JPS6340024B2 - - Google Patents

Info

Publication number
JPS6340024B2
JPS6340024B2 JP57047467A JP4746782A JPS6340024B2 JP S6340024 B2 JPS6340024 B2 JP S6340024B2 JP 57047467 A JP57047467 A JP 57047467A JP 4746782 A JP4746782 A JP 4746782A JP S6340024 B2 JPS6340024 B2 JP S6340024B2
Authority
JP
Japan
Prior art keywords
electrolyte
matrix
reservoir
electrolytic solution
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57047467A
Other languages
Japanese (ja)
Other versions
JPS58165268A (en
Inventor
Hiroyuki Tajima
Masahiro Sakurai
Kunio Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Furukawa Battery Co Ltd
Original Assignee
Fuji Electric Co Ltd
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Furukawa Battery Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP57047467A priority Critical patent/JPS58165268A/en
Publication of JPS58165268A publication Critical patent/JPS58165268A/en
Publication of JPS6340024B2 publication Critical patent/JPS6340024B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、吸湿性の大きい電解液を含浸したマ
トリツクスを有す燃料電池のマトリツクスへの電
解液含浸方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for impregnating a matrix of a fuel cell with an electrolyte, which has a matrix impregnated with a highly hygroscopic electrolyte.

(従来の技術) 一般に、この種の燃料電池は燃料電極および酸
化剤電極の向き合う面により、電解液区画室が形
成され、電解液区画室と反対側の燃料電極および
酸化剤電極面には、それぞれガス区画室が形成さ
れている。電解液区画室には非電子電導性で、多
孔性材料からなるマトリツクスが充填され、この
マトリツクスに燐酸または硫酸などの電解液が含
浸される。また、電解液区画室の端部に溝部が設
けられ、この溝部に多孔性材料からなる電解液リ
ザーバが充填されている。このマトリツクスに電
解液を含浸させるには、燃料電池を垂直、水平ま
たは僅かに傾斜させて、所定の濃度の電解液を電
解液リザーバを介して、マトリツクスへ供給す
る。
(Prior Art) In general, in this type of fuel cell, an electrolyte compartment is formed by faces of a fuel electrode and an oxidizer electrode facing each other, and a fuel electrode and an oxidizer electrode on the opposite side from the electrolyte compartment are formed with an electrolyte compartment. A gas compartment is formed in each case. The electrolyte compartment is filled with a matrix of non-electronically conductive, porous material which is impregnated with an electrolyte such as phosphoric or sulfuric acid. Additionally, a groove is provided at the end of the electrolyte compartment, and the groove is filled with an electrolyte reservoir made of a porous material. To impregnate the matrix with electrolyte, the fuel cell is vertically, horizontally, or slightly tilted, and a predetermined concentration of electrolyte is supplied to the matrix through an electrolyte reservoir.

