JPS6340264A - Manufacture of electrolyte retaining matrix for phosphoric acid fuel cell - Google Patents

Manufacture of electrolyte retaining matrix for phosphoric acid fuel cell

Info

Publication number
JPS6340264A
JPS6340264A JP61184453A JP18445386A JPS6340264A JP S6340264 A JPS6340264 A JP S6340264A JP 61184453 A JP61184453 A JP 61184453A JP 18445386 A JP18445386 A JP 18445386A JP S6340264 A JPS6340264 A JP S6340264A
Authority
JP
Japan
Prior art keywords
silicon carbide
phosphoric acid
polyetheretherketone
fuel cell
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61184453A
Other languages
Japanese (ja)
Other versions
JPH077672B2 (en
Inventor
Osamu Hayashi
修 林
Hiroshi Adachi
足達 廣士
Ichiro Takahashi
一郎 高橋
Kazuo Okabashi
岡橋 和郎
Yoshiaki Sakamoto
阪本 芳昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61184453A priority Critical patent/JPH077672B2/en
Publication of JPS6340264A publication Critical patent/JPS6340264A/en
Publication of JPH077672B2 publication Critical patent/JPH077672B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0293Matrices for immobilising electrolyte solutions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To increase bubbling pressure and to increase the permeability and retainability of phosphoric acid by applying aqueous dispersion containing silicon carbide, polyetheretherketone, and binder to a nonwoven fabric sheet comprising silicon carbide fabric and polyetheretherketone fiber. CONSTITUTION:An electrolyte retaining matrix is obtained by bonding silicon carbide powder, polyetheretherketone powder, and binder to a nonwoven fabric sheet obtained by forming a mixture of silicon carbide fiber and polyetheretherketon fiber in a paper-like sheet. The nonwoven fabric sheet manufactured with a paper making machine has a thickness of 150-300mum and a weight of 25-50g/m<2>. The sheet is coated with an aqueous dispersion containing silicon carbide, polyetheretherketone, and binder so that the content of polyetheretherketone is 5-20wt% of silicon carbide.

Description

【発明の詳細な説明】 〔産業の利用分野〕 この発明は、燃料電池の電解質保持マトリックスの製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a method for manufacturing an electrolyte retention matrix for a fuel cell.

〔従来の技術] 通常、水素のように酸化を受は易いガスと、酸素のよう
に酸化力のあるガスを電気化学反応により直流電力を得
る燃料電池が広く知られている。
[Prior Art] Generally, fuel cells are widely known that generate DC power through an electrochemical reaction between a gas that easily undergoes oxidation, such as hydrogen, and a gas that has oxidizing power, such as oxygen.

このような燃料電池は通常、図面に示すように、触媒担
持層(la) 、 (lb) の付与されたガス拡散)
】(2a) 、 (2b)間に電解質マトリックス(3
)を介在させ単位燃料電池(4)を構成し、これら単位
燃料電池(4)相互間にカーボン板で形成された双極性
隔離1反(5)を介在させて積層し、積層体(図面の二
点鎖線で示す。)を構成している。各双極性隔離板(5
)の両面には矢印Iで示す燃料を通過させるための通路
を構成する溝(6)と、図中矢印■で示す酸化剤を流す
ための流路を構成する溝(7)とが互に直行する関係に
形成されている。また双極性隔離板(5)のうちの幾つ
かのものには外面が絶縁被膜で覆われた冷却パイプ(8
)が施設されている。
Such fuel cells are usually provided with catalyst support layers (la), (lb) (gas diffusion), as shown in the drawings.
] (2a) and (2b) between the electrolyte matrix (3
) are interposed to form a unit fuel cell (4), and these unit fuel cells (4) are stacked with a bipolar isolator (5) formed of a carbon plate interposed between them. (shown by the two-dot chain line). Each bipolar separator (5
) have a groove (6) forming a passage for the fuel to pass as indicated by the arrow I and a groove (7) forming a passage for the oxidizer as indicated by the arrow ■ in the figure. They are formed in a direct relationship. In addition, some of the bipolar separators (5) have cooling pipes (8) whose outer surfaces are covered with an insulating coating.
) are provided.

