JPS60153443A - Fuel feed device for engine - Google Patents

Fuel feed device for engine

Info

Publication number
JPS60153443A
JPS60153443A JP921884A JP921884A JPS60153443A JP S60153443 A JPS60153443 A JP S60153443A JP 921884 A JP921884 A JP 921884A JP 921884 A JP921884 A JP 921884A JP S60153443 A JPS60153443 A JP S60153443A
Authority
JP
Japan
Prior art keywords
temperature sensor
engine
output
intake
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP921884A
Other languages
Japanese (ja)
Other versions
JPH0363656B2 (en
Inventor
Masahiro Izumio
泉尾 正博
Masamichi Iida
飯田 政道
Shigeaki Shimoda
下田 繁明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP921884A priority Critical patent/JPS60153443A/en
Priority to US06/692,639 priority patent/US4594986A/en
Publication of JPS60153443A publication Critical patent/JPS60153443A/en
Publication of JPH0363656B2 publication Critical patent/JPH0363656B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent an air-fuel mixture from coming into being overlean, by controlling a degree of suction temperature compensation to a fundamental fuel injection feed quantity at a time when detecting a specified operating region where a variation in a suction temperature sensor is more than the setting value. CONSTITUTION:A suction temperature compensating circuit 17 judges an engine start when an ignition switch 9 is turned on and an A/D conversion output N out of an engine speed sensor 10 becomes more than the specified value, then stores each A/D conversion output out of a suction temperature sensor 8 and an outside temperature sensor 11 into each of registers Ta and To at a specified time interval, and calculates a variation in an output difference between both sensors 10 and 11. And, when the variation is larger than the setting value, it outputs the suction temperature sensor output Ta in time of the engine stop stored in memory, and compensates a fundamental fuel feed quantity from a map 4 at an operation circuit 20 by way of a D/A converter 18 and a function generator 19. Likewise, when the variation is smaller than the setting value, at that point, it outputs the read suction temperature sensor output Ta as it is.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、エンジンの燃料供給装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel supply device for an engine.

〔従来技術〕[Prior art]

一般にエンジンの燃料供給装置は、吸入空気量に応じた
量の燃料をエンジンに供給して該エンジンを効率よく運
転しようとするものである。例えばエンジンの気化器で
は、吸気通路のベンチュリー負圧によって燃料導入量を
制御するようにしており、又エンジンの燃料噴射装置で
は、エアフローセンサによって吸入空気量を検出し、該
センサの出力に応じて燃料噴射量を制御するようにして
いる。しかるにこの場合、単にベンチュリー負圧により
、あるいはエアフローセンサの出力に応じて燃料供給量
を制御するようにすると、上記ベンチュリー負圧は吸気
流速をパラメータとして変化するものであり、又エアフ
ローセンサとしては通常、吸気の体積流量を検出するカ
ルマン渦タイプ。
Generally, a fuel supply device for an engine attempts to efficiently operate the engine by supplying an amount of fuel to the engine according to the amount of intake air. For example, in an engine's carburetor, the amount of fuel introduced is controlled by the venturi negative pressure in the intake passage, and in an engine's fuel injection device, the amount of intake air is detected by an air flow sensor, and the amount of intake air is controlled according to the output of the sensor. The fuel injection amount is controlled. However, in this case, if the fuel supply amount is controlled simply by the venturi negative pressure or according to the output of the airflow sensor, the venturi negative pressure changes with the intake flow rate as a parameter, and the airflow sensor normally , Karman vortex type to detect the volumetric flow rate of intake air.

スピードデンシティタイプ、ベーンタイプのセンサが使
用されていることから、吸気温度が変化して吸気密度が
変ったような場合に混合気の空燃比が設定値からずれて
しまうという不具合が生じる。
Since speed density type and vane type sensors are used, a problem arises in that the air-fuel ratio of the mixture deviates from the set value when the intake air temperature changes and the intake air density changes.

そこでこのような不具合を解消するため、従来より、吸
気通路の途中に吸気温センサを配設し、該センサの出力
に基づいて燃料供給量を補正制御することが行なわれて
おり、その−例として、特開昭57−51299号公報
に示されるものがある。しかしながらこのような吸気温
補正を行なうようにした従来の燃料供給装置では、温間
始動時や加速時等においてエンジン出力が低下したり、
エンストが発生したりすることがあった。
In order to solve this problem, conventionally, an intake air temperature sensor is installed in the middle of the intake passage, and the fuel supply amount is corrected and controlled based on the sensor's output. There is one shown in Japanese Patent Application Laid-Open No. 57-51299. However, with conventional fuel supply systems that compensate for the intake air temperature, engine output may decrease during warm starts, acceleration, etc.
Engine stalls sometimes occurred.