(発明が解決しようとする課題) ところが、この含浸ののち、燃料電池を所定の
温度で作動した際に、電解液は熱膨脹により、容
積を増加する。例えば、190度Cで作動するとき、
作動前の常温15度Cのときの電解液の容積と比較
すると、約10%程度増加する。また、電池が運転
休止する際に、電解液は大気中より湿分を吸収
し、濃度が低下するとともに、容積が増大する。
例えば、温度190度Cで100%濃度の燐酸を、温度
40度Cで湿度80%の大気中に放置した際に、燐酸
の容積は約3倍程度まで増加し、濃度は約42%程
度に低下する。電解液をマトリツクスへ含浸する
際に、多孔性を有する電解液リザーバおよびマト
リツクス内の空孔に、電解液を完全に含浸させる
場合には、作動中の電解液の熱膨脹または運転休
止による大気中の湿度の吸収によつて増加した電
解液が、電極の触媒層を経てガス側層に達し、電
極面が電解液によつて濡れて、反応ガスの拡散が
阻害され、電極の特性低下を生ずるという問題が
ある。極端な場合には、電解液がガス区画室まで
漏洩し、ガス通路を閉鎖し、反応ガスの流れを阻
害するという欠点がある。
(Problems to be Solved by the Invention) However, after this impregnation, when the fuel cell is operated at a predetermined temperature, the electrolytic solution increases in volume due to thermal expansion. For example, when operating at 190 degrees C,
Compared to the volume of the electrolyte at room temperature of 15 degrees Celsius before operation, the volume increases by about 10%. Furthermore, when the battery is out of operation, the electrolytic solution absorbs moisture from the atmosphere, decreasing its concentration and increasing its volume.
For example, phosphoric acid with a concentration of 100% at a temperature of 190 degrees Celsius is
When left in the atmosphere at 40 degrees Celsius and 80% humidity, the volume of phosphoric acid increases by about three times and the concentration decreases to about 42%. When impregnating the electrolyte into the matrix, if the porous electrolyte reservoir and the pores in the matrix are to be completely impregnated with the electrolyte, it is important to avoid atmospheric pressure due to thermal expansion of the electrolyte during operation or due to outage. The electrolyte that increases due to the absorption of humidity reaches the gas side layer via the catalyst layer of the electrode, and the electrode surface becomes wet with the electrolyte, inhibiting the diffusion of the reaction gas and causing a decrease in the electrode characteristics. There's a problem. In extreme cases, the disadvantage is that the electrolyte leaks into the gas compartment, blocking the gas passage and impeding the flow of the reaction gas.

本発明は上述の点に鑑み、従来技術の欠点を除
き長期間にわたる燃料電池の作動または運転休止
の際にも、電池特性が高性能に維持される燃料電
池のマトリツクスへの電解液含浸方法を提供する
ことを目的とする。
In view of the above-mentioned points, the present invention provides a method for impregnating an electrolyte into a fuel cell matrix, which eliminates the drawbacks of the prior art and maintains high performance cell characteristics even when the fuel cell is in operation or out of operation for a long period of time. The purpose is to provide.

(課題を解決するための手段) このような目的は本発明によれば、電解液リザ
ーバおよびマトリツクスへ低濃度電解液を含浸
し、燃料電池の作動温度を有する乾燥ガスをガス
区画室へ供給することにより達成される。
SUMMARY OF THE INVENTION According to the invention, this object is achieved by impregnating the electrolyte reservoir and the matrix with a low concentration electrolyte and supplying a dry gas having the operating temperature of the fuel cell to the gas compartment. This is achieved by

(作用) このような方法により、この低濃度電解液が所
定濃度に濃縮され、所期の目的である長期間にわ
たる燃料電池の作動または運転休止の際にも、そ
の特性が高性能に維持される。
(Function) With this method, this low concentration electrolyte is concentrated to a predetermined concentration, and its characteristics are maintained at high performance even when the fuel cell is in operation for a long period of time, which is the intended purpose, or when the operation is stopped. Ru.

(実施例) なお、本発明によれば、作動温度における電解
液が、電解液リザーバよりマトリツクスへ移動し
前記マトリツクスを完全を充満し、前記電解液リ
ザーバにはほとんど存在しないように、前記マト
リツクスは前記電解液リザーバより大きい電解液
保持力を有するのがよい。
(Embodiment) According to the present invention, the matrix is arranged such that the electrolyte at the operating temperature moves from the electrolyte reservoir to the matrix, completely filling the matrix, and leaving almost no electrolyte in the electrolyte reservoir. It is preferable to have a larger electrolyte retention capacity than the electrolyte reservoir.

さらに、本発明の一実施例によれば、電解液保
持力は電解液リザーバよりマトリツクスの撥水性
を小さくするのがよい。
Further, in accordance with one embodiment of the present invention, the electrolyte retention capacity may be such that the water repellency of the matrix is less than that of the electrolyte reservoir.

さらにまた、本発明の他の実施例によれば、電
解液保持力は電解液リザーバよりマトリツクスの
粒子径を小さくすることが望まれる。
Furthermore, in accordance with another embodiment of the present invention, it is desired that the electrolyte holding power be such that the particle size of the matrix is smaller than that of the electrolyte reservoir.

次に、本発明の一実施例を図面に基づき、詳細
に説明する。
Next, one embodiment of the present invention will be described in detail based on the drawings.