ここで電解質保持マトリックス(3)を製造する従来の
一般的な方法として、ロールコーティングあるいはスク
リーン印刷があり、これに使用するべ−ストとしては、
溶媒である水又はアルコールに非導電性の無機化合物微
粉末、例えばシリコンカーバイド、即ち炭化ケイ素(S
ic)、五酸化タンタル(Taxes) l窒化ケイ素
(Si3N4) などと、増粘剤であるエチレングリコ
ール、酸化ポリエチレンと、無機化合物粉末の結合剤(
バインダー)を加えたものを使用している。
Here, roll coating or screen printing is a conventional and general method for manufacturing the electrolyte retention matrix (3), and the base used for this is:
A fine powder of a non-conductive inorganic compound, such as silicon carbide, is added to water or alcohol as a solvent.
ic), tantalum pentoxide (Taxes), silicon nitride (Si3N4), etc., ethylene glycol as a thickener, polyethylene oxide, and an inorganic compound powder binder (
binder) is used.

電解質保持マトリックス(3)は、リン酸を電解質とす
る燃料電池では、電池特性の同上およびその長期的安定
性を図る上で重要な構成要素の一つである。このリン酸
型燃料電池において電解質であるリン酸を保持するマト
リックス(3)は、上記電池特性の向上及びその長期安
定性を図るため、次のような特性を保有することが要求
される。
In a fuel cell using phosphoric acid as an electrolyte, the electrolyte retention matrix (3) is one of the important components for improving the cell characteristics and long-term stability. In this phosphoric acid fuel cell, the matrix (3) that holds phosphoric acid, which is an electrolyte, is required to have the following characteristics in order to improve the cell characteristics and achieve long-term stability.

(イ)燃料電池の運転条件である180〜230℃の温
度で、濃度95″X以上のリン酸シこ対して熱的及び化
学的に安定であること。
(a) It should be thermally and chemically stable with respect to phosphoric acid with a concentration of 95"X or higher at a temperature of 180 to 230°C, which is the operating condition of a fuel cell.

(ロ)電解質であるリン酸との親和性が高く、リン酸を
浸透させると共に保持力が高いこと。
(b) It has a high affinity with phosphoric acid, which is an electrolyte, and has a high ability to penetrate and retain phosphoric acid.

(ハ)水素イオンの良導体であると同時に電子の1色縁
体であること。
(c) It is a good conductor of hydrogen ions and at the same time a monochromatic member of electrons.

(ニ)燃料ガスと酸化剤ガスがマトリックスを)量適し
、直接接触して反応することを防ぐため、十分な泡出圧
力(バブリング圧)を有すること。
(d) The amount of fuel gas and oxidant gas (in the matrix) should be appropriate and sufficient bubbling pressure should be present to prevent direct contact and reaction.

(ホ)電池としての内部抵抗をできるだけ小さくするた
めにマトリックスの膜厚は機械的性質の許す範囲内で、
できるだけ薄いこと。
(e) In order to minimize the internal resistance of the battery, the thickness of the matrix should be within the range allowed by mechanical properties.
Be as thin as possible.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そこで、リン酸型燃料電池用電解質保持マトリックス(
3)には耐熱リン酸性に優れる材料として、−Sに炭化
ケイ素がフィラーとして、フッ素系樹脂がバインダーと
して用いられている。しかしながら、フッ素系樹脂はリ
ン酸との親和性に乏しいため、これを用いたマトリック
スはリン酸の浸透性および保持性に劣るという欠点を有
していた。
Therefore, the electrolyte retention matrix for phosphoric acid fuel cells (
In 3), silicon carbide is used as a filler in -S and a fluororesin is used as a binder as a material having excellent heat resistance to phosphoric acid. However, since fluororesin has poor affinity for phosphoric acid, matrices using this resin have the drawback of poor permeability and retention of phosphoric acid.