そして本件発明者は、エンジンの出力低下やエンストの
発生を防止せんとして鋭意研究した結果、次のことが出
力低下やエンストの発生原因になっていることを見い出
した。即ち、第1図は吸気通路内の吸気温度a、吸気温
センサの出力す、エンジンの冷却水温度C及び外気温度
dの時間的変化を示す。第1図によれば、エンジンを冷
間始動させると、吸気温センサは図中実線すで示すよう
に、吸気温度(図中一点鎖線a参照)を遅れなく検出し
ており、一方エンジン冷却水温度は図中実線Cで示すよ
うに、エンジンが始動すると直ちに上昇し、約80℃で
ほぼ一定となる。そして一旦、エンジンを停止させると
、冷却水温度Cは約80℃から徐々に低下するが、その
際吸気通路内の吸気はこの高温のエンジン冷却水によっ
て熱せられ、吸気温度aは約30℃の状態から大きく上
昇し、この高温の吸気に接する吸気温センサ自体も高温
となる。このような状態でエンジンを始動、即ち温間始
動させると、吸気通路内には図中破線dで示すような低
温の外気が吸入され、吸気温度aは直ちに低下して元の
約30℃の状態に戻るが、上述のようにエンジン停止時
に吸気温センサ自体が高温となっていることから、該セ
ンサに検出遅れが生じ、該センサは実際の吸気温度aよ
り高い温度に対応した出力すを発生することとなる。従
ってこの吸気温センサの出力によって燃料供給量の吸気
温補正を行なうと、該補正制御が過制御となって燃料供
給量が少なくなり、これにより混合気の空燃比がオーバ
リーンとなってエンジンの出力低下やエンストが発生す
る。即ち、吸入空気量の急増及びその際の吸気温センサ
の検出遅れが原因となってエンジンの出力低下やエンス
トが発生するものである。
As a result of intensive research aimed at preventing engine output reduction and engine stalling, the inventor of the present invention discovered that the following causes the output reduction and engine stalling. That is, FIG. 1 shows temporal changes in the intake air temperature a in the intake passage, the output of the intake air temperature sensor, the engine cooling water temperature C, and the outside air temperature d. According to Fig. 1, when the engine is cold-started, the intake air temperature sensor detects the intake air temperature (see the dashed line a in the figure) without delay, as shown by the solid line in the figure, and on the other hand, the engine cooling water As shown by the solid line C in the figure, the temperature rises immediately after the engine starts, and becomes almost constant at about 80°C. Once the engine is stopped, the cooling water temperature C gradually decreases from about 80°C, but at this time the intake air in the intake passage is heated by this high temperature engine cooling water, and the intake air temperature a is about 30°C. The temperature rises significantly from this state, and the intake temperature sensor itself, which is in contact with this high-temperature intake air, also becomes high temperature. When the engine is started in this condition, that is, warm-started, low-temperature outside air as shown by the broken line d in the figure is sucked into the intake passage, and the intake air temperature a immediately decreases to its original temperature of about 30°C. However, as mentioned above, since the intake air temperature sensor itself is at a high temperature when the engine is stopped, there is a detection delay in the sensor, and the sensor outputs an output corresponding to a temperature higher than the actual intake air temperature a. This will occur. Therefore, when the intake temperature of the fuel supply amount is corrected based on the output of this intake temperature sensor, the correction control becomes overcontrol and the fuel supply amount decreases, which causes the air-fuel ratio of the air-fuel mixture to become over-lean and the engine output. The engine may slow down or stall. That is, a sudden increase in the amount of intake air and a delay in detection by the intake air temperature sensor at that time cause a decrease in engine output and engine stalling.

〔発明の目的〕[Purpose of the invention]

この発明は、かかる点に鑑み、エンジンの出力低下やエ
ンストの発生を防止できるエンジンの燃料供給装置を提
供せんとするものである。
In view of this, the present invention aims to provide an engine fuel supply device that can prevent a decrease in engine output and the occurrence of engine stalling.

〔発明の構成〕[Structure of the invention]

ところで第1図の吸気温センサ出力すについてより詳細
に考察すると、該センサ出力すの変化率が大きいときに
混合気の空燃比がオーバリーンとなってエンジンの出力
低下やエンストが発生していることが分かる。
By the way, if we consider the intake air temperature sensor output shown in Figure 1 in more detail, we can see that when the rate of change in the sensor output is large, the air-fuel ratio of the air-fuel mixture becomes over-lean, causing a drop in engine output and engine stalling. I understand.

