JPS634009B2 - - Google Patents

Info

Publication number
JPS634009B2
JPS634009B2 JP5683480A JP5683480A JPS634009B2 JP S634009 B2 JPS634009 B2 JP S634009B2 JP 5683480 A JP5683480 A JP 5683480A JP 5683480 A JP5683480 A JP 5683480A JP S634009 B2 JPS634009 B2 JP S634009B2
Authority
JP
Japan
Prior art keywords
temperature
engine
fuel
intake pipe
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5683480A
Other languages
Japanese (ja)
Other versions
JPS56154133A (en
Inventor
Hachiro Sasakura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP5683480A priority Critical patent/JPS56154133A/en
Publication of JPS56154133A publication Critical patent/JPS56154133A/en
Publication of JPS634009B2 publication Critical patent/JPS634009B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine

Description

【発明の詳細な説明】 本発明は電子式燃料噴射装置を有する内燃機関
の始動時の燃料噴射量を機関の状態に応じて補正
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for correcting the fuel injection amount at the time of starting an internal combustion engine having an electronic fuel injection device in accordance with the state of the engine.

電子式燃料噴射システムのうち始動時に関連の
ある従来からの構成は、内燃機関の冷却水の温度
を検出する水温センサと、始動状態の判別をする
為のスタータSW信号と、燃料を霧化して供給す
るインジエクタと、このインジエクタに燃料を供
給するデリバリ・パイプと燃料ポンプ及び内燃機
関の回転数や冷却水温等を判定する制御回路から
成り立つている。上記の構成に於いて内燃機関の
始動時には冷却水温を検出するところの水温セン
サの出力がある温度以下(例えば35℃)の場合に
は、一定時間に限つて始動用の補助燃料を追加供
給するという動作をさせている。
The conventional components of electronic fuel injection systems related to starting are a water temperature sensor that detects the temperature of the internal combustion engine's cooling water, a starter SW signal to determine the starting state, and a system that atomizes the fuel. It consists of an injector, a delivery pipe that supplies fuel to the injector, a fuel pump, and a control circuit that determines the internal combustion engine's rotation speed, cooling water temperature, etc. In the above configuration, when the internal combustion engine is started, if the output of the water temperature sensor that detects the cooling water temperature is below a certain temperature (for example, 35 degrees Celsius), additional auxiliary fuel for starting is supplied only for a certain period of time. This is how it works.

即ち、始動時の必要燃料について検討すると次
のような現象があり、始動用燃料の補正が必要と
なる。まず点火栓付近の燃料と空気の化学当量比
(λ)が1に近いとき着火性、燃焼速度とも最つ
とも早い筈であるが、内燃機関が充分暖機してな
い始動時には供給する燃料が吸気管や燃焼室壁面
に付着する為、その量を見込して多めに供給して
いる。これら付着する量は燃料の蒸溜曲線及び内
燃機関の温度によつて異つている。一旦始動した
後においては、吸気管及び燃焼室壁に付着した燃
料の一定量を超えた燃焼室に順次供給されるの
で、インジエクタからはほぼλ≒1の燃料を供給
するのみで良い。従つて、一旦暖機したあとの再
始動時には既に吸気管壁の燃料が飽和状態である
ので始動用の燃料の補正を必要としない。そこで
水温センサにより約35℃以上では始動用補助燃料
の供給をしないという構成となつていた。
That is, when considering the fuel required for starting, the following phenomenon occurs, and it becomes necessary to correct the starting fuel. First, when the chemical equivalence ratio (λ) of fuel and air near the spark plug is close to 1, both ignition performance and combustion speed should be the fastest, but when the internal combustion engine is started and has not been sufficiently warmed up, the supplied fuel is Since it adheres to the intake pipe and the combustion chamber wall, a large amount is supplied in anticipation of this amount. The amount of these deposits varies depending on the distillation curve of the fuel and the temperature of the internal combustion engine. Once the engine has started, the amount of fuel that has adhered to the intake pipe and the combustion chamber wall is sequentially supplied to the combustion chamber, so it is only necessary to supply approximately λ≈1 fuel from the injector. Therefore, when the engine is restarted after it has been warmed up, the fuel on the intake pipe wall is already saturated, so there is no need to correct the starting fuel. Therefore, a water temperature sensor was used to prevent the supply of auxiliary starting fuel at temperatures above approximately 35°C.