炭化ケイ素を用いるマトリックスの製造方法としては粒
状または繊維状の炭化ケイ素にバインダー、増粘剤及び
溶媒を適量加えて混合し、これをロールコート、吸付け
、塗布、スクリーン印刷などにより電橋表面に付け、乾
燥して溶媒を除去する方法がある。これらの炭化ケイ素
フィラーにフッ素系バインダーを用いた電解質保持マト
リ、クス(3)は、水素イオン伝導度、泡出し圧力など
の特性に優れている。しかし燃料電池としての電池特性
をさらに向上させるにはマトリックスの水素イオン伝導
度を高めることが必要であり、そのためには、リン酸浸
透性および保持性を高くすることが必要であるが、この
フィラーとして炭化ケイ素及びバインダーとしてフッ素
系樹脂を用いて製造した電解質保持マトリックス(3)
にあっては、上述したようにリン酸の浸透性、保持性に
劣るため、水素イオン伝導度を高めることが難しいとい
う問題点があった。
A method for manufacturing a matrix using silicon carbide is to add and mix appropriate amounts of a binder, thickener, and solvent to granular or fibrous silicon carbide, and then apply this to the surface of the electrical bridge by roll coating, adsorption, coating, screen printing, etc. There is a method to remove the solvent by attaching and drying. The electrolyte holding matrix (3) using these silicon carbide fillers and a fluorine-based binder has excellent properties such as hydrogen ion conductivity and bubbling pressure. However, in order to further improve the characteristics of the fuel cell, it is necessary to increase the hydrogen ion conductivity of the matrix, and to do so, it is necessary to increase the permeability and retention of phosphoric acid. Electrolyte retention matrix (3) manufactured using silicon carbide as a binder and fluororesin as a binder
As mentioned above, there was a problem in that it was difficult to increase the hydrogen ion conductivity because the permeability and retention of phosphoric acid were poor.

このうちリン酸の保持性を改善するため、リン酸と親和
力の良いリン酸ジルコニウムを炭化ケイ素と併用する特
許が例えば特開昭59−117075号公報及び特開昭
59−181465号公報で報告されているが、これら
によれば均一な膜形成が困難であったり、気泡を除きに
くいなど、極めて実用性に乏しいものとなっている。
Among these, patents using zirconium phosphate, which has good affinity for phosphoric acid, in combination with silicon carbide in order to improve the retention of phosphoric acid have been reported, for example, in JP-A-59-117075 and JP-A-59-181465. However, these methods are extremely impractical as it is difficult to form a uniform film and it is difficult to remove air bubbles.

この発明は、上記の問題点を解消するためになされたも
ので、泡出し圧力(バブリング圧)を下げることなく、
リン酸の?+ i!性、保持性を高めることができ、水
素イオン伝導度を高くできるリン酸型燃料電池の電解質
保持マトリックスの製造方法を得ることを目的としてい
る。
This invention was made to solve the above problems, and without lowering the bubbling pressure.
Of phosphoric acid? +i! The present invention aims to provide a method for producing an electrolyte retention matrix for a phosphoric acid fuel cell, which can improve the properties and retention properties and increase the hydrogen ion conductivity.

〔問題点を解決するための手段〕[Means for solving problems]

この発明のリン酸型燃料電池の電解質保持マトリックス
の製造方法は、炭化ケイ素繊維及びポリエーテルエーテ
ルケトン繊維の混合物の不織シートに、炭化ケイ素、ポ
リエーテルエーテルケトン及び結合助剤を含有する水系
ディスパージョンを塗布して電解質保持マトリックスを
形成するようにしたものである。
The method for producing an electrolyte retention matrix for a phosphoric acid fuel cell according to the present invention includes adding a nonwoven sheet of a mixture of silicon carbide fibers and polyether ether ketone fibers to an aqueous dispersion containing silicon carbide, polyether ether ketone, and a binding agent. The electrolyte-retaining matrix is formed by coating the electrolyte with gel.

〔作用〕[Effect]

この発明により得られる電解質保持マトリックスは、種
々の特性より検討したところ、以下の機能を有している
ことが明らかになった。
When the electrolyte retention matrix obtained by this invention was examined from various characteristics, it was revealed that it has the following functions.

(へ)熱濃リン酸(95%以上)に対して化学的に安定
である。
(f) Chemically stable against hot concentrated phosphoric acid (95% or more).

(ト)リン酸に対して湿潤性があり、かつ眉間にリン酸
の保持を十分に行なうことができるので、水素イオン伝
導性が良い。
(tri) It has good hydrogen ion conductivity because it has wettability to phosphoric acid and can sufficiently retain phosphoric acid between the eyebrows.

(チ)電子伝導性が無く、絶縁性である。(h) It has no electronic conductivity and is insulating.

(す)優れた泡出圧力(バブリング圧)を有している。(b) Has excellent bubbling pressure.

(ヌ)適度の強度を保有し、薄く加工できる。(N) Possesses appropriate strength and can be processed into a thin layer.

以上の機能のうち、特に (ト)、(ワ)の機能により
泡出圧力を下げることなく、水素イオン伝導性を高める
ことができる。
Among the above functions, especially the functions (g) and (wa) can increase hydrogen ion conductivity without lowering the bubbling pressure.

