JPS6340025B2 - - Google Patents

Info

Publication number
JPS6340025B2
JPS6340025B2 JP57047468A JP4746882A JPS6340025B2 JP S6340025 B2 JPS6340025 B2 JP S6340025B2 JP 57047468 A JP57047468 A JP 57047468A JP 4746882 A JP4746882 A JP 4746882A JP S6340025 B2 JPS6340025 B2 JP S6340025B2
Authority
JP
Japan
Prior art keywords
electrolyte
matrix
fuel cell
impregnated
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57047468A
Other languages
Japanese (ja)
Other versions
JPS58165258A (en
Inventor
Hiroyuki Tajima
Masahiro Sakurai
Kunio Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Furukawa Battery Co Ltd
Original Assignee
Fuji Electric Co Ltd
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Furukawa Battery Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP57047468A priority Critical patent/JPS58165258A/en
Publication of JPS58165258A publication Critical patent/JPS58165258A/en
Publication of JPS6340025B2 publication Critical patent/JPS6340025B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、吸湿性を有する電解液を含浸したマ
トリツクスを有する燃料電池のマトリツクスへの
電解液含浸方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for impregnating a matrix of a fuel cell with an electrolyte, which has a matrix impregnated with a hygroscopic electrolyte.

(従来の技術) 一般に、この種の燃料電池では、反応ガスを水
素とする燃料電極および反応ガスを空気とする酸
化剤電極の向き合う面により、電解液区画室が形
成され、燃料および酸化剤電極の電解液区画室と
反対側の面には、それぞれガス区画室が設けられ
ている。電解液区画室には、非電子電導性で多孔
性材料からなるマトリツクスが充填され、このマ
トリツクスの空孔に燐酸または硫酸などの電解液
が含浸される。また、電解液区画室の端部に溝部
が設けられ、この溝部に多孔性材料からなる電解
液リザーバが充填される。この電解液リザーバを
介してマトリツクスへ所定の高濃度電解液、例え
ば100%の燐酸が含浸される。この含浸ののち、
燃料電池の作動温度で作動する際に、電解液は熱
膨脹して容積が増加する。また、電池の運転休止
の際に、電解液は大気中の湿分を吸収して濃度が
低下し、容積が増加する。このように作動中およ
び運転休止中に容積を増加した電解液は電極の触
媒層を経てガス側層に達し、電極面が濡れて、反
応ガスの拡散が阻害され、電極特性が低下すると
いう問題がある。極端な場合には、電解液がガス
区画室に漏洩し、ガス通路が閉鎖して、反応ガス
の流れを阻害するという問題もあつた。このよう
な問題を解決するために、電解液リザーバおよび
マトリツクスに低濃度電解液を含浸させたのち、
燃料電池の作動温度で、この低濃度電解液の水分
を蒸発させ、所定濃度の電解液に濃縮させる方法
が試みられている。この方法においては、電解液
リザーバに含浸された電解液は、電解液保持力の
相違により電解液リザーバからマトリツクスへ移
動して、マトリツクスは完全に所定濃度で充満さ
れるが、この電池の作動温度ではほとんど電解液
リザーバには存在しないようにされる。例えば、
電池作動温度190度Cにおいて100%濃度の燐酸を
マトリツクスに保持させるには、約33.3%程度の
低濃度に希釈された燐酸を、電解液リザーバおよ
びマトリツクスの空孔に含浸させたのち、190度
Cの乾燥空気または窒素を、ガス区画室へ供給し
希釈燐酸の水分を蒸発させて100%濃度の燐酸と
する。なお、約33.3%の燐酸の水蒸気圧は約14.8
mm水銀柱で、この水蒸気圧は常温の大気中におけ
る飽和水蒸気圧とほぼ等しい値であるから、この
燐酸を電解液リザーバおよびマトリツクスへ含浸
する際に、大気中より湿分を吸収して、燐酸濃度
が変化するのを防止することができる。
(Prior Art) In general, in this type of fuel cell, an electrolyte compartment is formed by opposing surfaces of a fuel electrode with hydrogen as the reactant gas and an oxidizer electrode with air as the reactant gas, and the fuel and oxidant electrodes are A gas compartment is provided on the opposite side of the electrolyte compartment. The electrolyte compartment is filled with a matrix of non-electronically conductive, porous material, the pores of which are impregnated with an electrolyte such as phosphoric or sulfuric acid. Additionally, a groove is provided at the end of the electrolyte compartment, and this groove is filled with an electrolyte reservoir of porous material. The matrix is impregnated with a predetermined high concentration electrolyte, for example 100% phosphoric acid, through this electrolyte reservoir. After this impregnation,
When operating at the operating temperature of the fuel cell, the electrolyte thermally expands and increases in volume. Further, when the battery is out of operation, the electrolytic solution absorbs moisture in the atmosphere, its concentration decreases, and its volume increases. The electrolyte, which has increased in volume during operation and out of operation, passes through the catalyst layer of the electrode and reaches the gas side layer, causing the electrode surface to become wet, inhibiting the diffusion of the reaction gas, and deteriorating the electrode properties. There is. In extreme cases, the electrolyte could leak into the gas compartment, closing the gas passages and impeding the flow of the reactant gas. To solve this problem, after impregnating the electrolyte reservoir and matrix with a low concentration electrolyte,
Attempts have been made to evaporate the water in this low concentration electrolyte at the operating temperature of the fuel cell and concentrate it to a predetermined concentration of electrolyte. In this method, the electrolyte impregnated in the electrolyte reservoir moves from the electrolyte reservoir to the matrix due to the difference in electrolyte holding power, and the matrix is completely filled with a predetermined concentration, but the operating temperature of the battery is Almost no electrolyte is present in the reservoir. for example,
In order to maintain a 100% concentration of phosphoric acid in the matrix at a battery operating temperature of 190 degrees Celsius, phosphoric acid diluted to a low concentration of approximately 33.3% is impregnated into the electrolyte reservoir and the pores of the matrix, and then heated to 190 degrees Celsius. Dry air or nitrogen of C is supplied to the gas compartment to evaporate the water in the diluted phosphoric acid to 100% phosphoric acid. The water vapor pressure of approximately 33.3% phosphoric acid is approximately 14.8.
mm of mercury, and this water vapor pressure is approximately equal to the saturated water vapor pressure in the atmosphere at room temperature. Therefore, when this phosphoric acid is impregnated into the electrolyte reservoir and matrix, moisture is absorbed from the air and the phosphoric acid concentration is can be prevented from changing.

