確な作動を担保する。 電磁石14はまた、第4図に縦断面で示すよう
に、各半割部分15a,15bに垂直に植設した
ロツド21を介してガイド枠12の頂部上に設け
た前述の第1の駆動手段20a,20bと同様の
第2の駆動手段22に連結されており、この第2
の駆動手段22は、第5図から明らかなように、
ガイド枠12の側壁に設けた縦長の長孔23でそ
こに貫通するロツド19a,19bの昇降をガイ
ドすることにより、電磁石14の所要に応じた昇
降をもたらす。なお、図中24は、長孔23に嵌
め合わされてそこに貫通するロツド19a,19
bの昇降を案内するフランジ付きスリーブを示
す。 このように構成してなる装置において、連鋳モ
ールド11の幅およびそこへの溶鋼の進入深さに
応じた適宜位置に配置した各電磁石14のコイル
16に直流電流を通じた場合には、連鋳モールド
11を挾む各磁極間に静磁界25が発生する。そ
してこの磁界25は、第1図について述べたよう
に、2孔浸漬ノズル13の注入口から連鋳モール
ド11内へ流入する溶鋼流に作用してそれを減速
するとともに、それに上向分散流を生ぜしめて溶
鋼流を分散撹拌するので、適正位置に配置された
電磁石14は、スラグおよび気泡の凝固シエルへ
の到達を阻止するとともに、それらの溶鋼表面へ
の十分な浮上脱出をもたらす。 ここでたとえば、連鋳モールド11の幅を第6
図に実線で示す位置から仮想線で示す位置まで広
げる必要が生じた場合に、第1図について述べた
従来技術では、励起手段が固定されており、拡幅
後の流入溶鋼流に対して静磁界を適切に作用させ
ることができないため、それが凝固シエルに到達
するのを有効に防止するとともに、凝固シエルの
近傍を下向きに通過するのを十分に上向分散させ
ることができない。一方、この考案によれば、か
かる場合に、まず、電磁石14を消磁し、次い
で、第1の駆動手段20a,20bを作動させて
鉄心15の各半割部分15a,15bをガイド枠
12の案内の下で相互に離間させ、その後、電磁
石14を再励磁することにより、静磁界25の作
用域を、第6図に実線で示す位置から仮想線で示
す最適位置まで離間させることができるので、こ
のときにもまた溶鋼流の十分な分散撹拌がもたら
される。 さらに、たとえば2孔浸漬ノズル13の浸漬深
さを深くする必要または溶鋼流の流速を高める必
要が生じた場合には、第2の駆動手段22の作動
によつて電磁石14を、長孔23とスリーブ24
との協働下で、ガイド枠12に案内させて最適深
さまで下降させることができ、このことによつて
溶鋼流は前述の場合と同様に適切に分散撹拌され
ることになる。 なお、この励起手段14は、上述した各必要性
とは逆の必要性が生じた場合にも、第1の駆動手
段20a,20bまたは第2の駆動手段22の逆
の作動に基づいて十分にその機能を発揮できるこ
とはもちろんである。 従つて、かかる装置によれば、鋳造幅の変更ま
たは浸漬ノズルの深さもしくは溶鋼流速の変化に
適切に対処して常に十分な製品品質をもたらすこ
とが可能となる。 ちなみに、この考案に係る装置を湾曲型2スト
ランドスラブ連鋳機に適用し、表1に示す条件の
下で作用させた結果、
This invention relates to an improvement of a stirring device for pouring molten steel in continuous casting. In a casting method using a continuous casting machine, molten steel is generally supplied from a tundish into a continuous casting mold either directly or through a submerged nozzle. However, in conventional continuous casting, even if the inlet angle of the submerged nozzle and other settings are changed appropriately, the flow of molten steel injected into the continuous casting mold enters relatively deeply into the unsolidified casting area, so that Accompanying slag and air bubbles also penetrate deeply and are captured in the solidified shell, and the viscosity of the molten steel prevents them from floating onto the surface of the molten steel due to the difference in specific gravity between them and the molten steel. There was a problem that product quality deteriorated. Therefore, in order to solve this problem,
As disclosed in Japanese Patent No. 17356, a technique has been proposed in which the flow of molten steel in a continuous casting mold is decelerated using a static magnetic field to disperse and stir the molten steel. As shown in FIG. 1, at a position immediately after the molten steel flows into the continuous casting mold 1, an excitation means 2 consisting of a DC exciting electromagnet or a permanent magnet having magnetic poles sandwiching the molten steel is placed outside the continuous casting mold 1. The flow of the molten steel 5 is slowed down by applying a static magnetic field 6 to the molten steel 5 flowing into the continuous casting mold 1 from each inlet 4 of the immersion nozzle 3 in a direction crossing the flow direction. This produces an upward dispersion flow 7, thereby causing dispersion and stirring in the molten steel. According to this technology,
The generation of an upwardly dispersed flow of the molten steel 5 effectively prevents the entrainment of slag and air bubbles, and also reduces the penetration depth of the molten steel flow into the unsolidified casting region based on the deceleration of the flow, and the solidification of the molten steel flow. By preventing the collision with the shell 8, slag and air bubbles are prevented from floating up to the surface of the molten steel and being captured by the solidification shell 8, respectively. Note that 9 in FIG. 1 indicates a cooling box in the width direction of the continuous casting mold 1. However, according to such prior art, since the excitation means is fixed at a specific position, it is not only impossible to effectively deal with changes in casting width, but also, for example, to increase the immersion depth of the immersion nozzle or to change the casting speed. There was a problem in that it was not possible to cope with the increase in the flow velocity and penetration depth of molten steel, and as a result, the injected molten steel could not be sufficiently dispersed and stirred, resulting in a decline in product quality. This invention provides a stirring device for cast molten steel that advantageously solves the problems of the prior art.In particular, the excitation means arranged outside the continuous casting mold is expanded and contracted in the width direction of the continuous casting mold. , by making it movable in the height direction,
The excitation means is sufficiently adapted to changes in the casting width and the depth of penetration of the molten steel, so that the molten steel is constantly and reliably dispersed and stirred. This invention will be explained in detail below based on the drawings. FIG. 2 is a horizontal sectional view showing an embodiment of this invention. In the figure, 11 is an internally cooled copper continuous casting mold.
Reference numeral 12 indicates a guide frame adjacent to and sandwiching the continuous casting mold 11 in the thickness direction, and this guide frame 12 slidably accommodates excitation means consisting of a DC excitation electromagnet to be described later. Reference numeral 13 indicates a two-hole immersion nozzle that enters into the continuous casting mold 11, and 14 indicates a DC excited electromagnet each having a pair of magnetic poles, which is disposed within a guide frame 12 that sandwiches the continuous casting mold 11 in the thickness direction. These electromagnets 14 have opposing magnetic poles across the continuous casting mold 11. This electromagnet 14 consists of an iron core 15 that is approximately U-shaped facing the continuous casting mold 11 and a coil 16 wound around the middle part of the iron core 15. A half part 15a is divided into two in the length direction and has a fitting hole 17, and the other half part 15b has a protrusion 18 that fits into the fitting hole 17 and slides inside the hole.
It consists of. Therefore, the half portions 15a and 15b can be guided by the guide frame 12 and moved toward and away from each other in the axial direction of the fitting hole 17 and the projection 18. On the other hand, a half portion 15 from the outside of the guide frame 12
In order to effect such a relative displacement of rods 19a and 15b, rods 19a and 19b are attached to each of them, respectively, extending through the side wall of the guide frame 12 in the axial direction, so that the rods 19a and 19b are displaced from the guide frame 12. The protrusions are respectively connected to mutually synchronized first drive means 20a, 20b. Here, as the first drive means 20a, 20b, it is of course possible to use a rack and pinion, a cylinder device, or other known reciprocating drive means, but in this example, a female threaded member driven by an electric motor is used as the first drive means 20a, 20b. , 19b, ensuring smooth and accurate operation of the half portions 15a, 15b. The electromagnet 14 also connects to the aforementioned first driving means provided on the top of the guide frame 12 via rods 21 installed vertically in each half portion 15a, 15b, as shown in longitudinal section in FIG. 20a, 20b, and is connected to a second drive means 22 similar to 20a, 20b.
As is clear from FIG. 5, the driving means 22 of
By guiding the vertically elongated holes 23 provided in the side wall of the guide frame 12 in lifting and lowering the rods 19a and 19b passing therethrough, the electromagnet 14 is moved up and down as required. In addition, 24 in the figure indicates rods 19a, 19 that are fitted into the elongated hole 23 and pass through it.
Fig. 3 shows a flanged sleeve that guides the raising and lowering of b. In the apparatus configured in this way, if a direct current is passed through the coils 16 of each electromagnet 14 placed at appropriate positions depending on the width of the continuous casting mold 11 and the depth of penetration of molten steel therein, continuous casting will start. A static magnetic field 25 is generated between the magnetic poles sandwiching the mold 11. As described with reference to FIG. 1, this magnetic field 25 acts on the molten steel flow flowing into the continuous casting mold 11 from the injection port of the two-hole immersion nozzle 13, decelerating it and causing an upward dispersion flow. Since the electromagnet 14 disperses and stirs the molten steel flow, the properly positioned electromagnet 14 prevents slag and air bubbles from reaching the solidification shell, and provides sufficient floating of them to the surface of the molten steel. Here, for example, the width of the continuous casting mold 11 is set to the sixth width.
When it becomes necessary to widen the width from the position shown by the solid line to the position shown by the imaginary line in the figure, the excitation means is fixed and a static magnetic field is applied to the inflowing molten steel flow after widening. can not act properly to effectively prevent it from reaching the coagulation shell and to disperse it upwardly enough to prevent it from passing downwardly in the vicinity of the coagulation shell. On the other hand, according to this invention, in such a case, first, the electromagnet 14 is demagnetized, and then the first drive means 20a, 20b are operated to guide each half portion 15a, 15b of the iron core 15 on the guide frame 12. By separating the electromagnets 14 from each other under At this time as well, sufficient dispersion and stirring of the molten steel flow is provided. Furthermore, if it is necessary to deepen the immersion depth of the two-hole immersion nozzle 13 or increase the flow velocity of the molten steel flow, the electromagnet 14 is moved between the elongated hole 23 and the elongated hole 23 by operating the second driving means 22. sleeve 24
In cooperation with the guide frame 12, the molten steel flow can be guided down to the optimum depth, whereby the molten steel flow can be appropriately dispersed and stirred as in the case described above. Note that this excitation means 14 can be sufficiently operated based on the opposite operation of the first drive means 20a, 20b or the second drive means 22 even if a need opposite to each of the above-mentioned needs arises. Of course, it can perform its functions. Therefore, with such a device, it is possible to appropriately cope with changes in the casting width, the depth of the submerged nozzle, or the flow rate of molten steel, and always provide sufficient product quality. By the way, as a result of applying the device according to this invention to a curved two-strand slab continuous casting machine and operating it under the conditions shown in Table 1,

【表】 冷延鋼板向鋳片のピンホール指数は表2に示す通
りとなつた。
[Table] The pinhole index of the slab for cold-rolled steel sheets was as shown in Table 2.

【表】 これは、この考案に係る装置が、スラブサイズ
および鋳込スピードの変化に対して第1図に示す
従来技術に比し、表面性状に2倍の有効性をもた
らすことを示すものである。 従つて、この考案によれば、とくに直流励磁電
磁石からなる励起手段を、連鋳モールドの幅方向
へ拡縮するとともに、高さ方向へ移動可能ならし
めることにより、静磁界の作用位置を、鋳造幅の
変更、浸漬ノズルの深さの変更、溶鋼流速の変更
などに適切に追従させることができるので、溶鋼
中のスラグおよび空気を十分に排除して常に確実
な品質の製品を得ることができる。
[Table] This shows that the device according to this invention is twice as effective in improving the surface texture as compared to the conventional technology shown in Figure 1 with respect to changes in slab size and casting speed. be. Therefore, according to this invention, by making the excitation means consisting of a DC excitation electromagnet expandable and contractible in the width direction of the continuous casting mold and movable in the height direction, the acting position of the static magnetic field can be adjusted to the casting width. , changes in the depth of the immersion nozzle, changes in the flow rate of molten steel, etc. can be appropriately followed, so slag and air in the molten steel can be sufficiently eliminated to always obtain products of reliable quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは従来例を示す平面図、第1図b,c
はそれぞれ第1図aのb−b線およびc−c線に
沿う断面図、第2図はこの考案の実施例を示す横
断面図、第3図は電磁石の拡大断面図、第4図は
第2図の−線に沿う断面図、第5図aは電磁
石の昇降機構を示す説明図、第5図bは第5図a
のb−b線に沿う断面図、第6図は鋳造幅の変更
状態を示す説明図である。 11……連鋳モールド、12……ガイド枠、1
3……2孔浸漬ノズル、14……直流励磁電磁
石、15……鉄心、15a,15b……半割部
分、16……コイル、17……嵌合穴、18……
突起、19,19a,19b,21……ロツド、
20,20a,20b……第1の駆動手段、22
……第2の駆動手段。
Figure 1a is a plan view showing a conventional example, Figures 1b and c
are sectional views taken along lines bb and c-c in Fig. 1a, Fig. 2 is a cross-sectional view showing an embodiment of this invention, Fig. 3 is an enlarged sectional view of the electromagnet, and Fig. 4 is a cross-sectional view taken along lines bb and c-c in Fig. 1a. A cross-sectional view taken along the - line in FIG. 2, FIG. 5 a is an explanatory diagram showing the lifting mechanism of the electromagnet, and FIG.
FIG. 6 is an explanatory diagram showing how the casting width is changed. 11... Continuous casting mold, 12... Guide frame, 1
3...2-hole immersion nozzle, 14...DC excitation electromagnet, 15...iron core, 15a, 15b...half portion, 16...coil, 17...fitting hole, 18...
Protrusion, 19, 19a, 19b, 21...rod,
20, 20a, 20b...first driving means, 22
...Second driving means.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 連鋳モールドの長辺側壁それぞれに、該モール
ドを挾みかつ磁極を異にして配置した一対の直流
励磁電磁石によつて、該モールド内に2孔浸漬ノ
ズルを介して導入された溶鋼の流動を減速する撹
拌装置であつて、該電磁石はその鉄心が嵌合結合
になる2分割構造になり、しかも該電磁石を支持
するガイド枠には、その側壁に該電磁石のモール
ド幅方向への拡縮を司る第1の駆動手段を設ける
一方、その頂壁には該電磁石の昇降移動を司る第
2の駆動手段をそれぞれ設けたことを特徴とする
連続鋳造における鋳込み溶鋼の撹拌装置。
A pair of DC exciting electromagnets placed on each of the long side walls of the continuous casting mold, sandwiching the mold and having different magnetic poles, are used to control the flow of molten steel introduced into the mold through a two-hole immersion nozzle. The electromagnet is a stirring device that decelerates the speed, and the electromagnet has a two-part structure in which the iron core is fitted together, and a guide frame supporting the electromagnet has a side wall that controls the expansion and contraction of the electromagnet in the mold width direction. 1. A stirring device for pouring molten steel in continuous casting, characterized in that a first drive means is provided, and a second drive means for controlling the vertical movement of the electromagnet is provided on the top wall of the first drive means.
JP18180782U 1982-12-02 1982-12-02 Stirring device for poured molten steel in continuous casting Granted JPS5985653U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18180782U JPS5985653U (en) 1982-12-02 1982-12-02 Stirring device for poured molten steel in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18180782U JPS5985653U (en) 1982-12-02 1982-12-02 Stirring device for poured molten steel in continuous casting

Publications (2)

Publication Number Publication Date
JPS5985653U JPS5985653U (en) 1984-06-09
JPS6340290Y2 true JPS6340290Y2 (en) 1988-10-21

Family

ID=30393877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18180782U Granted JPS5985653U (en) 1982-12-02 1982-12-02 Stirring device for poured molten steel in continuous casting

Country Status (1)

Country Link
JP (1) JPS5985653U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745093B2 (en) * 1988-05-13 1995-05-17 住友金属工業株式会社 Magnetic force control device for molten steel flow in cast slab

Also Published As

Publication number Publication date
JPS5985653U (en) 1984-06-09

Similar Documents

Publication Publication Date Title
KR101143827B1 (en) Adjusting the mode of electromagnetic stirring over the height of a continuous casting mould
EP0401504B2 (en) Apparatus and method for continuous casting
RU2419509C2 (en) Method and device for continuous casting of steel preliminary sections, particularly, h-sections
CN1325198C (en) Method and device for controlling flows in a continuous slab casting ingot mould
JPS6340290Y2 (en)
JP4591156B2 (en) Steel continuous casting method
JPS63188461A (en) Electromagnetic coil apparatus for continuous casting mold
US4562879A (en) Electromagnetically stirring the melt in a continuous-casting mold
JPS5976647A (en) Method and device for stirring molten metal for casting in continuous casting
JP2003117636A (en) Method for controlling fluidity of molten steel in mold and device for forming electromagnetic field for this purpose
JP4407260B2 (en) Steel continuous casting method
CA1064669A (en) Continuous casting machine for casting steel
JP4983320B2 (en) Method and apparatus for continuous casting of steel
JPS60137558A (en) Electromagnetic stirrer for continuous casting machine
JPH04274849A (en) Continuous casting mold for steel
JP2651754B2 (en) Continuous casting mold of multilayer slab
JP3491099B2 (en) Continuous casting method of steel using static magnetic field
JP2607332B2 (en) Flow control device for molten steel in continuous casting mold
JPH0671400A (en) Device for controlling flow of molten steel in continuous casting mold
RU2464123C1 (en) Method of adjusting conditions of electromagnetic mixing of ingot liquid phase in slab continuous casting machine and device to this end
JPS63119962A (en) Rolling device for electromagnetic agitation
JPH105949A (en) Molten metal flow control device
JP2633766B2 (en) Method for controlling molten steel flow in continuous casting mold
JP3110212B2 (en) Continuous casting equipment with mold changer
JPS61255750A (en) Method for oxidation-free pouring from ladle to tundish