〔実施例〕〔Example〕

この発明の実施例における電解質保持マトリックスの製
造方法による電解質保持マトリックスは、炭化ケイ素繊
維とポリエーテルエーテルケトン繊維の混合物及び粉末
(炭化ケイ素粉末、ポリエーテルエーテルケトン粉末及
び結合助剤)により構成されるもので、炭化ケイ素繊維
及びポリエーテルエーテルケトン繊維の混合物を紙状に
抄いた基材、即不織シートに、炭化ケイ素粉末、ポリエ
ーテルエーテルケトン粉末及び結合助剤を結着して得ら
れたことを特徴とする。
The electrolyte retention matrix according to the method for producing an electrolyte retention matrix in the embodiment of the present invention is composed of a mixture and powder of silicon carbide fibers and polyetheretherketone fibers (silicon carbide powder, polyetheretherketone powder, and binding agent). It is obtained by bonding silicon carbide powder, polyether ether ketone powder, and a binding agent to a nonwoven sheet, which is a base material made of a paper-like mixture of silicon carbide fibers and polyether ether ketone fibers. It is characterized by

使用する炭化ケイ素繊維、ポリ−エーテルエーテルケト
ン繊維は、例えば5〜15μmのウィスカーで抄紙法に
より150 μm−300μmの厚さに抄造する。抄造
した炭化ケイ素/ポリエーテルエーテルケトン(951
5重量比)不織シートは、25〜50g/m”の重量で
得られたシートにさらに炭化ケイ素/ポリエーテルエー
テルケトン/結合助剤を含有する水系ディスパージョン
を、ポリエーテルエーテルケトン樹脂が炭化ケイ素に対
して5〜20−tχになるように塗布することによりリ
ン酸型燃料電池の電解質保持マトリックスを得る。なお
、ポリエーテルエーテル樹脂の炭化ケイ素に対する割合
が2部w t%以上の場合、電解質保持マトリックスに
形成される空隙が小さくなり過ぎ、5wt%以下の場合
は形成される空隙が大きくなり過ぎて、電解質保持マト
リックスとしては不適当になる。
The silicon carbide fibers and poly-ether ether ketone fibers used are made into paper, for example, with whiskers of 5 to 15 .mu.m to a thickness of 150 .mu.m to 300 .mu.m by a papermaking method. Paper-produced silicon carbide/polyetheretherketone (951
5 weight ratio) The nonwoven sheet is made by adding an aqueous dispersion containing silicon carbide/polyetheretherketone/binding aid to the obtained sheet at a weight of 25 to 50 g/m'', and then adding a polyetheretherketone resin to the carbonized sheet. An electrolyte retention matrix for a phosphoric acid fuel cell is obtained by applying the resin at a ratio of 5 to 20-tχ relative to silicon.In addition, when the ratio of polyether ether resin to silicon carbide is 2 parts wt% or more, The voids formed in the electrolyte retention matrix become too small, and if the amount is less than 5 wt%, the voids formed become too large and become unsuitable as an electrolyte retention matrix.

以下、この発明の実施例のリン酸型燃料電池の電解質保
持マトリックスの製造方法を具体的に説明する。
Hereinafter, a method for manufacturing an electrolyte retention matrix for a phosphoric acid fuel cell according to an embodiment of the present invention will be specifically described.

実施例1 抄造法により得られた炭化ケイ素/ポリエーテルエーテ
ルケトン(9515)シート(30g/11+2)に炭
化ケイ素/ポリエーテルエーテルケトン/結合助剤(5
0部740 部710 部)の40χ水溶液を、ポリエ
ーテルエーテルケトン樹脂の含有量が15χになるよう
に塗布し、100℃40分乾燥後、340℃の窒素雰囲
気炉中で40分焼成し、電解質保持マトリックスを得た
Example 1 A silicon carbide/polyetheretherketone (9515) sheet (30g/11+2) obtained by a papermaking method was coated with silicon carbide/polyetheretherketone/binding aid (5
A 40x aqueous solution of 0 parts, 740 parts, 710 parts) was applied so that the polyetheretherketone resin content was 15x, dried at 100°C for 40 minutes, and then baked in a nitrogen atmosphere furnace at 340°C for 40 minutes to form the electrolyte. A retention matrix was obtained.

この電解質保持マトリックスのバブリング圧は0.5k
g/cm”、水素イオン伝導度を測定したところ、6 
C×10−”(Ωcm−’) )であった。
The bubbling pressure of this electrolyte holding matrix is 0.5k
g/cm", hydrogen ion conductivity was measured, 6
Cx10-''(Ωcm-')).