(発明が解決しようとする課題) 以上述べた方法は小形の燃料電池では有効なも
のであるが、水形燃料電池では電解液リザーバの
間隔が大きく離れて、希釈電解液をマトリツクス
の中心まで迅速に、しかも均一に含浸させること
が困難であるという点があつた。
(Problem to be Solved by the Invention) The method described above is effective for small-sized fuel cells, but in water-type fuel cells, the electrolyte reservoirs are spaced widely apart, and the diluted electrolyte can be quickly delivered to the center of the matrix. Another problem was that it was difficult to impregnate uniformly.

本発明は、上述の点に鑑み、希釈電解液がマト
リツクスの中心まで迅速に、しかも均一に含浸し
得る電解液固定形燃料電池を提供することを目的
とする。
In view of the above-mentioned points, it is an object of the present invention to provide a fixed electrolyte fuel cell that can quickly and uniformly impregnate the center of a matrix with a dilute electrolyte.

(課題を解決するための手段) このような目的は本発明によれば、マトリツク
スおよび電解液リザーバに低濃度電解液を含浸し
た後、燃料電池の作動温度を有する乾燥ガスをガ
ス区画室へ供給する燃料電池のマトリツクスへの
電解液体含浸方法において、燃料電極は前記ガス
区画室とマトリツクスとを連通する貫通孔を有
し、この貫通孔を介して前記ガス区画室からマト
リツクスへ低濃度電解液を含浸することにより達
成される。
SUMMARY OF THE INVENTION According to the invention, this object is achieved by supplying dry gas having the operating temperature of the fuel cell to the gas compartment after impregnating the matrix and the electrolyte reservoir with a low concentration electrolyte. In a method for impregnating a fuel cell matrix with an electrolytic liquid, the fuel electrode has a through hole that communicates the gas compartment with the matrix, and a low concentration electrolyte is introduced from the gas compartment into the matrix through the through hole. This is achieved by impregnation.

なお、本実施例によれば、貫通孔は燃料電極面
積の約3%ないし10%程度の全面積を有する多数
の小孔とするのがよい。
According to this embodiment, the through holes are preferably a large number of small holes having a total area of about 3% to 10% of the area of the fuel electrode.

さらに、本実施例によれば、貫通孔は孔間隔を
約15mmないし30mm程度とする多数の小孔とするの
が目的にかなつている。
Furthermore, according to this embodiment, it is suitable for the purpose to form the through holes into a large number of small holes with a hole interval of approximately 15 mm to 30 mm.

(作用) このような方法により、燃料極の貫通孔は、ガ
ス区画室からマトリツクスへ低濃度電解液を含浸
し得るから、低濃度電解液がマトリツクスの中心
まで迅速に、かつ均一に含浸される。
(Function) With this method, the through holes of the fuel electrode can impregnate the low concentration electrolyte from the gas compartment into the matrix, so that the low concentration electrolyte is quickly and uniformly impregnated to the center of the matrix. .

(実施例) 次に、本発明の一実施例を図面に基づき、詳細
に説明する。
(Example) Next, an example of the present invention will be described in detail based on the drawings.

図は本発明の一実施例の概略構成図を示す。図
において燃料電池1は燃料電極2および酸化剤電
極3の向き合う面により、電解液区画室5を形成
する。電解液区画室5には、非電子電導性を有す
る多孔性材料であるマトリツクス4が充填され、
このマトリツクス4の空孔に燐酸または硫酸など
の電解液が含浸される。それぞれの電極2,3は
電極基材6,7と触媒層8,9とからなる。電極
基材6,7は電極支持部材で、触媒層8,9は電
極基材6,7に層状に設けられている。セパレー
タ板12,13は電極基材6,7の一部に接触
し、電極2,3の電解液区画室5と反対面で、ガ
ス区画室10,11を形成し、集電および反応ガ
スの混合を防止する。このセパレータ板12,1
3には、電解液区画室5の端部に連通する溝部1
8ないし21が設けられ、この溝部18ないし2
1には、左右に貫通された孔部14ないし17が
設けられる。溝部18ないし21内には、多孔性
材料が充填され電解液リザーバ22を構成する。
マトリツクス4、電解液リザーバ22および電極
2,3を構成するそれぞれの多孔性材料は、粒子
およびこの粒子を結着する結着剤、例えば四弗化
エチレンからなる。この四弗化エチレンは撥水性
を有し、その量を僅かに変えて、マトリツクス
4、電解液リザーバ22、電極2,3の順に多く
し、または粒子径をマトリツクス4、電解液リザ
ーバ22、電極2,3の順に大きく選択すること
により、電解液保持力をマトリツクス4、電解液
リザーバ22、電極2,3の順に小さくすること
ができる。なお、燃料電池1の運転休止により、
電解液が大気中の湿分を吸吸し容積が増加した際
に、電解液リザーバ22は増加した電解液を収容
するに十分な容積を有する。例えば、電解液リザ
ーバ22はマトリツクス4および電極2,3の触
媒層8,9に含浸された電解液保持容積の約2倍
程度の容積が設けられている。さらに、23は燃
料電極2に設けられた貫通孔で、ガス区画室10
側とマトリツクス4側とを連結する。
The figure shows a schematic configuration diagram of an embodiment of the present invention. In the figure, a fuel cell 1 forms an electrolyte compartment 5 by the facing surfaces of a fuel electrode 2 and an oxidizer electrode 3. As shown in FIG. The electrolyte compartment 5 is filled with a matrix 4 which is a porous material having non-electronic conductivity.
The pores of this matrix 4 are impregnated with an electrolytic solution such as phosphoric acid or sulfuric acid. Each electrode 2, 3 consists of an electrode base material 6, 7 and a catalyst layer 8, 9. The electrode base materials 6 and 7 are electrode support members, and the catalyst layers 8 and 9 are provided in a layered manner on the electrode base materials 6 and 7. The separator plates 12, 13 contact parts of the electrode substrates 6, 7 and form gas compartments 10, 11 on the opposite side of the electrodes 2, 3 from the electrolyte compartment 5, for current collection and reaction gas flow. Prevent mixing. This separator plate 12,1
3 has a groove 1 communicating with the end of the electrolyte compartment 5.
8 to 21 are provided, and the grooves 18 to 2
1 is provided with holes 14 to 17 passing through from side to side. Grooves 18 to 21 are filled with a porous material to constitute electrolyte reservoir 22 .
The porous materials constituting the matrix 4, the electrolyte reservoir 22 and the electrodes 2, 3 each consist of particles and a binder that binds the particles, such as tetrafluoroethylene. This tetrafluoroethylene has water repellency, and its amount may be slightly changed to increase in the order of matrix 4, electrolyte reservoir 22, electrodes 2 and 3, or the particle size may be increased in the order of matrix 4, electrolyte reservoir 22, electrodes 2 and 3. By selecting larger values in the order of 2 and 3, the electrolyte retention force can be made smaller in the order of matrix 4, electrolyte reservoir 22, and electrodes 2 and 3. In addition, due to the suspension of operation of the fuel cell 1,
When the electrolyte increases in volume by absorbing moisture in the atmosphere, the electrolyte reservoir 22 has a sufficient volume to accommodate the increased electrolyte. For example, the electrolytic solution reservoir 22 is provided with a volume that is about twice as large as the electrolytic solution holding volume impregnated into the matrix 4 and the catalyst layers 8 and 9 of the electrodes 2 and 3. Further, 23 is a through hole provided in the fuel electrode 2, and a through hole 23 is provided in the gas compartment chamber 10.
The side and the matrix 4 side are connected.