ところが、内燃機関を完全に暖機した後、機関
を停止して放置するとシリンダ・ブロツクや燃焼
ヘツド等高温部の熱が熱伝導で伝わり吸気管を加
熱する。この為機関停止後10〜15分間は冷却水温
も上昇し以後40〜70分の間は高温の状態に保たれ
る。この高温状態の間に吸気管壁に付着していた
燃料は蒸発して体積が膨張し、吸気管から溢れ出
た分は活性炭等に吸着処理される。
However, if the internal combustion engine is stopped and left unattended after it has been completely warmed up, heat from high-temperature parts such as the cylinder block and combustion head is transferred by thermal conduction and heats the intake pipe. For this reason, the cooling water temperature rises for 10 to 15 minutes after the engine stops, and remains at a high temperature for the next 40 to 70 minutes. During this high temperature state, the fuel adhering to the wall of the intake pipe evaporates and expands in volume, and the amount that overflows from the intake pipe is adsorbed onto activated carbon or the like.

従つて、機関停止後約40分位に機関を始動する
と冷却水温は高温域にあるので始動用補助燃料は
供給されない。ところが、吸気管壁には燃料が付
着していないのでλ≒1の燃料を供給しただけで
は吸気管に付着する燃料の割合が多く過薄混合気
となつて暫くの間着火できないという問題があつ
た。
Therefore, if the engine is started approximately 40 minutes after the engine has been stopped, the cooling water temperature will be in the high temperature range, and no auxiliary starting fuel will be supplied. However, since no fuel adheres to the intake pipe wall, there is a problem that if only fuel with λ≒1 is supplied, a large proportion of fuel will adhere to the intake pipe, resulting in an overly lean mixture that cannot be ignited for a while. Ta.

本発明は上記の不具合を解消すべく、機関の冷
却水温度を検出する水温検出手段、及び機関の吸
気管壁の温度を検出する壁温検出手段を有し、特
に機関停止直後より次に機関始動させるまでの期
間に検出する吸気管壁の温度の最高値を記憶する
ようにし、機関始動の際に、冷却水温度が所定値
以下にある場合、さらに冷却水温度が前記所定値
以上でかつ記憶した吸気管壁温の最高値が所定の
範囲にある場合には、始動用燃料の増量補正を行
なわせることになり、低温始動、低温再始動高温
始動、及び高温再始動のいずれの条件でも安定か
つ確実な始動を達成できる電子式燃料噴射システ
ムの始動補正方法の提供を目的とする。
In order to solve the above problems, the present invention has a water temperature detection means for detecting the temperature of the cooling water of the engine and a wall temperature detection means for detecting the temperature of the intake pipe wall of the engine. The maximum temperature of the intake pipe wall detected during the period up to engine startup is stored, and when the engine is started, if the cooling water temperature is below a predetermined value, and when the cooling water temperature is above the predetermined value and If the maximum value of the memorized intake pipe wall temperature is within a predetermined range, the amount of starting fuel will be corrected to increase the amount of starting fuel. The object of the present invention is to provide a starting correction method for an electronic fuel injection system that can achieve stable and reliable starting.