比較例として、炭化ケイ素粉末95部にポリテトラフロ
ロエチレン5部と結合助剤(ポリエチレングリコール又
はポリエチレンオキサイド=6oz水)3液)60部お
よび溶媒(イソプロピルアルコール/水: 1/1)4
0部を加えて混練し、リバースロールコータによりカー
ボン電極に塗布し、100 ℃60分乾燥後340 ℃
の窒素雰囲気炉中で40分焼成し、電解保持マトリック
スを得た。
As a comparative example, 95 parts of silicon carbide powder, 5 parts of polytetrafluoroethylene, 60 parts of a binding aid (3 liquids of polyethylene glycol or polyethylene oxide = 6 oz water), and a solvent (isopropyl alcohol/water: 1/1) 4
0 parts was added and kneaded, coated on a carbon electrode using a reverse roll coater, dried at 100°C for 60 minutes, and then heated to 340°C.
The mixture was fired for 40 minutes in a nitrogen atmosphere furnace to obtain an electrolytically retained matrix.

この電解質保持マトリックスのバブリング圧は0.40
kg/cm”、水素イオン伝導度は0.5  (X 1
0−”(Ωcm−’) )であった。
The bubbling pressure of this electrolyte retention matrix is 0.40
kg/cm”, hydrogen ion conductivity is 0.5 (X 1
0-''(Ωcm-')).

実施例2 抄造法により得られた炭化ケイ素/ポリエーテルエーテ
ルケトン(9515)シート(35g/n+2)に実施
例1と同様にポリエーテルエーテルケトン樹脂の含有量
が10−tχになるように塗布し、乾燥焼成して電解質
保持マトリックスを得た。
Example 2 A silicon carbide/polyetheretherketone (9515) sheet (35g/n+2) obtained by the papermaking method was coated in the same manner as in Example 1 so that the polyetheretherketone resin content was 10-tχ. , and dried and calcined to obtain an electrolyte retention matrix.

この電解質保持マトリックスのバブリング圧は0.6k
g/cm”、水素イオン伝導度が6.5 (x 10−
”(Ωcn+−’) )であった。
The bubbling pressure of this electrolyte retention matrix is 0.6k
g/cm", hydrogen ion conductivity is 6.5 (x 10-
”(Ωcn+-')).

以上のように上記実施例の電解質保持マトリックスは比
較例のテフロン系結合剤を使用した炭素電極の上層に塗
布形成する従来のマトリックスに比し、バブリング圧が
高く、水素イオン伝i[も高いことから燃料電池の電池
特性を向上させることができる。また、電解質保持マト
リックスに必要な他の機能、即ちp!農リン酸(95%
以上)に対して化学的に安定あり、また電子伝導性が無
く絶縁性であり、さらに適度の強度を保有しており薄く
加工できるなどの機能については従来と同様である。
As described above, the electrolyte retention matrix of the above example has a higher bubbling pressure and a higher hydrogen ion transfer rate than the conventional matrix coated on the upper layer of the carbon electrode using a Teflon-based binder in the comparative example. Therefore, the cell characteristics of the fuel cell can be improved. There are also other functions required for the electrolyte retention matrix, namely p! Agricultural phosphoric acid (95%
It is chemically stable against the above), has no electronic conductivity, is insulating, has appropriate strength, and can be processed into a thin layer, and has the same functions as conventional ones.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり、この発明によれば、炭化ケイ素繊
維及びポリエーテルエーテルケトン繊維の混合物の不織
シートに、炭化ケイ素、ポリエーテルエーテルケトン及
び結合助剤を含有する水系ディスパージョンを塗布して
電解質保持マトリックスを形成するようにしたので、バ
ブリング圧が高く、水素イオン伝導度も高く、燃料電池
の電池特性を向上させることのできるリン酸型燃料電池
の電解質保持マトリックスの製造方法が得られる効果が
ある。
As explained above, according to the present invention, an aqueous dispersion containing silicon carbide, polyetheretherketone, and a binding agent is coated on a nonwoven sheet of a mixture of silicon carbide fibers and polyetheretherketone fibers to form an electrolyte. Since the retention matrix is formed, a method for manufacturing an electrolyte retention matrix for a phosphoric acid fuel cell can be obtained, which has high bubbling pressure and high hydrogen ion conductivity, and can improve the cell characteristics of the fuel cell. be.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、−ta的なリン酸型燃料電池を示す斜視口であ
る。
The drawing is a perspective view of a -ta phosphoric acid fuel cell.