図は本発明の一実施例の概略構成図を示す。図
において燃料電池1は燃料電極2および酸化剤電
極3の向き合う面により、電解液区画室5を形成
する。電解液区画室5には、非電子電導性を有す
る多孔性材料であるマトリツクス4が充填され、
このマトリツクス4の空孔に燐酸または硫酸など
の電解液が含浸される。それぞれの電極2,3は
電極基材6,7と、触媒層8,9とからなる。電
極基材6,7は電極支持部材で、触媒層8,9は
電極基材6,7に層状に設けられる。セパレータ
板12,13は電極基材6,7の一部に接触し、
電極2,3の電解液区画室5と反対面で、ガス区
画室10,11を形成し、集電および反応ガスの
混合を防止する。このセパレータ板12,13に
は、電解液区画室5の端部に連結する溝部18な
いし21が設けられ、この溝部18ないし21に
は、左右に貫通され、マトリツクス4と連通する
孔部14,15,16,17が設けられる。溝部
18ないし21内には、多孔性材料が充填され電
解液リザーバ22を構成している。マトリツクス
4、電解液リザーバ22および電極2,3は炭素
化合物系の粒子を四弗化エチレンなどの結着剤に
て結着した多孔性材料からなる。この四弗化エチ
レンは撥水性を有し、その量を僅かに変えて、マ
トリツクス4、電解液リザーバ22、電極2,3
の順に多くし、また粒子の径をマトリツクス4、
電解液リザーバ22、電極2,3の順に大きく選
択することにより、電解液保持力をマトリツクス
4、電解液リザーバ22、電極2,3の順に小さ
くすることができる。なお、燃料電池1の運転休
止により、電解液が大気中の湿分を吸吸し容積が
増加した際に、電解液リザーバ22は増加した電
解液を収容するに十分な容積を有する。例えば、
電解液リザーバ22はマトリツクス4および電極
2,3の触媒層8,9に含浸された電解液保持容
積の約2倍程度の容積が設けられている。
The figure shows a schematic configuration diagram of an embodiment of the present invention. In the figure, a fuel cell 1 forms an electrolyte compartment 5 by the facing surfaces of a fuel electrode 2 and an oxidizer electrode 3. As shown in FIG. The electrolyte compartment 5 is filled with a matrix 4 which is a porous material having non-electronic conductivity.
The pores of this matrix 4 are impregnated with an electrolytic solution such as phosphoric acid or sulfuric acid. Each electrode 2, 3 consists of an electrode base material 6, 7 and a catalyst layer 8, 9. The electrode base materials 6 and 7 are electrode support members, and the catalyst layers 8 and 9 are provided on the electrode base materials 6 and 7 in a layered manner. The separator plates 12 and 13 are in contact with a part of the electrode base materials 6 and 7,
On the opposite side of the electrodes 2, 3 from the electrolyte compartment 5, gas compartments 10, 11 are formed to prevent current collection and mixing of the reaction gases. The separator plates 12 and 13 are provided with grooves 18 to 21 connected to the ends of the electrolyte compartment 5, and the grooves 18 to 21 are penetrated from side to side and have holes 14 communicating with the matrix 4, 15, 16, and 17 are provided. Grooves 18 to 21 are filled with a porous material to constitute an electrolyte reservoir 22. The matrix 4, the electrolyte reservoir 22, and the electrodes 2 and 3 are made of a porous material in which carbon compound particles are bound together with a binder such as tetrafluoroethylene. This tetrafluoroethylene has water repellent properties, and by slightly changing its amount, the matrix 4, electrolyte reservoir 22, electrodes 2, 3
Increase the particle size in the order of matrix 4,
By selecting a larger electrolyte reservoir 22 and then electrodes 2 and 3 in this order, the electrolyte holding force can be made smaller in the order of the matrix 4, the electrolyte reservoir 22, and the electrodes 2 and 3. Note that when the electrolytic solution absorbs moisture in the atmosphere and increases in volume due to suspension of operation of the fuel cell 1, the electrolytic solution reservoir 22 has a sufficient volume to accommodate the increased electrolytic solution. for example,
The electrolytic solution reservoir 22 has a volume approximately twice as large as the electrolytic solution holding volume impregnated into the matrix 4 and the catalyst layers 8 and 9 of the electrodes 2 and 3.

このように構成された燃料電池1に含浸される
電解液は所定の濃度に希釈され、セパレート板1
2,13の電解液含浸用孔14ないし17を介し
て、電解液リザーバ22およびマトリツクス4の
空孔に含浸される。こののち、燃料電池1の作動
温度で、この希釈電解液の水分が蒸発させられ、
所定濃度の電解液に濃縮されるとともに、電解液
リザーバ22に含浸された電解液は電解液保持力
の相違により、電解液リザーバ22からマトリツ
クス4へ移動し、マトリツクス4の空孔は完全に
所定濃度の電解液で充満されるが、この電池1の
作動温度では、この電解液はほとんど電解液リザ
ーバ22には保持されないようにする。例えば燃
料電池1の作動温度190度Cにおいて、100%の燐
酸をマトリツクス4に保持させるには、約33.3%
程度の低濃度燐酸を、電解液リザーバ22および
マトリツクス4の空孔に含浸させたのち、190度
Cの乾燥空気または窒素を、ガス区画室10,1
1へ供給し、希釈燐酸の水分を蒸発させて、100
%濃度の燐酸とする。ところで、約33.3%の燐酸
の水蒸気圧は約14.8mm水銀柱である。この水蒸気
圧は常温の大気中における飽和水蒸気圧とほぼ等
しい値であるから、この燐酸を電解液リザーバ2
2およびマトリツクス4へ含浸する際に、大気中
より水分を吸収して、燐酸濃度が変化するのを防
止することができる。
The electrolytic solution impregnated into the fuel cell 1 configured in this way is diluted to a predetermined concentration, and the electrolytic solution is diluted to a predetermined concentration.
The electrolyte reservoir 22 and the pores of the matrix 4 are impregnated through the electrolyte impregnation holes 14 to 17 of 2 and 13. Thereafter, the water in this diluted electrolyte is evaporated at the operating temperature of the fuel cell 1.
As the electrolytic solution is concentrated to a predetermined concentration, the electrolytic solution impregnated in the electrolytic solution reservoir 22 moves from the electrolytic solution reservoir 22 to the matrix 4 due to the difference in electrolytic solution holding power, and the pores of the matrix 4 are completely filled with the predetermined concentration. The electrolyte reservoir 22 is filled with a concentrated electrolyte, but at the operating temperature of the battery 1 this electrolyte is hardly retained in the electrolyte reservoir 22 . For example, at an operating temperature of 190 degrees Celsius of the fuel cell 1, in order to retain 100% phosphoric acid in the matrix 4, approximately 33.3%
After impregnating the electrolyte reservoir 22 and the pores of the matrix 4 with a low concentration of phosphoric acid, dry air or nitrogen at 190 degrees Celsius is introduced into the gas compartments 10 and 1.
1, evaporate the water in the diluted phosphoric acid, and
% concentration of phosphoric acid. By the way, the water vapor pressure of about 33.3% phosphoric acid is about 14.8 mm of mercury. Since this water vapor pressure is approximately equal to the saturated water vapor pressure in the atmosphere at room temperature, this phosphoric acid is transferred to the electrolyte reservoir 2.
When impregnating phosphoric acid 2 and matrix 4, it is possible to prevent the phosphoric acid concentration from changing due to absorption of moisture from the atmosphere.