以下本発明になる一実施例を図に従つて説明す
る。第1図に於いて1は燃料噴射量を運転条件に
応じて演算するところの制御回路で、機関の冷却
水温度を検出する水温検出手段をなす冷却水温度
センサ2と、機関の吸気管壁に取りつけたところ
の壁温検出手段をなす壁温センサ3の信号のピー
ク値を記憶する壁温記憶回路4からの信号とを入
力し、始動用補助燃料を演算してこの場合低温時
始動補助用のインジエクタ5に所要の信号を供給
する構成となつている。なお、このブロツク図で
は始動用以外の演算構成は演算回路ブロツク10
3に代表して示し、具体的構成の開示は省略して
ある。この場合制御回路1に入力される冷却水温
センサ2の信号が所定温度以下(例えば35℃以
下)である場合と、さらに壁温記憶回路4の信号
が所定温度以上(例えば85℃以上)で且つ冷却水
温センサ2の信号が所定温度以上(例えば35℃以
上)である場合、始動用補助燃料の指令信号が信
号ライン110を通過できるように論理が組んで
ある。ここで、上記具体的温度(35℃,85℃)は
機関構造や特性等によつて決まる経験に基づく値
であり、機関性能を損なわない範囲内で任意に選
択し得るものである。
An embodiment of the present invention will be described below with reference to the drawings. In Fig. 1, 1 is a control circuit that calculates the fuel injection amount according to operating conditions, and includes a cooling water temperature sensor 2, which serves as a water temperature detection means for detecting the engine cooling water temperature, and an engine intake pipe wall. A signal from a wall temperature memory circuit 4 that stores the peak value of a signal from a wall temperature sensor 3, which is a wall temperature detection means attached to the wall temperature sensor 3, is input to calculate starting auxiliary fuel. The configuration is such that the necessary signals are supplied to the injector 5 for use. In addition, in this block diagram, the arithmetic configuration other than for starting is in the arithmetic circuit block 10.
3 as a representative, and disclosure of the specific configuration is omitted. In this case, if the signal from the cooling water temperature sensor 2 input to the control circuit 1 is below a predetermined temperature (e.g., 35°C or less), and if the signal from the wall temperature memory circuit 4 is above a predetermined temperature (e.g., 85°C or more), If the signal from the cooling water temperature sensor 2 is at a predetermined temperature or higher (for example, 35° C. or higher), logic is set up so that a starting auxiliary fuel command signal can pass through the signal line 110. Here, the above-mentioned specific temperatures (35° C., 85° C.) are values based on experience determined by the engine structure, characteristics, etc., and can be arbitrarily selected within a range that does not impair engine performance.

またブロツク6はスタータースイツチの作動時
にスタータ始動信号を発生させる回路ブロツクで
ある。リセツト回路7は、スターター始動完了直
後に温度記憶回路4の記憶を解消して所定の状態
に保持させる一方、イグニツシヨンスイツチ8の
オス信号、即ちエンジン停止信号を受けて温度記
憶回路4の記憶動作(即ち壁温信号の検出動作)
を開始させる構成になつている。もちろん、上記
実施例ではエンジン始動後は温度記憶回路4の記
憶動作を停止させているが、エンジン動作中は吸
気管は吸入空気によつて冷却されるためあまり温
度上昇せず、従つて記憶解消後に記憶動作をその
まま行なわせても実際には問題ない。
Block 6 is a circuit block that generates a starter starting signal when the starter switch is activated. The reset circuit 7 clears the memory of the temperature memory circuit 4 immediately after the completion of starting the starter and maintains the temperature in a predetermined state, and resets the memory of the temperature memory circuit 4 upon receiving the male signal of the ignition switch 8, that is, the engine stop signal. Operation (i.e. wall temperature signal detection operation)
It is configured to start. Of course, in the above embodiment, the memory operation of the temperature memory circuit 4 is stopped after the engine is started, but since the intake pipe is cooled by the intake air while the engine is running, the temperature does not rise much, so the memory is cleared. There is actually no problem even if the memory operation is performed as it is afterwards.

また、制御回路1において、コンパレータ10
1は、温度記憶回路4に記憶された壁温信号を受
けて最高壁温(ピーク値)が所定値(例えば85
℃)以上のときLレベル信号を発生し、それより
低いときHレベル信号を発生するようにしてあ
る。また、コンパレータ102は、入力される冷
却水温信号を受けて冷却水温が所定値(例えば35
℃)以上のときLレベル信号を発生し、それより
低いときHレベル信号を発生するようにしてあ
る。時限回路103は、スターター始動信号を受
けて機関の動作状態によつて決まる所定時間の間
駆動信号を発生する回路である。駆動回路104
は入力される駆動信号(例えば電流信号)に応じ
てインジエクタ5を駆動するもので、例えばトラ
ンジスタ増幅回路から構成される。また、トラン
ジスタ108は、信号ライン110より駆動回路
104への電流通過を制限するもので、インバー
トゲート105、NANDゲート106、及び
NORゲート107による論理出力により制御さ
れる。
In addition, in the control circuit 1, a comparator 10
1 receives the wall temperature signal stored in the temperature storage circuit 4 and determines that the maximum wall temperature (peak value) is a predetermined value (for example, 85
℃) or more, an L level signal is generated, and when it is lower than that, an H level signal is generated. Further, the comparator 102 receives the input cooling water temperature signal and determines that the cooling water temperature is a predetermined value (for example, 35
℃) or more, an L level signal is generated, and when it is lower than that, an H level signal is generated. The time limit circuit 103 is a circuit that receives a starter start signal and generates a drive signal for a predetermined period of time determined by the operating state of the engine. Drive circuit 104
The injector 5 is driven in accordance with an input drive signal (for example, a current signal), and is composed of, for example, a transistor amplifier circuit. Further, the transistor 108 restricts the passage of current from the signal line 110 to the drive circuit 104, and is connected to the invert gate 105, the NAND gate 106, and
Controlled by the logic output of NOR gate 107.

なお、制御回路1にはイグニツシヨンスイツチ
8を介して電源供給されるが、温度記憶回路4及
びリセツト回路7にはイグニツシヨンスイツチ8
を介さず直接電源供給される構成にしてある。
Note that power is supplied to the control circuit 1 via the ignition switch 8, but the temperature storage circuit 4 and the reset circuit 7 are supplied with power via the ignition switch 8.
The configuration is such that power is supplied directly without going through the.

第2図は壁温記憶回路4の詳細を示しており、
壁温センサ3にサーミスタを使用した場合で、抵
抗41と直列に接続してありその分圧電圧を差動
増幅回路4aの負入力端子に入力してある。抵抗
44と抵抗45は直列に接続してあり、差動増幅
回路4aの正入力端子に結線してバイアスを調節
している。抵抗43と抵抗42にてこの回路の増
幅度を調節する構成としてある。4bはコンパレ
ータで、その出力で動作する電気スイツチ4cの
2接点で2入力の切替えをする構成としてある。
差動増幅回路4aの出力は電気スイツチ4cの中
立端子に接続してあり、コンパレータ4bの出力
がHレベルにあるときコンパレータ4bの負入力
端子に接続されコンデンサ47を充電する。コン
パレータ4bの出力がLレベルにあるとき、差動
増幅回路4aの出力はコンパレータ4bの正入力
端子に接続されコンデンサ46を充電する。4
8,49はそれぞれコンデンサ46の出力端子側
を制御回路1及びリセツト回路7に接続するとこ
ろの信号端子である。
FIG. 2 shows details of the wall temperature memory circuit 4.
In the case where a thermistor is used as the wall temperature sensor 3, it is connected in series with a resistor 41, and its divided voltage is inputted to the negative input terminal of the differential amplifier circuit 4a. The resistor 44 and the resistor 45 are connected in series and connected to the positive input terminal of the differential amplifier circuit 4a to adjust the bias. The configuration is such that the amplification degree of this circuit is adjusted by a resistor 43 and a resistor 42. Reference numeral 4b denotes a comparator, which is configured to switch between two inputs using two contacts of an electric switch 4c operated by the output of the comparator.
The output of the differential amplifier circuit 4a is connected to the neutral terminal of the electric switch 4c, and is connected to the negative input terminal of the comparator 4b to charge the capacitor 47 when the output of the comparator 4b is at H level. When the output of the comparator 4b is at L level, the output of the differential amplifier circuit 4a is connected to the positive input terminal of the comparator 4b and charges the capacitor 46. 4
Signal terminals 8 and 49 connect the output terminal side of the capacitor 46 to the control circuit 1 and the reset circuit 7, respectively.