そこでこの発明は、エンジンの吸気通路に吸気温センサ
を配設し、該センサの出力に基づいて燃料供給量を吸気
温補正するようにしたエンジンの燃料供給装置において
、吸気温センサ出力の変化率が設定値以上の特定運転領
域を検出し、該特定運転領域では上記吸気温補正を制限
し、これにより混合気の空燃比がオーバリーンとなるの
を防止するようにしたものである。
Therefore, the present invention provides an engine fuel supply system in which an intake temperature sensor is disposed in the intake passage of the engine, and the intake temperature is corrected for the fuel supply amount based on the output of the sensor. A specific operating range in which the air-fuel ratio is equal to or higher than a set value is detected, and the intake temperature correction is limited in the specific operating range, thereby preventing the air-fuel ratio of the air-fuel mixture from becoming over-lean.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第2図及び第3図は本発明の一実施例によるエンジンの
燃料供給装置を示し、これはエンジンの燃料噴射装置に
適用した例である。図において、lはエンジン、2はエ
ンジン1の吸気通路、2aは吸気通路2の途中に形成さ
れ、吸気加熱を行なう吸気加熱部、3は吸気通路2の途
中に配設された燃料噴射弁、4はスロットル弁、5はエ
アクリーナ、6は吸気通路2のスロットル下流に配設さ
れたスピードデンシティタイプのエアフローセンサであ
る負圧センサ、8は吸気通路2のエンジン1近傍に配設
され、吸気温度を検出する吸気温センサ、9はイグニッ
ションスイッチ、10は回転数センサ、11は外気温セ
ンサ、12は上記各センサ6.8〜11の出力を受けて
燃料噴射量の制御を行なう制御回路である。
FIGS. 2 and 3 show an engine fuel supply system according to an embodiment of the present invention, and this is an example applied to an engine fuel injection system. In the figure, l is an engine, 2 is an intake passage of the engine 1, 2a is an intake air heating part formed in the middle of the intake passage 2 and heats intake air, 3 is a fuel injection valve disposed in the middle of the intake passage 2, 4 is a throttle valve, 5 is an air cleaner, 6 is a negative pressure sensor which is a speed density type air flow sensor disposed downstream of the throttle in the intake passage 2, and 8 is disposed near the engine 1 in the intake passage 2 to detect the intake air temperature. 9 is an ignition switch, 10 is a rotation speed sensor, 11 is an outside temperature sensor, and 12 is a control circuit that receives the outputs of the above-mentioned sensors 6.8 to 11 and controls the fuel injection amount. .

また第3図は上記制御回路12のより詳細な構成を示す
。図において、第2図と同一符号は同図と同一のものを
示し、13は回転数セン+10と負圧センサ6の両市力
をA/D変換するA/D変換器、14はエンジン回転数
と負圧とをパラメータとする基本燃料噴射パルスのパル
ス幅のマツプを有し、上記両センザ6,10のA/D変
換出力に応じた基本燃料噴射パルス幅を発生する基本燃
料噴射パルス発生回路、15は該回路14の出力をD/
A変換するD/A変換器である。
Further, FIG. 3 shows a more detailed configuration of the control circuit 12. In the figure, the same reference numerals as in FIG. 2 indicate the same parts as in the same figure, 13 is an A/D converter that converts both the power of the rotation speed sensor +10 and the negative pressure sensor 6 into A/D, and 14 is the engine rotation speed. A basic fuel injection pulse generation circuit that has a pulse width map of basic fuel injection pulses with and negative pressure as parameters, and generates a basic fuel injection pulse width according to the A/D conversion outputs of both the sensors 6 and 10. , 15 connects the output of the circuit 14 to D/
This is a D/A converter that performs A conversion.

また16は吸気温センサ81回転数センサ10及び外気
温センサ11の各出力をA/D変換するA/D変換器、
17は上記各センサ8,10.11のA/D変換出力お
よびイグニッションスイッチ9の出力を受け、吸気温と
外気温との間の温度差の変化率が設定値以下の時は吸気
温センサ8のA/D変換出力をそのまま出力し、一方上
記温度差の変化率が設定値以上時にはそのときの吸気温
センサ8のA/D変換出力に代え、エンジン停止時の吸
気温センサ8のA/D変換出力を出力するC P Uか
らなる吸気温補正回路、18は吸気温補正回路17の出
力をD/A変換するD/A変換器、19はこのD/A変
換された吸気温センサ出力に応じ、第4図に示すように
吸気温度が高いほど小さな値となる補正係数を出力する
関数発生回路、20は上記D/A変換された基本燃料噴
射パルス幅を上記関数発生回路19の出力でもって乗算
補正する演算回路、21は演算回路20の出力に応じて
燃料噴射弁3を駆動する噴射弁駆動回路である。
Further, 16 is an A/D converter that converts each output of the intake temperature sensor 81, rotation speed sensor 10, and outside temperature sensor 11 into A/D;
17 receives the A/D conversion output of each sensor 8, 10.11 and the output of the ignition switch 9, and when the rate of change of the temperature difference between the intake air temperature and the outside air temperature is less than a set value, The A/D conversion output of the intake temperature sensor 8 when the engine is stopped is output as is, and when the rate of change of the temperature difference is greater than or equal to the set value, the A/D conversion output of the intake air temperature sensor 8 when the engine is stopped is output instead of the A/D conversion output of the intake air temperature sensor 8 at that time. An intake temperature correction circuit consisting of a CPU that outputs a D-converted output, 18 a D/A converter that converts the output of the intake temperature correction circuit 17 into D/A, and 19 the D/A converted intake temperature sensor output. A function generating circuit 20 outputs a correction coefficient that becomes smaller as the intake air temperature increases as shown in FIG. An arithmetic circuit 21 for performing multiplication correction is an injector drive circuit that drives the fuel injection valve 3 according to the output of the arithmetic circuit 20.