Claims (2)

【特許請求の範囲】[Claims] (1)炭化ケイ素繊維及びポリエーテルエーテルケトン
繊維の混合物の不織シートに、炭化ケイ素、ポリエーテ
ルエーテルケトン及び結合助剤を含有する水系ディスパ
ージョンを塗布して電解質保持マトリックスを形成する
ようにしたリン酸型燃料電池の電解質保持マトリックス
の製造方法。
(1) A nonwoven sheet of a mixture of silicon carbide fibers and polyetheretherketone fibers was coated with an aqueous dispersion containing silicon carbide, polyetheretherketone, and a binding agent to form an electrolyte retention matrix. A method for manufacturing an electrolyte retention matrix for a phosphoric acid fuel cell.
(2)結合剤として使用するポリエーテルエーテルケト
ンは粉末で、炭化ケイ素に対し、5〜20wt%含有さ
れるようにした特許請求の範囲第1項記載のリン酸型燃
料電池の電解質保持マトリックスの製造方法。
(2) The polyether ether ketone used as the binder is a powder, and the content of the electrolyte retention matrix of the phosphoric acid fuel cell according to claim 1 is 5 to 20 wt% based on silicon carbide. Production method.
JP61184453A 1986-08-05 1986-08-05 Method for manufacturing electrolyte holding matrix of phosphoric acid fuel cell Expired - Fee Related JPH077672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61184453A JPH077672B2 (en) 1986-08-05 1986-08-05 Method for manufacturing electrolyte holding matrix of phosphoric acid fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61184453A JPH077672B2 (en) 1986-08-05 1986-08-05 Method for manufacturing electrolyte holding matrix of phosphoric acid fuel cell

Publications (2)

Publication Number Publication Date
JPS6340264A true JPS6340264A (en) 1988-02-20
JPH077672B2 JPH077672B2 (en) 1995-01-30

Family

ID=16153413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61184453A Expired - Fee Related JPH077672B2 (en) 1986-08-05 1986-08-05 Method for manufacturing electrolyte holding matrix of phosphoric acid fuel cell

Country Status (1)

Country Link
JP (1) JPH077672B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101101244B1 (en) 2009-05-14 2012-01-04 한국원자력연구원 Method for manufacturing high density SiCf/SiC composites

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101101244B1 (en) 2009-05-14 2012-01-04 한국원자력연구원 Method for manufacturing high density SiCf/SiC composites

Also Published As

Publication number Publication date
JPH077672B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
JP5189239B2 (en) Fluid diffusion layer for fuel cells
JPS58156B2 (en) Fuel cell with electrolyte retention matrix made of silicon carbide
US4687715A (en) Zirconium pyrophosphate matrix layer for electrolyte in a fuel cell
JP3556171B2 (en) Polymer electrolyte fuel cell and method of manufacturing the same
JP4349826B2 (en) Fuel cell and fuel cell
JPS6332863A (en) Carbon-graphite reservoir layer and manufacture of the same
CN1462489A (en) Electrode for fuel cell and method of manufacturing the electrode
JPS6046515B2 (en) Method for manufacturing electrolyte retention matrix for fuel cells
JPS6340264A (en) Manufacture of electrolyte retaining matrix for phosphoric acid fuel cell
JPH0258740B2 (en)
JP2002075406A (en) Fuel battery cell unit and manufacturing method
JP2002216777A (en) Polymer electrolyte fuel cell
JPH0684528A (en) Solid high polymer electrolyte type fuel cell
JPS58115770A (en) Fuel cell
JP2003086191A (en) Solid polymer fuel cell and its manufacturing method
JPS6340265A (en) Manufacture of electrolyte retaining matrix for phosphoric acid fuel cell
JPS6332865A (en) Electrolyte holding matrix for fuel cell
JP3873387B2 (en) Method for producing polymer electrolyte membrane-reaction part assembly
JP2000149963A (en) Humidifying member for solid high-polymer type fuel cell
JPS6329457A (en) Electrolyte holding matrix for fuel cell
JPH0548581B2 (en)
JPS5975564A (en) Fuel cell and its manufacturing method
JPS6329456A (en) Electrolyte matrix for fuel cell
JPH0258742B2 (en)
JPS5975563A (en) Fuel cell and its manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees