JPS60153442A - Fuel feed device for engine - Google Patents

Fuel feed device for engine

Info

Publication number
JPS60153442A
JPS60153442A JP59009217A JP921784A JPS60153442A JP S60153442 A JPS60153442 A JP S60153442A JP 59009217 A JP59009217 A JP 59009217A JP 921784 A JP921784 A JP 921784A JP S60153442 A JPS60153442 A JP S60153442A
Authority
JP
Japan
Prior art keywords
engine
intake
output
intake air
suction temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59009217A
Other languages
Japanese (ja)
Inventor
Shigeaki Shimoda
下田 繁明
Masahiro Izumio
泉尾 正博
Yuji Nakao
中尾 裕司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP59009217A priority Critical patent/JPS60153442A/en
Priority to US06/692,639 priority patent/US4594986A/en
Publication of JPS60153442A publication Critical patent/JPS60153442A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent an air-fuel mixture from coming into being overlean, by limiting a degree of suction temperature compensation at a time when output of a suction temperature sensor detects a specified operating region which shows a higher value than that in the actual suction temperature. CONSTITUTION:When a suction temperature compensation circuit 17 is added with an on-signal out of an ignition switch 9 and judges a warm starting period from each A/D converter output out of an engine speed sensor 10 and a water temperature sensor 7, it sets a setting value T to a timer. And, the A/D converter output of a suction temperature sensor 8 is stored in a register, while it is substracted from the setting value T, and suction temperature is multiplied by a compensation factor K, for example, 0.8 whereby it is slightly compensated. This compensated suction temperature Ta is outputted therefrom, and pulse width of a fundamental fuel injection pulse out of a map 14 is compensated at an opertion circuit 20 by way of a D/A converter 18 and a function generator circuit 19. Next, when the timer setting value T comes to nil, the suction temperature prior to compensation is outputted as it is. With this constitution, an air-fuel mixture is obviated so that an output drop and an engine stall are preventable from occurring.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、エンジンの燃料供給装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel supply device for an engine.

〔従来技術〕[Prior art]

一般にエンジンの燃料供給装置は、吸入空気量に応じた
量の燃料をエンジンに供給して該エンジンを効率よく運
転しようとするものである。例えばエンジンの気化器で
は、吸気通路のベンチュリー負圧によって燃料導入量を
制御するようにしており、又エンジンの燃料噴射装置で
は、エアフローセンサによって吸入空気量を検出し、該
センサの出力に応じて燃料噴射量を制御するようにして
いる。しかるにこの場合、単にベンチュリー負圧により
、あるいはエアフローセンサの出力に応じて燃料供給量
を制御するようにすると、上記ベンチュリー負圧は吸気
流速をパラメータとして変化するものであり、又エアフ
ローセンサとしては通常、吸気の体積流量を検出するカ
ルマン渦タイプ。
Generally, a fuel supply device for an engine attempts to efficiently operate the engine by supplying an amount of fuel to the engine according to the amount of intake air. For example, in an engine's carburetor, the amount of fuel introduced is controlled by the venturi negative pressure in the intake passage, and in an engine's fuel injection device, the amount of intake air is detected by an air flow sensor, and the amount of intake air is controlled according to the output of the sensor. The fuel injection amount is controlled. However, in this case, if the fuel supply amount is controlled simply by the venturi negative pressure or according to the output of the airflow sensor, the venturi negative pressure changes with the intake flow rate as a parameter, and the airflow sensor normally , Karman vortex type to detect the volumetric flow rate of intake air.

スピードデンシティタイプ、ヘーンタイプのセンサが使
用されていることから、吸気温度が変化して吸気密度が
変ったような場合に混合気の空燃比が設定値からずれて
しまうという不具合が生じる。
Since speed density type and Hoehn type sensors are used, a problem arises in that the air-fuel ratio of the mixture deviates from the set value when the intake air temperature changes and the intake air density changes.

そこでこのような不具合を解消するため、従来より、吸
気通路の途中に吸気温センサを配設し、該センサの出力
に基づいて燃料供給量を補正制御することが行なわれて
おり、その−例として、特開昭57−51299号公報
に示されるものがある。しかしながらこのような吸気温
補正を行なうようにした従来の燃料供給装置では、温間
始動時や加速時等においてエンジン出力が低下したり、
エンストが発生したりすることがあった。
In order to solve this problem, conventionally, an intake air temperature sensor is installed in the middle of the intake passage, and the fuel supply amount is corrected and controlled based on the sensor's output. There is one shown in Japanese Patent Application Laid-Open No. 57-51299. However, with conventional fuel supply systems that perform such intake temperature correction, engine output may decrease during warm starting or acceleration, etc.
Engine stalls sometimes occurred.

そして本件発明者は、エンジンの出力低下やエンストの
発注を防止せんとして鋭意研究した結果、次のことが出
力低下やエンストの発生原因になっていることを見い出
した。即ち、第1図は吸気通路内の吸気温度a、吸気温
センサの出力す、エンジンの冷却水温度C及び外気温度
dの時間的変化を示す。第1図によれば、エンジンを冷
間始動させると、吸気温センサは図中実線すで示すよう
に、吸気温度(図中一点鎖線a参照)を遅れなく検出し
ており、一方エンジン冷却水温度は図中実線Cで示すよ
うに、エンジンが始動すると直ちに上昇し、約80°C
でほぼ一定となる。そして一旦、エンジンを停止させる
と、冷却水温度Cは約80℃から徐々に低下するが、そ
の際吸気通路内の吸気はこの高温のエンジン冷却水によ
って熱せられ、吸気温度aは約30℃の状態から大きく
上昇し、この高温の吸気に接する吸気温センサ自体も高
温上なる。このような状態でエンジンを始動、即ち温間
始動させると、吸気通路内には図中破線dで示すような
低温の外気が吸入され、吸気温度aは直ちに低下して元
の約30℃の状態に戻るが、上述のようムこエンジン停
止時に吸気温センサ自体が高温となっていることから、
該センサに検出遅れが生し、該センサは実際の吸気温度
aより高い温度に対応した出力すを発生することとなる
。従ってこの吸気温センサの出力によって燃料供給量の
吸気温補正を行なうと、該補正制御が過制御になって燃
料供給量が少なくなり、これにより混合気の空燃比がオ
ーバリーンとなってエンジンの出力低下やエンストが発
生する。即ち、吸入空気量の急増及びその際の吸気温セ
ンサの検出遅れが原因となってエンジンの出力低下やエ
ンストが発生するものである。
As a result of intensive research aimed at preventing engine output reduction and engine stalling, the inventor of the present invention discovered that the following causes the output reduction and engine stalling. That is, FIG. 1 shows temporal changes in the intake air temperature a in the intake passage, the output of the intake air temperature sensor, the engine cooling water temperature C, and the outside air temperature d. According to Fig. 1, when the engine is cold-started, the intake air temperature sensor detects the intake air temperature (see the dashed line a in the figure) without delay, as shown by the solid line in the figure, and on the other hand, the engine cooling water As shown by solid line C in the figure, the temperature rises immediately after the engine starts and reaches approximately 80°C.
remains almost constant. Once the engine is stopped, the cooling water temperature C gradually decreases from about 80°C, but at that time, the intake air in the intake passage is heated by this high temperature engine cooling water, and the intake air temperature a is about 30°C. The intake temperature sensor itself, which is in contact with this high-temperature intake air, also rises in temperature. When the engine is started, that is, warm-started, in this condition, low-temperature outside air is drawn into the intake passage as shown by the broken line d in the figure, and the intake air temperature a immediately decreases to its original temperature of about 30°C. However, as mentioned above, since the intake air temperature sensor itself is hot when the engine is stopped,
A detection delay occurs in the sensor, and the sensor generates an output corresponding to a temperature higher than the actual intake air temperature a. Therefore, when the intake temperature of the fuel supply amount is corrected based on the output of this intake temperature sensor, the correction control becomes over-controlled and the fuel supply amount decreases, which causes the air-fuel ratio of the air-fuel mixture to become over-lean and the engine output. The engine may slow down or stall. That is, a sudden increase in the amount of intake air and a delay in detection by the intake air temperature sensor at that time cause a decrease in engine output and engine stalling.

(発明の目的〕 この発明は、かかる点に鑑み、エンジンの出力低下やエ
ンストの発生を防止できるエンジンの燃料供給装置を提
供せんとするものである。
(Object of the Invention) In view of the above-mentioned problems, it is an object of the present invention to provide an engine fuel supply device that can prevent a decrease in engine output and the occurrence of engine stalling.

〔発明の構成〕[Structure of the invention]

そこでこの発明は、エンジンの吸気通路に吸気塩センサ
を配設し、該センサの出力に基づいて燃料供給量を吸気
温補正するようにしたエンジンの燃料供給装置において
、吸気温センサの出力が実際の吸気温度より高い値を示
す特定運転領域を検出し、該特定運転領域では上記吸気
温補正を制限し、これにより混合気の空燃比がオーバリ
ーンとなるのを防止するようにしたものである。
Therefore, the present invention provides an engine fuel supply system in which an intake salt sensor is disposed in the intake passage of the engine, and the intake air temperature is corrected for the fuel supply amount based on the output of the sensor. A specific operating range in which the intake air temperature is higher than the intake air temperature is detected, and the above-mentioned intake air temperature correction is limited in the specific operating range, thereby preventing the air-fuel ratio of the air-fuel mixture from becoming over-lean.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第2図及び第3図は本発明の一実施例によるエンジンの
燃料供給装置を示し、これはエンジンの燃料噴射装置に
適用した例である。図において、1はエンジン、2はエ
ンジンlの吸気通路、2aは吸気通路2の途中に形成さ
れ、吸気加熱を行なう吸気加熱部、3は吸気通路2の途
中に配設された燃料噴射弁、4はスロットル弁、5はエ
アクリーナ、6は吸気通路2のスロットル下流に配設さ
れたスピードデンシティタイプのエアフローセンサであ
る負圧センサ、7はエンジンの冷却水温度を検出する水
温センサ、8は吸気通路2のエンジン1近傍に配設され
、吸気温度を検出する吸気温センサ、9はイグニッショ
ンスイッチ、10は回転数センサ、12は上記各センサ
6〜10の出力を受けて燃料噴射量の制御を行なう制御
回路である。
FIGS. 2 and 3 show an engine fuel supply system according to an embodiment of the present invention, and this is an example applied to an engine fuel injection system. In the figure, 1 is an engine, 2 is an intake passage of the engine 1, 2a is an intake air heating part formed in the middle of the intake passage 2 and heats intake air, 3 is a fuel injection valve disposed in the middle of the intake passage 2, 4 is a throttle valve, 5 is an air cleaner, 6 is a negative pressure sensor which is a speed density type air flow sensor arranged downstream of the throttle in the intake passage 2, 7 is a water temperature sensor that detects the engine cooling water temperature, 8 is an intake air An intake air temperature sensor is disposed near the engine 1 in the passage 2 and detects the intake air temperature; 9 is an ignition switch; 10 is a rotational speed sensor; 12 is a sensor that controls the fuel injection amount in response to the outputs of the above-mentioned sensors 6 to 10; This is a control circuit that performs

また第3図は上記制御回路12のより詳細な構成を示す
。図において、第2図と同一符号は同図と同一のものを
示し、13は回転数センサ10と負圧センサ6の再出力
をA/D変換するA/D変換器、14はエンジン回転数
と負圧とをパラメータとする基本燃料噴射パルスのパル
ス幅のマツプを有し、上記両センサ6.10のA/D変
換出力に応じた基本燃料噴射パルス幅を発生する基本燃
料噴射パルス発生回路、15は該回路14の出力をD/
A変換するD/A変換器である。
Further, FIG. 3 shows a more detailed configuration of the control circuit 12. In the figure, the same reference numerals as in FIG. 2 indicate the same parts as in the same figure, 13 is an A/D converter that A/D converts the re-outputs of the rotation speed sensor 10 and the negative pressure sensor 6, and 14 is the engine rotation speed. A basic fuel injection pulse generation circuit that has a pulse width map of basic fuel injection pulses with and negative pressure as parameters, and generates a basic fuel injection pulse width according to the A/D conversion outputs of both the sensors 6.10. , 15 connects the output of the circuit 14 to D/
This is a D/A converter that performs A conversion.

また16は水温センサ7、吸気温センサ8及び回転数セ
ンサ10の各出力をA/D変換するA/D変換器、17
は上記各センサ7.8.10のA/D変換出力およびイ
グニッションスイッチ9の出力を受け、通常は吸気温セ
ンサ8のA/D変換出力をそのまま出力し、一方水温が
設定値以上の始動時、即ち温間始動時には始動後期定時
間の間服気温センサ8のA/D変換出力を割引いて、即
ち小さな値に補正して出力するCPUからなる吸気温補
正回路、18は吸気温補正回路I7の出力をD/A変換
するD/A変換器、19はこのD/A変換された吸気温
センサ出力に応じ、第4図に示すように吸気温度が高い
ほど小さな値となる補正係数を出力する関数発生回路、
20は上記D/A変換された基本燃料噴射パルス幅を上
記関数発生回路19の出力でもって乗算補正する演算回
路、21は演算回路20の出力に応じて燃料噴射弁3を
駆動する噴射弁駆動回路である。
Further, 16 is an A/D converter that converts each output of the water temperature sensor 7, intake temperature sensor 8, and rotation speed sensor 10 into A/D, and 17
receives the A/D conversion output of the above-mentioned sensors 7, 8, and 10 and the output of the ignition switch 9, and normally outputs the A/D conversion output of the intake air temperature sensor 8 as is.On the other hand, when starting when the water temperature is higher than the set value That is, at the time of a warm start, the A/D conversion output of the air temperature sensor 8 is discounted for a fixed time after the start, and the output is corrected to a small value. 18 is an intake temperature correction circuit I7. A D/A converter 19 converts the output from the D/A converter into a D/A converter, and outputs a correction coefficient that becomes smaller as the intake air temperature increases, as shown in FIG. 4, in accordance with the D/A converted intake air temperature sensor output. function generation circuit,
20 is an arithmetic circuit that multiplies and corrects the D/A-converted basic fuel injection pulse width by the output of the function generating circuit 19; 21 is an injection valve drive that drives the fuel injection valve 3 according to the output of the arithmetic circuit 20; It is a circuit.

そして以上のような構成において、上記基本燃料噴射パ
ルス発生回路14がエンジンに供給する燃料量を調整す
る燃料供給量調整装置となっており、父上記関数発生回
路19及び演算回路20が吸気温センサの出力に基づい
て吸気温が高い程燃料供給量が減少するように燃料供給
量調整装置を補正制御する補正手段となっており、さら
に」二記水温センサ7が吸気温センサ出力に対応する吸
気温度が実際の吸気温度より高くなる運転状態を検知す
る特定運転状態検知手段となっており、またさらに吸気
温補正回路17が特定運転状態検知手段の検知出力を受
け上記補正制御を制限する制限手段となっている。
In the above configuration, the basic fuel injection pulse generation circuit 14 serves as a fuel supply amount adjustment device that adjusts the amount of fuel supplied to the engine, and the function generation circuit 19 and calculation circuit 20 function as an intake temperature sensor. The correction means corrects and controls the fuel supply amount adjusting device so that the fuel supply amount decreases as the intake temperature increases based on the output of the intake air temperature sensor. The intake air temperature correction circuit 17 serves as a specific operating state detection means for detecting an operating state in which the temperature becomes higher than the actual intake air temperature, and further includes a limiting means for limiting the above-mentioned correction control in response to the detection output of the specific operating state detection means. It becomes.

次に第3図を用いて本装置のおおまかな動作について説
明する。
Next, the general operation of this device will be explained using FIG. 3.

エンジンがクランキングされると、負圧センサ6がスロ
ットル弁4下流の吸気負圧を、水温センサ7がエンジン
の冷却水温度を、吸気温センサ8が吸気加熱されてエン
ジンに吸入される際の吸気温度を、回転数センサ10が
エンジン回転数をそれぞれ検出し、上記負圧センサ6と
回転数センサ100両出力はA/D変換器13でA/D
変換された後、基本燃料噴射パルス発生回路14に入力
される。するとこの基本燃料噴射パルス発生回路14は
エンジン回転数と吸気負圧とに応じた基本燃料噴射パル
スのパルス幅をめて、それをD/A変換器15でD/A
変換した後、演算回路20に入力する。一方、上記水温
センサ7、吸気温センサ8及び回転数センサー0の各出
力はA/D変換器16でA/D変換された後、吸気温補
正回路17に加えられており、該回路17にイグニッシ
ョンスイッチ9からのイグニッション信号が入力される
と、該吸気温補正回路17はエンジンの冷却水温度から
温間始動時か否かを判定する。
When the engine is cranked, the negative pressure sensor 6 detects the intake negative pressure downstream of the throttle valve 4, the water temperature sensor 7 detects the engine cooling water temperature, and the intake air temperature sensor 8 detects the temperature of the intake air when it is heated and taken into the engine. The intake air temperature is detected by the rotational speed sensor 10, and the engine rotational speed is detected by the rotational speed sensor 10, and the outputs of the negative pressure sensor 6 and the rotational speed sensor 100 are A/D converted by the A/D converter 13.
After being converted, it is input to the basic fuel injection pulse generation circuit 14. Then, this basic fuel injection pulse generation circuit 14 determines the pulse width of the basic fuel injection pulse according to the engine speed and intake negative pressure, and converts it into a D/A converter 15.
After conversion, it is input to the arithmetic circuit 20. On the other hand, the respective outputs of the water temperature sensor 7, intake temperature sensor 8, and rotation speed sensor 0 are A/D converted by an A/D converter 16 and then applied to an intake temperature correction circuit 17. When an ignition signal is input from the ignition switch 9, the intake air temperature correction circuit 17 determines whether or not it is a warm start time based on the engine cooling water temperature.

そして温間始動時でない場合には、吸気温補正回路17
は吸気温センサ8のA/D変換出力をそのまま出力して
D/A変換器18でD/A変換した後、それを関数発生
回路19に入力し、該回路19は吸気温センサ出力に応
じた補正係数(第4図参照)をめてそれを演算回路20
に加える。
If it is not a warm start, the intake temperature correction circuit 17
outputs the A/D conversion output of the intake temperature sensor 8 as it is, performs D/A conversion with the D/A converter 18, and then inputs it to the function generation circuit 19, which circuit 19 responds to the output of the intake temperature sensor. The calculation circuit 20 calculates the correction coefficient (see Fig. 4).
Add to.

するとこの演算回路20は、上記基本燃料噴射パルスの
パルス幅を上記補正係数でもって補正諒噴射弁駆動回路
21ば補正したパルス幅の燃料噴射パルスを燃料噴射弁
3に加え、これにより燃料噴射量は吸気温センサ出力に
応じて吸気温か高い程少ない量に補正制御されることと
なる。
Then, this arithmetic circuit 20 corrects the pulse width of the basic fuel injection pulse using the correction coefficient and applies a fuel injection pulse with the corrected pulse width to the fuel injection valve 3, thereby adjusting the fuel injection amount. is corrected and controlled to a smaller amount as the intake temperature rises in accordance with the output of the intake temperature sensor.

一方、温間始動時には、吸気温補正回路17は始動後期
定時間の間は吸気温センサ8のA/D変換出力を小さな
値に補正し、上記関数発生回路19は温間始動時でない
場合に比して大きな値の補正係数を出力し、その結果燃
料噴射量は同一の吸気温センサ8の出力に対しても温間
始動時でない場合に比して多くなる。このように温間始
動時には始動後期定時間の間上記燃料噴射量の補正制御
は制限されることとなる。
On the other hand, during a warm start, the intake temperature correction circuit 17 corrects the A/D conversion output of the intake temperature sensor 8 to a small value during a fixed period of time after start, and the function generating circuit 19 As a result, the fuel injection amount becomes larger compared to the case when the engine is not at warm start time even for the same output from the intake air temperature sensor 8. In this way, during a warm start, the correction control of the fuel injection amount is limited for a fixed period of time after the start.

次に第5図のフローチャートを用いて吸気温補正回路1
7の動作を詳細に説明する。
Next, using the flowchart in FIG. 5, the intake air temperature correction circuit 1
7 will be explained in detail.

吸気温補正回路17にイグニッションスイッチ9からの
イグニッション信号が加えられると、該吸気温補正回路
17は、まず回転数センサ10のA/D変換出力Nを読
み込んでそれが設定値、例0 えば500rpm以上か否かの判定からエンジンが始動
したか否かを判断しくステップ30)、エンジンが始動
するまでは上記ステップ30に待機し、エンジンが始動
すると上記ステップ30でYESと判定してステップ3
1に進み、そこで水温センサ7のA/D変換出力を読み
込んでそれをレジスタThに記憶し、このエンジン冷却
水温度Twが設定値C以上か否かの判定からエンジンの
温間始動時か否かを判断する(ステップ32)。
When the ignition signal from the ignition switch 9 is applied to the intake temperature correction circuit 17, the intake temperature correction circuit 17 first reads the A/D conversion output N of the rotation speed sensor 10 and adjusts it to the set value, for example 500 rpm. From the above determination, it is determined whether or not the engine has started (step 30), and the process waits in step 30 described above until the engine starts, and when the engine starts, it is determined YES in step 30, and step 3
1, the A/D conversion output of the water temperature sensor 7 is read and stored in the register Th, and it is determined whether or not the engine cooling water temperature Tw is equal to or higher than the set value C to determine whether or not it is time to warm start the engine. (step 32).

そしてエンジンの温間始動時には、吸気温補正回路17
は、上記ステップ32でYESと判定してステップ33
に進んでそこでタイマに設定値Tをセソトシ、次に吸気
塩センサ8のA/D変換出力を読み込んでそれをレジス
タTaに記憶しくステップ34)、さらにタイマの値T
が0か否かを判定するとともに(ステップ35)、タイ
マの値Tから1を減算しくステップ36)、上記読み込
んだ吸気温度Taに補正係数K、例えば0.8を乗算し
て吸気温度Taを小さな値に補正した後(ステップ37
)、この補正後の吸気温度Taを出力1 して(ステップ38)、上記ステップ34に戻り、ステ
ップ34〜38の経路を巡回する。そしてタイマの41
uがOになると、上記ステップ35でYESと判定して
直接ステップ38に進み、今度は上記ステップ34にお
いて読み込んだ吸気温度Taをそのまま出力する。
When the engine is warmly started, the intake temperature correction circuit 17
If YES is determined in step 32 above, step 33 is executed.
Then, set the set value T to the timer, then read the A/D conversion output of the intake salt sensor 8 and store it in the register Ta (step 34), and then set the timer value T.
is 0 (step 35), subtracts 1 from the timer value T (step 36), and multiplies the read intake air temperature Ta by a correction coefficient K, for example 0.8, to obtain the intake air temperature Ta. After correcting to a small value (step 37
), the corrected intake air temperature Ta is outputted as 1 (step 38), the process returns to step 34, and the route from steps 34 to 38 is repeated. and timer 41
When u becomes O, a YES determination is made in step 35, and the process directly proceeds to step 38, where the intake air temperature Ta read in step 34 is output as is.

またエンジンが温間始動時でない場合は、吸気温補正回
路17は上記ステ・7プ32でNoと判定してステップ
34,35.38の経路を進み、この場合も上記ステッ
プ34において読み込んだ吸気温度Taをそのまま出力
する。
If the engine is not at warm start, the intake air temperature correction circuit 17 makes a negative determination in step 7 32 and proceeds through steps 34, 35, and 38, and in this case as well, the intake air temperature Outputs the temperature Ta as is.

以上のような本実施例の装置では、温間始動時には吸気
温センサの出力を小さな値に補正し、この補正した吸気
温センサ出力に基づいて燃料噴射量の吸気温補正を行な
う、即ち燃料噴射量の吸気温補正を割引いて行なうよう
にしたので、燃料噴射量の補正制御が過制御になって噴
射量が少なくなるということはなく、その結果混合気の
空燃比がオーバリーンになるのを防止して、エンジンの
出力低下やエンストの発生を防止できる。
In the device of this embodiment as described above, the output of the intake air temperature sensor is corrected to a small value at the time of warm start, and the intake air temperature correction of the fuel injection amount is performed based on the corrected intake air temperature sensor output. Since the intake air temperature correction is discounted, the fuel injection amount correction control will not become overcontrolled and the injection amount will become smaller, and as a result, the air-fuel ratio of the air-fuel mixture will be prevented from becoming over-lean. This can prevent a decrease in engine output and the occurrence of engine stalling.

2 ところで上記実施例ではエンジンの冷却水温度が高い始
動時(温間始動時)を検出して燃料噴射量の吸気温補正
を制限するようにしたが、混合気がオーバリーンになる
原因の1つが吸入空気量が急激に増大し、吸気温度が急
激に変化することであることから、本発明はエンジン停
止時の吸気温度と始動時の吸気温度との差が大きいとき
に燃料噴射量の吸気温補正を制限するようにしてもよい
2 By the way, in the above embodiment, when the engine is started with a high coolant temperature (warm start), the intake temperature correction of the fuel injection amount is limited, but one of the causes of the mixture becoming over-lean is that Since the amount of intake air increases rapidly and the intake air temperature changes rapidly, the present invention is designed to adjust the intake air temperature of the fuel injection amount when there is a large difference between the intake air temperature when the engine is stopped and the intake air temperature when the engine is started. Correction may be limited.

第6図はエンジン停止時と始動時との間の吸気温度差が
大きいときに燃料噴射量の吸気温補正を制限するように
した本発明の他の実施例における吸気温補正回路17の
演算処理のフローを示す。
FIG. 6 shows the calculation process of the intake temperature correction circuit 17 in another embodiment of the present invention, which limits the intake temperature correction of the fuel injection amount when the difference in intake air temperature between when the engine is stopped and when the engine is started is large. The flow is shown below.

次に第6図を用いて本装置における吸気温補正回路17
の演算処理動作を説明する。吸気温補正回路17にイグ
ニッション信号が加えられると、該吸気温補正回路17
は、まずエンジンが始動したか否かを判定しくステップ
30)、エンジンが始動すると上記ステップ30T:Y
ESと判定してステップ39に進み、そこで吸気温セン
サ出力を読み込んでそれをレジスタTaに記憶し、次に
し3 ジスタTaの値をレジスタTamに記憶しくステップ4
0)、上記レジスタTaの値であるエンジン始動時の吸
気温センサ出力Taと後述するスタティックメモリTm
の値であるエンジン停止時の吸気温センサ出力Tmとの
差Ta−Tmが設定値C1以上か否かを判定する(ステ
ップ41)。
Next, using FIG. 6, the intake temperature correction circuit 17 in this device
The arithmetic processing operation will be explained. When the ignition signal is applied to the intake temperature correction circuit 17, the intake temperature correction circuit 17
First, it is determined whether the engine has started or not (step 30), and when the engine has started, the step 30T: Y
It is determined as ES and the process proceeds to step 39, where the intake air temperature sensor output is read and stored in register Ta, and then the value of register Ta is stored in register Tam.
0), the intake air temperature sensor output Ta at the time of engine starting, which is the value of the register Ta, and the static memory Tm, which will be described later.
It is determined whether the difference Ta-Tm from the intake air temperature sensor output Tm when the engine is stopped, which is the value of , is greater than or equal to a set value C1 (step 41).

そしてエンジン始動時と停止時との間の吸気温センサ出
力の差Ta−Tmが設定値01以上の場合には、吸気温
補正回路17は上記ステップ41でYESと判定してス
テップ42に進み、そこで新たに吸気温センサ出力を読
み込んでそれをレジスタTaに記憶し、このレジスタT
aO値と上記レジスタTamの値との差が設定値C2よ
り大きいか否かを判定しくステップ43)、両者の差(
Tam−Ta)が設定値C2より大きい場合は吸気温セ
ンサ8に出力変化が生じ、検出遅れが生じていることか
ら、上記ステップ43でYESと判定してステップ44
に進み、そこで上記両レジスタTa、Tanの記憶内容
から適切な吸気温センサの出力値Ta (=f (Ta
 、 Tam) )を決定し、次に4 レジスタTam0値をレジスタTaの値で更新しくステ
ップ46)、上記決定した吸気温センサの出力値Taを
出力する(ステップ47)。ここで適切な吸気温センサ
の出力値Taは、例えば両レジスタTa 、Tamの記
憶内容の差(Ta−Tam)から第7図に示すような特
性を用いて決定する、即ち吸気温の変化率によって吸気
温センサ出力を補正してやればよい。
If the difference Ta-Tm between the intake temperature sensor outputs between when the engine is started and when the engine is stopped is equal to or greater than the set value 01, the intake temperature correction circuit 17 determines YES in step 41 and proceeds to step 42. Therefore, the intake temperature sensor output is newly read and stored in register Ta, and this register T
It is determined whether the difference between the aO value and the value of the register Tam is greater than the set value C2 (step 43), and the difference between the two (
Tam-Ta) is larger than the set value C2, an output change occurs in the intake air temperature sensor 8, and a detection delay occurs.
Then, from the stored contents of both registers Ta and Tan, an appropriate intake temperature sensor output value Ta (=f (Ta
, Tam)), and then updates the value of register Tam0 with the value of register Ta (step 46), and outputs the output value Ta of the intake air temperature sensor determined above (step 47). Here, the appropriate output value Ta of the intake temperature sensor is determined, for example, from the difference (Ta-Tam) between the stored contents of both registers Ta and Tam using the characteristics shown in FIG. The intake air temperature sensor output may be corrected by

またレジスタTaの値とエンジン停止時の吸気温センサ
出力Tmとの差が設定値C1より小さい場合、及びレジ
スタTa 、Tamの値の差が設定値C2より小さい場
合は、吸気温センサ8に検出遅れが生じていないことか
ら、吸気温補正回路17は上記ステップ41又は43で
Noと判定してステップ45に進み、上記ステップ39
又は42において読み込んだ吸気温センサ出力をスタテ
ィックメモリTmに記憶し、ステップ46.38の経路
を進み、レジスタTaに記憶されている吸気温センサ出
力をそのまま出力する。
In addition, if the difference between the value of register Ta and the intake temperature sensor output Tm when the engine is stopped is smaller than the set value C1, and if the difference between the values of registers Ta and Tam is smaller than the set value C2, the intake temperature sensor 8 detects Since no delay has occurred, the intake temperature correction circuit 17 makes a negative determination in step 41 or 43, proceeds to step 45, and proceeds to step 39.
Alternatively, the intake air temperature sensor output read in step 42 is stored in the static memory Tm, and the process proceeds through the path of step 46.38 to directly output the intake air temperature sensor output stored in the register Ta.

なお上記2つの実施例では燃料噴射量の吸気温5 補正を制限すべき特定運転状態としてエンジン冷却水温
度の高い始動時、又はエンジン停止時との間の吸気温度
差が大きい始動時を検知するようにしたが、この特定運
転状態としては単なる始動時。
Note that in the above two embodiments, the specific operating conditions in which the intake air temperature 5 correction of the fuel injection amount should be limited are detected as the starting time when the engine cooling water temperature is high, or the starting time when the difference in intake air temperature between when the engine is stopped and when the engine is stopped is large. However, this specific operating state is only during startup.

又は加速時を検知するようにしてもよく、いずれにして
も吸気温センサ出力に対応する吸気温度が実際の吸気温
度より高くなる運転状態を検知すればよい。また吸気温
補正の制限は混合気のオーバリーン化を防止できれば、
上記実施例と異なる方法で行なってもよい。
Alternatively, the time of acceleration may be detected, and in any case, an operating state in which the intake air temperature corresponding to the output of the intake air temperature sensor becomes higher than the actual intake air temperature may be detected. In addition, if the intake temperature correction limit can prevent the mixture from becoming overlean,
The method may be different from that in the above embodiment.

また上記実施例ではエンジンの燃料噴射装置について説
明したが、本発明は勿論エンジンの気化器についても同
様に適用できる。またエアフローセンサはスピードデン
シティタイプではなく、カルマン渦タイプあるいはベー
ンタイプであってもよい。
Further, in the above embodiment, a fuel injection device for an engine has been described, but the present invention can of course be similarly applied to a carburetor for an engine. Further, the air flow sensor may be of a Karman vortex type or a vane type instead of a speed density type.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、エンジンの吸気通路に吸
気温センサを配設し、該センサの出力に基づいて燃料供
給量を吸気温補正するようにした6 エンジンの燃料供給装置において、吸気温センサの出力
が実際の吸気温度より高い値を示す特定運転領域を検知
し、該特定運転領域では上記吸気温補正を制限するよう
にしたので、燃料供給量の吸気温補正が過制御になって
燃料量が少なくなるということはなく、その結果混合気
がオーバリーンになるのを防止して、エンジンの出力低
下やエンストの発生を防止できる効果がある。
As described above, according to the present invention, an intake temperature sensor is disposed in the intake passage of the engine, and the fuel supply amount is corrected for the intake temperature based on the output of the sensor. A specific operating region in which the output of the temperature sensor shows a value higher than the actual intake air temperature is detected, and the above-mentioned intake temperature correction is limited in this specific operating region, so that the intake temperature correction of the fuel supply amount is not over-controlled. Therefore, the amount of fuel does not decrease, and as a result, the air-fuel mixture is prevented from becoming overly lean, which has the effect of preventing a decrease in engine output and the occurrence of engine stalling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を説明するための図、第2図は本発明の
一実施例によるエンジンの燃料供給装置の概略構成図、
第3図は上記装置の詳細な構成図、第4図は上記装置に
おける関数発生回路19の入出力特性を示す図、第5図
は上記装置における吸気温補正回路17の演算処理のフ
ローチャートを示す図、第6図は本発明の他の実施例に
おける吸気温補正回路17の演算処理のフローチャート
を示す図、第7図は上記吸気温補正回路17の動作を説
明するための図である。 1・・・エンジン、7・・・水温センサ(特定運転状態
7 検知手段)、8・・・吸気温センサ、14・・・基本燃
料噴射パルス発生手段(燃料供給量調整装置)、17・
・・吸気温補正回路(制限手段)、19・・・関数発生
回路(補正手段)、20・・・演算回路(vIIi正手
段)。 特許出願人 東洋工業株式会社 代理人 弁理士 早 瀬 憲 − 8 −1畔七 第2図 手続補正書(自発) 昭和59年11月13日 特願昭59−9217号 2、発明の名称 エンジンの燃料供給装置 3、補正をする者 事件との関係 特許出願人昭和59年5月15日名称変
更済(一括)住 所 広島県安芸郡府中町新地3番1号
名 称 (313) マツダ株式会社 4、代理人 住 所 ■532大阪市淀川区営用4丁目1番45号5
、補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 (1) 明細書第3頁第2行〜第3行の「特開昭57−
51299号公報」を「特開昭57−51922号公報
」に訂正する。 以 上
FIG. 1 is a diagram for explaining the present invention, FIG. 2 is a schematic configuration diagram of an engine fuel supply system according to an embodiment of the present invention,
FIG. 3 is a detailed configuration diagram of the above device, FIG. 4 is a diagram showing the input/output characteristics of the function generation circuit 19 in the above device, and FIG. 5 is a flowchart of the arithmetic processing of the intake temperature correction circuit 17 in the above device. 6 is a diagram showing a flowchart of the arithmetic processing of the intake temperature correction circuit 17 in another embodiment of the present invention, and FIG. 7 is a diagram for explaining the operation of the intake temperature correction circuit 17. DESCRIPTION OF SYMBOLS 1... Engine, 7... Water temperature sensor (specific operating state 7 detection means), 8... Intake temperature sensor, 14... Basic fuel injection pulse generation means (fuel supply amount adjustment device), 17.
. . . Intake temperature correction circuit (limiting means), 19 . . . Function generation circuit (correction means), 20 . . . Arithmetic circuit (vIIi positive means). Patent applicant Ken Hayase, agent for Toyo Kogyo Co., Ltd. Patent attorney - 8-1 Procedural amendment to Figure 2 of Figure 7 (spontaneous) November 13, 1980 Patent application No. 59-9217 2, name of the invention Engine Fuel supply device 3, relationship with the amended person case Patent applicant May 15, 1980 Name changed (all at once) Address 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima Name (313) Mazda Motor Corporation 4. Agent address: 532 4-1-45-5 Yodogawa-ku, Osaka City
, Column 6 of Detailed Description of the Invention of the Specification Subject to Amendment, Contents of the Amendment (1) "Unexamined Japanese Patent Application Publication No. 1983-1990" on page 3, lines 2 to 3 of the specification.
51299 Publication" is corrected to "Japanese Unexamined Patent Publication No. 57-51922."that's all