そして以上のような構成において、上記基本燃料噴射パ
ルス発生回路14がエンジンに供給する燃料量を調整す
る燃料供給量調整装置となっており、又上記関数発生回
路19及び演算回路20が吸気温センサの出力に基づい
て吸気温か高い程燃料供給量が減少するように燃料供給
量調整装置を補正制御する補正手段となっており、さら
に吸気温補正回路17が吸気温センサ出力の変化率が設
定値以上の運転状態を検知する特定運転状態検知手段、
及び特定運転状態検知手段の検知出力を受け上記補正制
御を制限する制限手段となっている。
In the above configuration, the basic fuel injection pulse generation circuit 14 serves as a fuel supply amount adjustment device that adjusts the amount of fuel supplied to the engine, and the function generation circuit 19 and calculation circuit 20 function as an intake temperature sensor. The intake temperature correction circuit 17 serves as a correction means for correcting and controlling the fuel supply amount adjustment device so that the fuel supply amount decreases as the intake temperature rises based on the output of the intake temperature sensor. specific operating state detection means for detecting an operating state that exceeds a value;
and a limiting means for limiting the above-mentioned correction control in response to the detection output of the specific driving state detecting means.

次に第3図を用いて本装置のおおまかな動作について説
明する。
Next, the general operation of this device will be explained using FIG. 3.

エンジンがクランキングされると、負圧センサ6がスロ
ットル弁4下流の吸気負圧を、吸気温センサ8が吸気加
熱されてエンジンに吸入される際の吸気温度を、回転数
センサー0がエンジン回転数を、外気温センサーlが外
気の温度をそれぞれ検出し、上記負圧センサ6と回転数
センサー0の再出力はA/D変換器13でA/D変換さ
れた後、基本燃料噴射パルス発生回路14に入力される
When the engine is cranked, the negative pressure sensor 6 measures the intake negative pressure downstream of the throttle valve 4, the intake air temperature sensor 8 measures the intake air temperature when the intake air is heated and is drawn into the engine, and the rotation speed sensor 0 measures the engine speed. The outside temperature sensor 1 detects the temperature of the outside air, and the re-outputs of the negative pressure sensor 6 and rotation speed sensor 0 are A/D converted by the A/D converter 13, and then a basic fuel injection pulse is generated. The signal is input to the circuit 14.

するとこの基本燃料噴射パルス発生回路14はエンジン
回転数と吸気負圧とに応じた基本燃料噴射パルスのパル
ス幅をめて、それをD/A変換器15でD/A変換した
後、演算回路20に入力する。一方、上記吸気温センサ
82回転数センサー0及び外気温センサーlの各出力は
A/D変換器16でA/D変換された後、吸気温補正回
路17に加えられており、該回路17にイグニッション
スイッチ9からのイグニッション信号が入力されると、
該吸気温補正回路17は吸気温センサ8と外気温センサ
ー1の再出力の差の変化率が設定値より大きいか否かを
判定する。
Then, this basic fuel injection pulse generation circuit 14 determines the pulse width of the basic fuel injection pulse according to the engine speed and the intake negative pressure, converts it into a D/A converter 15, and then converts it into an arithmetic circuit. Enter 20. On the other hand, each output of the intake temperature sensor 82, rotation speed sensor 0, and outside temperature sensor 1 is A/D converted by the A/D converter 16, and then applied to the intake temperature correction circuit 17. When the ignition signal from the ignition switch 9 is input,
The intake temperature correction circuit 17 determines whether the rate of change of the difference between the re-outputs of the intake temperature sensor 8 and the outside temperature sensor 1 is greater than a set value.

そして上記再出力の差の変化率が設定値より小さい場合
には、吸気温補正回路17は吸気温センす8のA/D変
換出力をそのまま出力してD/A変換器18でD/A変
換した後、それを関数発生回路19に入力し、該回路1
9は吸気温センサ出力に応した補正係数(第4図参照)
をめてそれを演算回路20に加える。するとこの演算回
路20は、上記基本燃料噴射パルスのパルス幅を上記補
正係数でもって補正し、噴射弁駆動回路21は補正した
パルス幅の燃料噴射パルスを燃料噴射弁3に加え、これ
により燃料噴射量は吸気温センサ出力に応じて吸気温が
高い程少ない量に補正制御されることとなる。
If the rate of change of the difference in the re-output is smaller than the set value, the intake temperature correction circuit 17 outputs the A/D conversion output of the intake temperature sensor 8 as it is, and the D/A converter 18 outputs the A/D conversion output. After conversion, it is input to the function generation circuit 19, and the circuit 1
9 is a correction coefficient corresponding to the intake air temperature sensor output (see Figure 4)
and add it to the arithmetic circuit 20. Then, the arithmetic circuit 20 corrects the pulse width of the basic fuel injection pulse using the correction coefficient, and the injection valve drive circuit 21 applies a fuel injection pulse with the corrected pulse width to the fuel injection valve 3, thereby injecting fuel. The amount is corrected and controlled to be smaller as the intake temperature is higher, depending on the output of the intake air temperature sensor.

一方、上記吸気温センサ8と外気温センサ11の再出力
の差の変化率が設定値より大きい場合には、吸気温補正
回路17はそのときの吸気温センサ8の出力に代え、一
定値であるエンジン停止時の吸気温センサ8のA/D変
換出力を出力し、上記関数発生回路19はエンジン停止
時の吸気温センサ出力に応じた値の補正係数を出力し、
その結果燃料噴射量はエンジン停止時の吸気温度に基い
て吸気温補正される。このように吸気温センサ出0 力と外気温センサ出力の差の変化率が大きいときには燃
料噴射量の補正制御は制限されることとなる。
On the other hand, if the rate of change of the difference between the re-outputs of the intake temperature sensor 8 and the outside temperature sensor 11 is larger than the set value, the intake temperature correction circuit 17 replaces the output of the intake temperature sensor 8 at that time with a constant value. Outputs the A/D conversion output of the intake air temperature sensor 8 when the engine is stopped, and the function generating circuit 19 outputs a correction coefficient having a value corresponding to the output of the intake air temperature sensor when the engine is stopped,
As a result, the fuel injection amount is corrected for the intake air temperature based on the intake air temperature when the engine is stopped. In this way, when the rate of change in the difference between the intake air temperature sensor output and the outside air temperature sensor output is large, the correction control of the fuel injection amount is restricted.

次に第5図のフローチャートを用いて吸気温補正回路1
7の動作を詳細に説明する。
Next, using the flowchart in FIG. 5, the intake air temperature correction circuit 1
7 will be explained in detail.

吸気温補正回路17にイグニッションスイッチ9からの
イグニッション信号が加えられると、該吸気温補正回路
17は、まず回転数センサ10のA/D変換出力Nを読
み込んでそれが設定値、例えば500rpm以上か否か
の判定からエンジンが始動したか否かを判断しくステッ
プ30)、エンジンが始動するまでは上記ステップ30
に待機し、エンジンが始動すると上記ステップ30でY
ESと判定して次のステップに進み、吸気温センサ8及
び外気温センサ11のA/D変換出力を読み込んでそれ
らをレジスタTa、Toに記憶するとともに(ステップ
31.32)、レジスタTa、TOの値をメモリTam
、 Tomに記憶した後(ステップ33)、再び吸気温
センサ8及び外気温センサ11のA/D変換出力を読み
込んでそれをレジス1 りTa、Toに記憶しくステップ34.35)、次にレ
ジスタTa、To及びメモリTam、 Tomの値から
に−(Tam−rom)−(Ta−To)という式を用
いて両センサ出力の差の変化率を演算しくステップ36
)、さらにレジスタTa、Toの値でもってメモリTa
m、 Tomの値を更新しくステップ37)、上記変化
率Kが設定値Cより大きいか否かを判定する(ステップ
38)。
When the ignition signal from the ignition switch 9 is applied to the intake temperature correction circuit 17, the intake temperature correction circuit 17 first reads the A/D conversion output N of the rotation speed sensor 10 and determines whether it is above a set value, for example 500 rpm. From the determination whether or not the engine has started, it is determined whether or not the engine has started (step 30), and the step 30 described above is performed until the engine starts.
When the engine starts, press Y at step 30 above.
It is determined as ES and the process proceeds to the next step, reads the A/D conversion outputs of the intake air temperature sensor 8 and the outside air temperature sensor 11, and stores them in registers Ta and To (step 31.32). Memory the value of Tam
, Tom (step 33), read the A/D conversion outputs of the intake air temperature sensor 8 and the outside air temperature sensor 11 again and store them in registers 1, Ta and To (step 34 and 35), then register Step 36: Calculate the rate of change of the difference between the outputs of both sensors using the formula -(Tam-rom)-(Ta-To) from the values of Ta, To and memories Tam and Tom.
), and further stores the memory Ta using the values of registers Ta and To.
The values of m and Tom are updated (step 37), and it is determined whether the rate of change K is greater than the set value C (step 38).

そして上記変化率Kが設定値Cより大きい場合には、吸
気温補正回路17は上記ステップ38でYESと判定し
てステップ39に進み、そこで後述するスタティックメ
モリTmに記憶されているエンジン停止時の吸気温セン
サ出力でもってレジスタTaの値を更新し、このレジス
タTa内の吸気温度を出力して(ステップ40)、上記
ステップ34に戻り、ステップ34〜40の経路を巡回
する。
If the rate of change K is greater than the set value C, the intake temperature correction circuit 17 makes a YES determination in step 38 and proceeds to step 39, where the engine stop temperature stored in the static memory Tm, which will be described later, is The value of the register Ta is updated with the intake air temperature sensor output, the intake air temperature in the register Ta is output (step 40), and the process returns to step 34, and the route from steps 34 to 40 is repeated.

また上記変化率Kが設定値Cより小さい場合には、吸気
温補正回路17は上記ステップ38でNOと判定してス
テップ41に進み、今度は上記ス2 テップ34において読み込んだレジスタTa内の吸気温
センサ出力をスタティックメモリTmに記憶した後、ス
テップ40でレジスタTa内の吸気温度を出力する。
If the rate of change K is smaller than the set value C, the intake temperature correction circuit 17 makes a negative determination in step 38 and proceeds to step 41, where the intake air temperature correction circuit 17 makes a negative determination in step 38 and proceeds to step 41. After storing the air temperature sensor output in the static memory Tm, in step 40, the intake air temperature in the register Ta is output.

以上のような本実施例の装置では、吸気温センサ出力と
外気温センサ出力との差が変化率が大きい時にはそのと
きの吸気温センサ出力に代え、一定値であるエンジン停
止時の吸気温センサ出力に基づいて燃料噴射量の吸気温
補正を行なうようにしたので、燃料噴射量の補正制御が
過制御になって噴射量が少なくなるということはなく、
その結果混合気の空燃比がオーバリーンになるのを防止
して、エンジンの出力低下やエンストの発生を防止でき
る。
In the device of this embodiment as described above, when the difference between the intake temperature sensor output and the outside temperature sensor output has a large rate of change, the intake temperature sensor output at that time is replaced with the intake temperature sensor output when the engine is stopped, which is a constant value. Since the intake temperature of the fuel injection amount is corrected based on the output, the correction control of the fuel injection amount will not become overcontrolled and the injection amount will become smaller.
As a result, it is possible to prevent the air-fuel ratio of the air-fuel mixture from becoming overly lean, thereby preventing a decrease in engine output and occurrence of engine stalling.

ところで上記実施例では吸気温センサ出力と外気温セン
サ出力との差の変化率が大きい特定運転状態においてエ
ンジン停止時の吸気温センサ出力を用いて燃料噴射量の
吸気温補正を行なうようにしたが、この特定運転状態に
おいては外気温をエンジン冷却水温でもって補正したも
のを用いて燃3 料噴射量の吸気温補正を行なうようにしてもよい。
By the way, in the above embodiment, the intake temperature correction of the fuel injection amount is performed using the intake temperature sensor output when the engine is stopped in a specific operating state where the rate of change of the difference between the intake temperature sensor output and the outside temperature sensor output is large. In this particular operating state, the intake air temperature correction for the fuel injection amount may be performed using the outside air temperature corrected by the engine cooling water temperature.

第6図は上記特定運転状態において外気温T。FIG. 6 shows the outside temperature T in the above-mentioned specific operating state.

を水温Twでもって補正したものを用いて燃料噴射量の
吸気温補正を行なうようにした本発明の他の実施例にお
ける吸気温補正回路17の演算処理のフローを示す。図
において第5図と同一符号は同図と同一のものを示し、
42は外気温センサlIの出力Toと水温センサ(第2
.3図の破線7参照)の出力Twとの差から例えば第7
図に示すような特性を用いて適切な吸気温センサ出力の
値Taを決定する、即ち外気温Toを水温Twでもって
補正したものを吸気温センサ出力としてレジスタTaに
記憶するステップである。
The flowchart of the calculation process of the intake temperature correction circuit 17 in another embodiment of the present invention is shown in which the intake temperature correction circuit 17 corrects the fuel injection amount using the water temperature Tw. In the figures, the same symbols as in Fig. 5 indicate the same things as in the same figure,
42 is the output To of the outside temperature sensor lI and the water temperature sensor (second
.. For example, from the difference between the output Tw of
This is a step of determining an appropriate value Ta of the intake air temperature sensor output using the characteristics shown in the figure, that is, storing the value obtained by correcting the outside air temperature To with the water temperature Tw in the register Ta as the intake air temperature sensor output.

本実施例装置の動作については容易に理解できるので、
その詳細な説明は省略する。
Since the operation of the device of this embodiment can be easily understood,
A detailed explanation thereof will be omitted.

なお上記2つの実施例では特定運転領域においてそのと
きの吸気温センサ出力に基いた燃料噴射量の吸気温補正
を解除し、それに代えてエンジン停止時の吸気温センサ
出力あるいは外気温を水温で補正したものを用いて燃料
噴射量の吸気温補正4 を行なうようにしたが、この特定運転領域における燃料
噴射量の吸気温補正は他の運転領域の吸気温センサ出力
値、外気温あるいは固定値を用いて行なってもよく、又
この燃料噴射量の吸気温補正は全く行なわなくてもよく
、あるいはこの燃料噴射量の吸気温補正は解除するので
はなく、吸気温センサ出力を補正し該補正後の吸気温セ
ンサ出力に基いて行なうようにしてもよく、いずれにし
てもこの特定運転領域においては吸気温補正を制限する
ようにすればよい。
Note that in the above two embodiments, the intake temperature correction of the fuel injection amount based on the intake temperature sensor output at that time is canceled in a specific operating range, and instead, the intake temperature sensor output or outside temperature when the engine is stopped is corrected using water temperature. However, the intake temperature correction of the fuel injection amount in this specific operating range is performed using the intake air temperature sensor output value, outside air temperature, or fixed value in other operating ranges. Alternatively, the intake temperature correction for the fuel injection amount may not be performed at all, or instead of canceling the intake temperature correction for the fuel injection amount, the intake air temperature sensor output may be corrected and the intake air temperature correction may be performed after the correction. The intake temperature correction may be performed based on the output of the intake air temperature sensor, and in any case, the intake air temperature correction may be limited in this specific operating region.

また上記2つの実施例では燃料噴射量の吸気温補正を制
限すべき特定運転状態として吸気温センサ出力と外気温
センサ出力との差の変化率が大きい運転時を検知するよ
うにしたが、この特定運転状態としては吸気温センサ出
力の変化率が大きい運転時を検知するようにすればよい
In addition, in the above two embodiments, a driving state in which the rate of change of the difference between the intake air temperature sensor output and the outside air temperature sensor output is large is detected as a specific driving state in which the intake air temperature correction of the fuel injection amount should be restricted. As the specific driving state, a driving state in which the rate of change in the intake air temperature sensor output is large may be detected.

また上記実施例ではエンジンの燃料噴射装置について説
明したが、本発明は勿論エンジンの気化器についても同
様に適用できる。またエアフローセンサはスピードデン
シティタイプではなく、力5 ルマン渦タイプあるいはベーンタイプであってもよい。
Further, in the above embodiment, a fuel injection device for an engine has been described, but the present invention can of course be similarly applied to a carburetor for an engine. Also, the air flow sensor may be of force 5 Le Mans vortex type or vane type instead of speed density type.

(発明の効果〕 以上のように本発明によれば、エンジンの吸気通路に吸
気温センサを配設し、該センサの出力に基づいて燃料供
給量を吸気温補正するようにしたエンジンの燃料供給装
置において、吸気温センサ出力の変化率が大きい特定運
転領域を検知し、該特定運転領域では上記吸気温補正を
制限するようにしたので、燃料供給量の吸気温補正が過
制御になって燃料量が少なくなるということはなく、そ
の結果混合気がオーバリーンになるのを防止して、エン
ジンの出力低下やエンストの発生を防止できる効果があ
る。
(Effects of the Invention) As described above, according to the present invention, an intake air temperature sensor is disposed in the intake passage of the engine, and the fuel supply amount is corrected for the intake air temperature based on the output of the sensor. The device detects a specific operating region in which the rate of change in the intake air temperature sensor output is large, and limits the above-mentioned intake air temperature correction in that specific operating area, so that the intake air temperature correction of the fuel supply amount becomes overcontrolled and the fuel is reduced. The amount does not decrease, and as a result, the air-fuel mixture is prevented from becoming overly lean, which has the effect of preventing a decrease in engine output and the occurrence of engine stalling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を説明するための図、第2図は本発明の
一実施例によるエンジンの燃料供給装置の概略構成図、
第3図は上記装置の詳細な構成図、第4図は上記装置に
おける関数発生回路19の入出力特性を示す図、第5図
は上記装置における吸6 気温補正回路17の演算処理のフローチャートを示す図
、第6図は本発明の他の実施例における吸気温補正回路
17の演算処理のフローチャートを示す図、第7図は上
記吸気温補正回路17の動作を説明するための図である
。 1・・・エンジン、8・・・吸気温センサ、14・・・
基本燃料噴射パルス発生手段(燃料供給量調整装置)、
17・・・吸気温補正回路(特定運転状態検知手段。 制限手段)、19・・・関数発生回路(補正手段)、2
0・・・演算回路(補正手段)。 特許出願人 東洋工業株式会社 代理人 弁理士 早 瀬 憲 − 7
FIG. 1 is a diagram for explaining the present invention, FIG. 2 is a schematic configuration diagram of an engine fuel supply system according to an embodiment of the present invention,
FIG. 3 is a detailed configuration diagram of the above device, FIG. 4 is a diagram showing the input/output characteristics of the function generating circuit 19 in the above device, and FIG. FIG. 6 is a flowchart of the arithmetic processing of the intake temperature correction circuit 17 in another embodiment of the present invention, and FIG. 7 is a diagram for explaining the operation of the intake temperature correction circuit 17. 1... Engine, 8... Intake temperature sensor, 14...
Basic fuel injection pulse generation means (fuel supply amount adjustment device),
17... Intake temperature correction circuit (specific operating state detection means. Limiting means), 19... Function generation circuit (correction means), 2
0... Arithmetic circuit (correction means). Patent applicant: Toyo Kogyo Co., Ltd. Representative Patent attorney Ken Hayase - 7