上記の構成に於いて、内燃機関が運転中である
場合は吸気管中は常時混合気が流れて冷却されて
いるので壁温センサ(サーミスタ)3の抵抗は大
であり、差動増幅器4aの負入力電圧が大きいの
で差動増幅器4aの出力電圧は比較的小さいレベ
ルにある。
In the above configuration, when the internal combustion engine is running, the air-fuel mixture constantly flows in the intake pipe and is cooled, so the resistance of the wall temperature sensor (thermistor) 3 is large, and the resistance of the differential amplifier 4a is large. Since the negative input voltage is large, the output voltage of the differential amplifier 4a is at a relatively low level.

内燃機関が停止すると温度記憶回路4の記憶動
作を開始する一方、シリンダ・ブロツク等からの
熱伝導で吸気管が加熱されて壁温センサ(サーミ
スタ)3の抵抗は小さくなり、差動増幅器4aの
負入力電圧は徐々に小さくなり、それにつれて差
動増幅器4aの出力電圧は大きくなつていく。そ
してコンパレータ4bの出力がHレベルであると
き、電気スイツチ4cを介して差動増幅器4aの
出力はコンパレータ4bの負入力端子に接続され
るので、コンデンサ47は出力電圧に等しくなる
まで充電される。そしてコンデンサ47の端子電
圧がコンデンサ45の電圧より高くなるとコンパ
レータ4bはLレベルに切りかわり、スイツチ4
cを切りかえて差動増幅器4aの出力をコンパレ
ータ4bの正入力端子に接続しててコンデンサ4
6を充電する。コンデンサ46の端子電圧がコン
デンサ47の端子電圧より高くなるとコンパレー
タ4bはHレベルになりスイツチ4cを切りかえ
て元の状態に戻る。以下差動増幅器4aの出力電
圧が上昇する間コンデンサ46,47は交互に充
電されて差動増幅器4aの出力電圧と等しくなつ
ている。
When the internal combustion engine stops, the temperature storage circuit 4 starts storing data, and the intake pipe is heated by heat conduction from the cylinder block, etc., and the resistance of the wall temperature sensor (thermistor) 3 decreases, and the resistance of the differential amplifier 4a decreases. The negative input voltage gradually decreases, and the output voltage of the differential amplifier 4a increases accordingly. When the output of the comparator 4b is at H level, the output of the differential amplifier 4a is connected to the negative input terminal of the comparator 4b via the electric switch 4c, so that the capacitor 47 is charged until it becomes equal to the output voltage. When the terminal voltage of the capacitor 47 becomes higher than the voltage of the capacitor 45, the comparator 4b switches to the L level, and the switch 4
The output of the differential amplifier 4a is connected to the positive input terminal of the comparator 4b by switching the capacitor 4.
Charge 6. When the terminal voltage of the capacitor 46 becomes higher than the terminal voltage of the capacitor 47, the comparator 4b becomes H level, and the switch 4c is turned over to return to the original state. Thereafter, while the output voltage of the differential amplifier 4a increases, the capacitors 46 and 47 are alternately charged and become equal to the output voltage of the differential amplifier 4a.

次に温度上昇が停まつて冷え始めると差動増幅
器4aの出力電圧は低下しはじめる。差動増幅器
4aの出力電圧が低下するとコンデンサから逆に
放電を始めるが、コンデンサ46の端子電圧より
コンデンサ47の端子電圧が低くなつたところで
コンパレータ4bはHレベルに保持されるのでス
イツチ4cはコンパレータ4bの負入力端子に接
続したままとなり、コンデンサ46の端子電圧は
ピーク電圧を保持したままとなる。
Next, when the temperature stops rising and begins to cool down, the output voltage of the differential amplifier 4a begins to decrease. When the output voltage of the differential amplifier 4a decreases, the capacitor starts discharging, but when the terminal voltage of the capacitor 47 becomes lower than the terminal voltage of the capacitor 46, the comparator 4b is held at H level, so the switch 4c The terminal voltage of the capacitor 46 remains connected to the negative input terminal of the capacitor 46, and the terminal voltage of the capacitor 46 remains at the peak voltage.

次に内燃機関を再始動をする場合に、まず冷却
水温センサ2の信号が設定値以下である場合、コ
ンパレータ102の出力はHレベルとなりトラン
ジスタ108をOFFさせるため、電流信号は信
号ライン110より駆動回路104に入力され、
結局制御回路1は始動用補正燃料の信号をインジ
エクタ5に出力し従来どおりの始動をさせる。こ
れに対し、冷却水温センサ2の信号が設定値以上
である場合は、コンパレート102はLレベルを
出力しNANDゲート106を開く。その際壁温
センサ3の出力のピーク値を記憶しているところ
の壁温記憶回路4の壁温信号を受けてその値が設
定値以下であればコンパレータ101はHレベル
を出力するため、NANDゲート106の出力は
Lレベルとなり、従つてNORゲート107の出
力はHレベルになりトランジスタ108をONす
る。そのため信号ライン110はグランドに短絡
されて始動用補正燃料を指令する信号は駆動回路
104に伝えられず、結局始動燃料はインジエク
タより供給されない。即ち、冷却水温は高いが吸
気管の温度はそれ程高くない場合であつて例えば
冬季の雰囲気が低い時であつて運転時間が短かつ
た場合、あるいは機関停止後より再始動までの時
間が短い場合等に相当する。
Next, when restarting the internal combustion engine, if the signal from the cooling water temperature sensor 2 is below the set value, the output of the comparator 102 becomes H level and turns off the transistor 108, so the current signal is driven from the signal line 110. input to the circuit 104,
Eventually, the control circuit 1 outputs a starting correction fuel signal to the injector 5 to start the engine in the conventional manner. On the other hand, when the signal from the cooling water temperature sensor 2 is equal to or higher than the set value, the comparator 102 outputs an L level and opens the NAND gate 106. At that time, the comparator 101 receives the wall temperature signal of the wall temperature memory circuit 4 which stores the peak value of the output of the wall temperature sensor 3, and if the value is less than the set value, the comparator 101 outputs the H level, so the NAND The output of gate 106 becomes L level, and therefore the output of NOR gate 107 becomes H level, turning transistor 108 ON. Therefore, the signal line 110 is short-circuited to ground, and a signal instructing corrected fuel for starting is not transmitted to the drive circuit 104, and as a result, starting fuel is not supplied from the injector. That is, when the cooling water temperature is high but the intake pipe temperature is not so high, for example, when the atmosphere is low in winter and the operating time is short, or when the time from when the engine is stopped to when it is restarted is short. etc.

他方、冷却水温センサ2の信号が設定値以上
で、かつ壁温記憶回路4の出力が設定値以上であ
ればコンパレータ101,102は共にLレベル
を出力し、NORゲート107はLレベルを出力
してトランジスタ108はOFFするため、始動
用補正燃料の指令信号を駆動回路104に伝えイ
ンジエクタ5を駆動して高温時の始動を容易にす
る。これによつて乾いた吸気管壁に燃料の一部が
奪われても点火栓付近にλ≒1付近の混合気が速
やかに供給される為高温再始動時に於いても良好
な始動性を得ることができる。
On the other hand, if the signal of the cooling water temperature sensor 2 is above the set value and the output of the wall temperature memory circuit 4 is above the set value, both the comparators 101 and 102 output L level, and the NOR gate 107 outputs L level. Since the transistor 108 is turned off, a command signal for starting correction fuel is transmitted to the drive circuit 104 to drive the injector 5 to facilitate starting at high temperatures. As a result, even if a portion of the fuel is taken away by the dry intake pipe wall, the air-fuel mixture with λ≒1 is quickly supplied to the vicinity of the spark plug, resulting in good starting performance even when restarting at a high temperature. be able to.

また、信号端子48,49は電界効果トランジ
スタ等の入力インピーダンスの極めて高い素子で
受ける構成とし、機関の始動後にはリセツト回路
7によりコンデンサ46を短絡して記憶電圧値を
解消し、所定の状態に保持させることになる。そ
して、機関が停止すると再び壁温を記憶動作を開
始することになる。
Further, the signal terminals 48 and 49 are configured to be received by elements with extremely high input impedance such as field effect transistors, and after the engine is started, the capacitor 46 is short-circuited by the reset circuit 7 to eliminate the stored voltage value and return to a predetermined state. It will be retained. Then, when the engine stops, the wall temperature memorization operation starts again.

なお、上述の実施例ではインジエクタ5として
始動補助用インジエクタを備える場合を例にとつ
て説明したが、本発明はインジエクタ5として補
助用インジエクタを用いずに燃料噴射システムの
主インジエクタを用いるようにし、このシステム
における始動時増量システムとして組み込むよう
にしてもよい。
In addition, in the above-mentioned embodiment, the case where a starting auxiliary injector is provided as the injector 5 has been described as an example, but in the present invention, the main injector of the fuel injection system is used as the injector 5 without using an auxiliary injector, It may be incorporated as a start-up increasing system in this system.

また、上記の実施例に於いては吸気管壁の温度
ピークを記憶する手段として電気的なピークホー
ルド回路を使用したが、検出部の機械的な記憶機
能で温度ピークを検出する構成としても良い。ま
た、マイクロ・コンピユータを使用して燃料制御
を行う方式の場合は、管壁の温度信号をアナログ
からデイジタルに交換しコンピユータ内のレジス
タに読み込み、常時サンプリング比較して高い温
度信号をレジスタにストアしておき、始動の初期
セツト時に読み出す構成としても良い。
Further, in the above embodiment, an electrical peak hold circuit was used as a means for storing the temperature peak of the intake pipe wall, but a configuration may also be adopted in which the temperature peak is detected using a mechanical storage function of the detection section. . In addition, in the case of a system in which fuel control is performed using a microcomputer, the temperature signal of the tube wall is exchanged from analog to digital, read into a register in the computer, and constantly sampled and compared, and the higher temperature signal is stored in the register. It is also possible to have a configuration in which the information is stored in advance and read out at the time of initial setting at startup.

以上述べたように本発明に於いては内燃機関が
停止している間の吸気管壁温度のピーク値を記憶
するようにし、内燃機関の始動時にこのピーク温
度値と冷却水の温度の両者を検出して吸気管壁の
燃料の付着状態を推定することにより始動用燃料
の補正を行う構成としたから、低温始動、低温再
始動、高温始動、及び高温再始動のいずれの場合
にも良好な始動性が得られるという優れた効果が
得られる。
As described above, in the present invention, the peak value of the intake pipe wall temperature while the internal combustion engine is stopped is stored, and both this peak temperature value and the temperature of the cooling water are stored when the internal combustion engine is started. Since the starting fuel is corrected by detecting and estimating the adhesion state of fuel on the intake pipe wall, the system is configured to correct the starting fuel. An excellent effect of starting performance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例になるブロツク図、
第2図は第1図中温度記憶回路の詳細を示す電気
結線図である。 1…制御回路、2…水温検出手段をなす冷却水
温センサ、3…壁温検出手段をなす吸気管壁温セ
ンサ、4…温度記憶回路、5…インジエクタ、7
…リセツト回路。
FIG. 1 is a block diagram of an embodiment of the present invention.
FIG. 2 is an electrical wiring diagram showing details of the temperature storage circuit in FIG. 1. DESCRIPTION OF SYMBOLS 1... Control circuit, 2... Cooling water temperature sensor forming water temperature detection means, 3... Intake pipe wall temperature sensor forming wall temperature detection means, 4... Temperature storage circuit, 5... Injector, 7
...Reset circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 内燃機関の運転条件に応じて燃料噴射時間を
制御する電子式燃料噴射システムにおいて、機関
の冷却水温度を検出する水温検出手段、及び機関
の吸気管壁の温度を検出する壁温検出手段を有
し、機関停止直後より機関始動させるまでの期間
にこの壁温検出手段にて検出する吸気管壁の温度
の最高値を記憶しておき、機関始動時に、冷却水
温度が所定値以下にある場合、および冷却水温度
が前記所定値以上であつてかつ記憶した吸気管壁
の温度の最高値が所定の範囲にある場合には、燃
料の増量補正を行なわせることを特徴とする電子
式燃料噴射システムの始動補正方法。
1. In an electronic fuel injection system that controls fuel injection time according to the operating conditions of an internal combustion engine, a water temperature detection means for detecting the engine cooling water temperature and a wall temperature detection means for detecting the temperature of the intake pipe wall of the engine are provided. The maximum temperature of the intake pipe wall detected by this wall temperature detection means during the period from immediately after the engine stops until the engine is started is stored, and when the engine is started, the cooling water temperature is below a predetermined value. and when the coolant temperature is equal to or higher than the predetermined value and the stored maximum value of the temperature of the intake pipe wall is within a predetermined range, an increase in fuel is corrected. How to correct the start of the injection system.
JP5683480A 1980-04-28 1980-04-28 Correcting method of starting for electronic fuel jet system Granted JPS56154133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5683480A JPS56154133A (en) 1980-04-28 1980-04-28 Correcting method of starting for electronic fuel jet system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5683480A JPS56154133A (en) 1980-04-28 1980-04-28 Correcting method of starting for electronic fuel jet system