このように構成された燃料電池1に含浸される
電解液は所定の濃度希釈され、セパレータ板1
2,13の電解液含浸用孔14ないし17を介し
て、電解液リザーバ22およびマトリツクス4の
空孔に含浸される。さらに、ガス区画室10へ同
様な希釈電解液が導入され、燃料電極2の貫通孔
23を経て、マトリツクス4へ含浸される。マト
リツクス4の空孔が完全に含浸されたのち、電解
液含浸用孔14ないし17およびガス区画室10
内から、希釈電解液が除去される。こののち、燃
料電池1の作動温度で濃縮された所定濃度の電解
液は、電解液保持力の相違により、マトリツクス
4の空孔に完全に含浸され、電解液リザーバ22
にはほとんど存在しないようになる。なお、貫通
孔23が設けられたことにより、燃料電極2は電
解液により、多少濡れ易くなるが、作動中の導入
される100%水素により拡散が十分に行われ電極
特性が阻害されないように、貫通孔23の全面積
は燃料電極2の面積の約3%ないし10%程度であ
ることが望ましく、貫通孔23間の間隔は約15mm
ないし30mm程度であることが望ましい。
The electrolytic solution impregnated into the fuel cell 1 configured in this way is diluted to a predetermined concentration, and the separator plate 1
The electrolyte reservoir 22 and the pores of the matrix 4 are impregnated through the electrolyte impregnation holes 14 to 17 of 2 and 13. Furthermore, a similar diluted electrolyte is introduced into the gas compartment 10 and impregnated into the matrix 4 via the through holes 23 of the fuel electrode 2. After the pores of the matrix 4 have been completely impregnated, the electrolyte impregnation holes 14 to 17 and the gas compartment 10
From within, the dilute electrolyte is removed. Thereafter, the electrolytic solution of a predetermined concentration concentrated at the operating temperature of the fuel cell 1 is completely impregnated into the pores of the matrix 4 due to the difference in electrolytic solution holding power, and the electrolytic solution reservoir 22
becomes almost non-existent. The provision of the through-hole 23 makes the fuel electrode 2 a little easier to wet with the electrolyte, but in order to ensure that the 100% hydrogen introduced during operation is sufficiently diffused and the electrode characteristics are not impaired. The total area of the through holes 23 is preferably about 3% to 10% of the area of the fuel electrode 2, and the interval between the through holes 23 is about 15 mm.
It is desirable that the length be between 30mm and 30mm.

(発明の効果) 以上に説明するように本発明によれば、燃料電
極にガス区画室からマトリツクスへ希釈電解液を
含浸し得る貫通孔を設けたことにより、希釈電解
液がマトリツクスの中心まで迅速に、しかも均一
に含浸し得るという利点を有する。
(Effects of the Invention) As explained above, according to the present invention, by providing the fuel electrode with a through hole that can impregnate the diluted electrolyte from the gas compartment to the matrix, the diluted electrolyte can quickly reach the center of the matrix. Moreover, it has the advantage that it can be impregnated uniformly.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例の概略構成図である。 1:燃料電池、4:マトリツクス、5:電解液
区画室、10,11:ガス区画室、22:電解液
リザーバ、23:貫通孔。
The figure is a schematic configuration diagram of an embodiment of the present invention. 1: fuel cell, 4: matrix, 5: electrolyte compartment, 10, 11: gas compartment, 22: electrolyte reservoir, 23: through hole.