Claims (1)

【特許請求の範囲】[Claims] (1) エンジンに供給する燃料量を調整する燃料供給
量調整装置と、エンジンの吸気通路に配設され吸気塩度
を検出する吸気温センサと、該吸気温センサの出力に基
づいて吸気温が高い程燃料供給量が減少するように上記
燃料供給量調整装置を補正制御する補正手段と、上記吸
気温センサ出力の変化率が設定値以上の運転状態を検知
する特定運転状態検知手段と、該特定運転状態検知手段
の検知出力を受け上記補正制御を制限する制限手段とを
備えたことを特徴とするエンジンの燃料供給装置。
(1) A fuel supply amount adjustment device that adjusts the amount of fuel supplied to the engine, an intake air temperature sensor that is installed in the intake passage of the engine and that detects the intake air salinity, and an intake air temperature that is determined based on the output of the intake air temperature sensor. a correction means for correcting and controlling the fuel supply amount adjusting device so that the fuel supply amount decreases as the fuel supply amount increases; a specific driving state detecting means for detecting a driving state in which the rate of change in the output of the intake air temperature sensor is equal to or higher than a set value; 1. A fuel supply device for an engine, comprising: limiting means for receiving the detection output of the specific driving state detecting means and limiting the correction control.
JP921884A 1984-01-20 1984-01-20 Fuel feed device for engine Granted JPS60153443A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP921884A JPS60153443A (en) 1984-01-20 1984-01-20 Fuel feed device for engine
US06/692,639 US4594986A (en) 1984-01-20 1985-01-18 Fuel supply arrangement for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP921884A JPS60153443A (en) 1984-01-20 1984-01-20 Fuel feed device for engine

Publications (2)

Publication Number Publication Date
JPS60153443A true JPS60153443A (en) 1985-08-12
JPH0363656B2 JPH0363656B2 (en) 1991-10-02

Family

ID=11714300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP921884A Granted JPS60153443A (en) 1984-01-20 1984-01-20 Fuel feed device for engine

Country Status (1)

Country Link
JP (1) JPS60153443A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56154133A (en) * 1980-04-28 1981-11-28 Nippon Denso Co Ltd Correcting method of starting for electronic fuel jet system
JPS5751299A (en) * 1980-07-07 1982-03-26 Hooker Chemicals Plastics Corp Electrolytic peeling bath and method
JPS58110826A (en) * 1981-12-24 1983-07-01 Japan Electronic Control Syst Co Ltd Intake air temperature signal generating device for internal-combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56154133A (en) * 1980-04-28 1981-11-28 Nippon Denso Co Ltd Correcting method of starting for electronic fuel jet system
JPS5751299A (en) * 1980-07-07 1982-03-26 Hooker Chemicals Plastics Corp Electrolytic peeling bath and method
JPS58110826A (en) * 1981-12-24 1983-07-01 Japan Electronic Control Syst Co Ltd Intake air temperature signal generating device for internal-combustion engine

Also Published As

Publication number Publication date
JPH0363656B2 (en) 1991-10-02

Similar Documents

Publication Publication Date Title
JPS60240840A (en) Control device of air-fuel ratio in internal-combustion engine
JPS6397843A (en) Fuel injection control device for internal combustion engine
US4594986A (en) Fuel supply arrangement for internal combustion engine
JPS60153443A (en) Fuel feed device for engine
JPS6158912A (en) Exhaust cleaning apparatus of engine
JP3361533B2 (en) Electronic control unit for internal combustion engine
JPH0689686B2 (en) Air-fuel ratio controller for engine
JPS60153442A (en) Fuel feed device for engine
JPS60153444A (en) Fuel feed device for engine
JPH045818B2 (en)
JPS6035145A (en) Engine acceleration correction device
JPS6179839A (en) Idle rotational speed control device in engine
JP3028851B2 (en) Fuel injection control device
JPH05149166A (en) Device for controlling feed of fuel during idling of internal combustion engine
JP2548616B2 (en) Fuel supply device for internal combustion engine
JPS62240444A (en) Device for controlling interruptingly increasing quantity at the time of accelerating electronically controlled fuel injection type internal combustion engine
JPH0510171A (en) Fuel injection quantity controller of internal combustion engine
JPS6035151A (en) Control device of idle speed in engine
JPS6035158A (en) Fuel injection device of engine
JPS6158947A (en) Fuel control device for engine of fuel injection type
JPH076476B2 (en) Ignition timing control device for internal combustion engine
JPS5838336A (en) Fuel supplying system for internal-combustion engine
JP2002256933A (en) Control device of internal combustion engine
JPS62271944A (en) Fuel injection control device for internal combustion engine
JPH0251055B2 (en)