Claims (1)

【特許請求の範囲】[Claims] fll エンジンに供給する燃料量を調整する燃料供給
量調整装置と、エンジンの吸気通路に配設され吸気温度
を検出する吸気温センサと、該吸気温センサの出力に基
づいて吸気温が高い程燃料供給量が減少するように上記
燃料供給量調整装置を補正制御する補正手段と、上記吸
気温センサ出力に対応する吸気温度が実際の吸気温度よ
り高くなる運転状態を検知する特定運転状態検知手段と
、該特定運転状態検知手段の検知出力を受け上記補正制
御を制限する制限手段とを備えたことを特徴とするエン
ジンの燃料供給装置。
fll A fuel supply amount adjustment device that adjusts the amount of fuel supplied to the engine, an intake temperature sensor that is disposed in the intake passage of the engine and detects the intake air temperature, and based on the output of the intake air temperature sensor, the higher the intake temperature, the more fuel a correction means for correcting and controlling the fuel supply amount adjusting device so as to reduce the supply amount; and a specific operating state detection means for detecting an operating state in which the intake air temperature corresponding to the output of the intake air temperature sensor is higher than the actual intake air temperature. . A fuel supply device for an engine, comprising: limiting means for receiving the detection output of the specific driving state detecting means and limiting the correction control.
JP59009217A 1984-01-20 1984-01-20 Fuel feed device for engine Pending JPS60153442A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59009217A JPS60153442A (en) 1984-01-20 1984-01-20 Fuel feed device for engine
US06/692,639 US4594986A (en) 1984-01-20 1985-01-18 Fuel supply arrangement for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59009217A JPS60153442A (en) 1984-01-20 1984-01-20 Fuel feed device for engine

Publications (1)

Publication Number Publication Date
JPS60153442A true JPS60153442A (en) 1985-08-12

Family

ID=11714274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59009217A Pending JPS60153442A (en) 1984-01-20 1984-01-20 Fuel feed device for engine

Country Status (1)

Country Link
JP (1) JPS60153442A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234237A (en) * 1985-04-10 1986-10-18 Honda Motor Co Ltd Control method for supplying fuel to internal-combustion engine immediately after its cranking
JP2012145000A (en) * 2011-01-07 2012-08-02 Hitachi Automotive Systems Ltd Control device of on-vehicle engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56154133A (en) * 1980-04-28 1981-11-28 Nippon Denso Co Ltd Correcting method of starting for electronic fuel jet system
JPS5751299A (en) * 1980-07-07 1982-03-26 Hooker Chemicals Plastics Corp Electrolytic peeling bath and method
JPS58110826A (en) * 1981-12-24 1983-07-01 Japan Electronic Control Syst Co Ltd Intake air temperature signal generating device for internal-combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56154133A (en) * 1980-04-28 1981-11-28 Nippon Denso Co Ltd Correcting method of starting for electronic fuel jet system
JPS5751299A (en) * 1980-07-07 1982-03-26 Hooker Chemicals Plastics Corp Electrolytic peeling bath and method
JPS58110826A (en) * 1981-12-24 1983-07-01 Japan Electronic Control Syst Co Ltd Intake air temperature signal generating device for internal-combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234237A (en) * 1985-04-10 1986-10-18 Honda Motor Co Ltd Control method for supplying fuel to internal-combustion engine immediately after its cranking
JP2012145000A (en) * 2011-01-07 2012-08-02 Hitachi Automotive Systems Ltd Control device of on-vehicle engine

Similar Documents

Publication Publication Date Title
JPH08220059A (en) Heater controller for air-fuel ratio sensor
JPH07229419A (en) Catalyst warming control device of internal combustion engine
JPS6397843A (en) Fuel injection control device for internal combustion engine
JPH07122627B2 (en) Heater controller for oxygen concentration sensor
US4594986A (en) Fuel supply arrangement for internal combustion engine
JP2002180871A (en) Catalyst early warming-up controller for internal combustion engine
JPS60153442A (en) Fuel feed device for engine
JPH05263690A (en) Idling control device of engine
JPH06129284A (en) Air-fuel ratio control device of internal combustion engine
JP3277690B2 (en) Control device of heating means for air-fuel ratio sensor
JPS60153444A (en) Fuel feed device for engine
JPS60153443A (en) Fuel feed device for engine
JP4361702B2 (en) Control device for internal combustion engine
JP3282169B2 (en) Combustion device fan motor control system
JP2685104B2 (en) Engine idle speed control device
JP2803084B2 (en) Idle speed control method
JPS63162945A (en) Fuel injection control method for internal combustion engine
JPH08326590A (en) Fail safe system at failure of coolant temperature sensor in internal combustion engine
JPH05149166A (en) Device for controlling feed of fuel during idling of internal combustion engine
JPS5941013B2 (en) Mixture concentration correction method for internal combustion engines
JPH0223240A (en) Fuel control device of engine
JP2548616B2 (en) Fuel supply device for internal combustion engine
JPH0988702A (en) Fuel injection controller
JP2805993B2 (en) Fuel pump control device for internal combustion engine
JP2807557B2 (en) Fuel control method after engine start