Publications (2)

Publication Number Publication Date
JPS56154133A JPS56154133A (en) 1981-11-28
JPS634009B2 true JPS634009B2 (en) 1988-01-27

Family

ID=13038410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5683480A Granted JPS56154133A (en) 1980-04-28 1980-04-28 Correcting method of starting for electronic fuel jet system

Country Status (1)

Country Link
JP (1) JPS56154133A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036850U (en) * 1989-06-05 1991-01-23

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615829B2 (en) * 1984-01-13 1994-03-02 日本電装株式会社 Electronically controlled fuel injection device for internal combustion engine
JPS60153443A (en) * 1984-01-20 1985-08-12 Mazda Motor Corp Fuel feed device for engine
JPS60153442A (en) * 1984-01-20 1985-08-12 Mazda Motor Corp Fuel feed device for engine
JPS61234237A (en) * 1985-04-10 1986-10-18 Honda Motor Co Ltd Control method for supplying fuel to internal-combustion engine immediately after its cranking
JP2514627B2 (en) * 1986-04-07 1996-07-10 日産自動車株式会社 Air-fuel ratio control device for internal combustion engine
EP0365714B1 (en) * 1988-10-28 1991-09-04 Siemens Aktiengesellschaft Method for making a hot start
DE10043695A1 (en) * 2000-09-04 2002-03-14 Bosch Gmbh Robert Method for determining a hot start situation in an internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036850U (en) * 1989-06-05 1991-01-23

Also Published As

Publication number Publication date
JPS56154133A (en) 1981-11-28

Similar Documents

Publication Publication Date Title
SU639476A3 (en) Fuel injection system for internal combustion engine
US3938479A (en) Exhaust gas sensor operating temperature detection system
US6647939B2 (en) Vehicle engine starting system and method
US4148282A (en) Method and apparatus for cold starting fuel injected internal combustion engines
US4027641A (en) Control apparatus for starting internal combustion engines
JPS634009B2 (en)
EP0778464B1 (en) A heater controller for an air-fuel ratio sensor
JP2009527692A (en) Method and system for preheating a diesel engine air / fuel mixture by controlling a low voltage discharging plug
JP3056365B2 (en) Control device for oxygen concentration sensor
JPS648180B2 (en)
JPH10215527A (en) Car-charging controller
JPS626092B2 (en)
JPS6324153B2 (en)
JPS5968568A (en) Preheating control device of diesel engine
JPS5856386Y2 (en) Starting aid for diesel engines
JPH0245493Y2 (en)
JPH0953556A (en) Glow lamp control device
JPS608473A (en) Control device for curret conduction to glow plug
JPS6042195Y2 (en) Starting pulse signal generation circuit for electronically controlled fuel injection device
JPH0571461A (en) Glow plug control device
JPS6166838A (en) Driving device for solenoid valve
KR100444057B1 (en) Fuel amount compensation method on engine restarting
JPS6324152B2 (en)
JPH02169873A (en) Ignition timing control device for internal combustion engine
JPS6027818B2 (en) Electronically controlled fuel injection device