Claims (1)

【特許請求の範囲】[Claims] 1 燃料電極および酸化剤電極と、反応ガスが流
通するガス区画室と、吸湿性電解液が含浸される
マトリツクスと、電解液リザーバとを備えた燃料
電池のマトリツクスへの電解液含浸方法であつ
て、前記マトリツクスおよび電解液リザーバに低
濃度電解液を含浸した後、前記燃料電池の作動温
度を有する乾燥ガスを前記ガス区画室へ供給する
燃料電池のマトリツクスへの電解液含浸方法にお
いて、前記燃料電極は前記ガス区画室とマトリツ
クスとを連通する貫通孔を有し、該貫通孔を介し
て前記ガス区画室から前記マトリツクスへ前記低
濃度電解液を含浸することを特徴とする燃料電池
のマトリツクスへの電解液含浸方法。
1. A method for impregnating a matrix of a fuel cell with an electrolyte, comprising a fuel electrode and an oxidizer electrode, a gas compartment through which a reaction gas flows, a matrix impregnated with a hygroscopic electrolyte, and an electrolyte reservoir, comprising: , a method for impregnating a matrix of a fuel cell with an electrolyte, comprising impregnating the matrix and an electrolyte reservoir with a low concentration electrolyte, and then supplying dry gas having an operating temperature of the fuel cell to the gas compartment; The fuel cell matrix has a through hole that communicates the gas compartment and the matrix, and the low concentration electrolyte is impregnated from the gas compartment to the matrix through the through hole. Electrolyte impregnation method.
JP57047468A 1982-03-26 1982-03-26 Fuel cell with fixed electrolyte Granted JPS58165258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57047468A JPS58165258A (en) 1982-03-26 1982-03-26 Fuel cell with fixed electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57047468A JPS58165258A (en) 1982-03-26 1982-03-26 Fuel cell with fixed electrolyte

Publications (2)

Publication Number Publication Date
JPS58165258A JPS58165258A (en) 1983-09-30
JPS6340025B2 true JPS6340025B2 (en) 1988-08-09

Family

ID=12775976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57047468A Granted JPS58165258A (en) 1982-03-26 1982-03-26 Fuel cell with fixed electrolyte

Country Status (1)

Country Link
JP (1) JPS58165258A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121680A (en) * 1983-12-06 1985-06-29 Fuji Electric Corp Res & Dev Ltd Replenishment of phosphoric acid in phosphoric acid type fuel cell
US4612262A (en) * 1984-08-06 1986-09-16 United Technologies Corporation Process for adding electrolyte to a fuel cell stack
US4596749A (en) * 1984-08-06 1986-06-24 United Technologies Corporation Method and apparatus for adding electrolyte to a fuel cell stack
JP2693636B2 (en) * 1990-10-17 1997-12-24 株式会社東芝 Fuel cell
JP2657015B2 (en) * 1991-09-26 1997-09-24 三菱電機株式会社 Electrolyte for impregnation of phosphoric acid fuel cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4035551A (en) * 1976-09-01 1977-07-12 United Technologies Corporation Electrolyte reservoir for a fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4035551A (en) * 1976-09-01 1977-07-12 United Technologies Corporation Electrolyte reservoir for a fuel cell

Also Published As

Publication number Publication date
JPS58165258A (en) 1983-09-30

Similar Documents

Publication Publication Date Title
RU2182387C2 (en) Bipolar separator plate of fuel cell with proton-exchange membrane
US4125676A (en) Carbon foam fuel cell components
JPS5837669B2 (en) Fuel cell and its manufacturing method
JPS6130385B2 (en)
GB2215120A (en) Fuel cell having electrolyte inventory control volume
JPS6340025B2 (en)
JPS6340024B2 (en)
JPS5848366A (en) Fuel cell
JP2001155759A (en) Polymer electrolyte type fuel cell
JPS58166636A (en) Fuel cell
CA1202070A (en) Fuel cell with multiple porosity electrolyte matrix assembly
JP4468501B2 (en) Humidifying member for polymer electrolyte fuel cell
JP2633522B2 (en) Fuel cell
JPH07262997A (en) Electrode base for fuel cell
JPH039590B2 (en)
JPH10270063A (en) Phosphatic fuel cell
JPH06101338B2 (en) Fuel cell
JPH0696784A (en) Phosphoric acid type fuel cell
JPH0578908B2 (en)
JPS6258110B2 (en)
JPH0311556A (en) Electrolyte reservoir structure for fuel battery
JPH0695459B2 (en) Fuel cell
JPS6246950B2 (en)
JPS6255872A (en) Fuel cell
JPH0719610B2 (en) Fuel cell