(発明の効果) 以上に説明するように本発明によれば、マトリ
ツクスに含浸される電解液は低濃度の電解液とし
て、電解液リザーバおよびマトリツクスの空孔に
含浸させたのち、作動温度でガス区画室へ乾燥空
気または窒素を供給して、電解液の水分を除去し
て所定濃度に濃縮することにより所期の目的を達
成することができ、しかも電解液リザーバの電解
液がマトリツクスへ移動するように、それぞれ材
料および粒子径を選択すれば、作動温度では電解
液リザーバには電解液がほとんど保持されていな
いから、長期間にわたる燃料電池の作動または運
転休止の際にも、電池特性が高性能に維持される
という効果を有する。
(Effects of the Invention) As explained above, according to the present invention, the electrolytic solution impregnated into the matrix is a low-concentration electrolytic solution that is impregnated into the electrolytic solution reservoir and the pores of the matrix, and then the electrolytic solution is impregnated into the electrolytic solution reservoir and the pores of the matrix, and then the electrolytic solution is impregnated into the electrolytic solution reservoir and the pores of the matrix. The desired purpose can be achieved by supplying dry air or nitrogen to the compartment to remove water from the electrolyte and concentrate it to a predetermined concentration, while also moving the electrolyte from the electrolyte reservoir into the matrix. If the material and particle size are selected accordingly, the electrolyte reservoir retains almost no electrolyte at operating temperatures, so the cell properties can be maintained even during long-term operation or out-of-operation of the fuel cell. It has the effect of maintaining performance.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例の概略構成図である。 1:燃料電池、4:マトリツクス、5:電解液
区画室、10,11:ガス区画室、18,19,
20,21:溝部、22:電解液リザーバ。
The figure is a schematic configuration diagram of an embodiment of the present invention. 1: Fuel cell, 4: Matrix, 5: Electrolyte compartment, 10, 11: Gas compartment, 18, 19,
20, 21: Groove, 22: Electrolyte reservoir.

Claims (1)

【特許請求の範囲】[Claims] 1 反応ガスが流通するガス区画室と、吸湿性電
解液が含浸されるマトリツクスと、電解液リザー
バとを備えた燃料電池のマトリツクスへの電解液
含浸方法において、前記マトリツクスおよび電解
液リザーバに低濃度電解液を含浸し、前記燃料電
池の作動温度を有する乾燥ガスを前記ガス区画室
へ供給することを特徴とする燃料電池のマトリツ
クスへの電解液含浸方法。
1. A method for impregnating a matrix of a fuel cell with an electrolyte, comprising a gas compartment through which a reactive gas flows, a matrix impregnated with a hygroscopic electrolyte, and an electrolyte reservoir, wherein the matrix and the electrolyte reservoir are impregnated with a low concentration. A method for impregnating a matrix of a fuel cell with an electrolyte, characterized in that a dry gas having an operating temperature of the fuel cell is supplied to the gas compartment.
JP57047467A 1982-03-26 1982-03-26 Fixed electrolyte fuel cell Granted JPS58165268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57047467A JPS58165268A (en) 1982-03-26 1982-03-26 Fixed electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57047467A JPS58165268A (en) 1982-03-26 1982-03-26 Fixed electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPS58165268A JPS58165268A (en) 1983-09-30
JPS6340024B2 true JPS6340024B2 (en) 1988-08-09

Family

ID=12775950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57047467A Granted JPS58165268A (en) 1982-03-26 1982-03-26 Fixed electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPS58165268A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144969A (en) * 1984-08-09 1986-03-04 Nippon Telegr & Teleph Corp <Ntt> Bondable composition and production of optical member by using same
JPS6132360A (en) * 1984-07-23 1986-02-15 Hitachi Ltd Fuel cell
US4612262A (en) * 1984-08-06 1986-09-16 United Technologies Corporation Process for adding electrolyte to a fuel cell stack
US4596749A (en) * 1984-08-06 1986-06-24 United Technologies Corporation Method and apparatus for adding electrolyte to a fuel cell stack

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INDUSTRIAL AND ENGIEERING CHEMISTRY=1952 *

Also Published As

Publication number Publication date
JPS58165268A (en) 1983-09-30

Similar Documents

Publication Publication Date Title
CA1309127C (en) Solid polymer electrolyte fuel cell system with porous plate evaporative cooling
KR100607310B1 (en) Polymer-electrolyte membrane fuel cell
US6451470B1 (en) Gas diffusion electrode with reduced diffusing capacity for water and polymer electrolyte membrane fuel cells
JP3559693B2 (en) Solid polymer electrolyte fuel cell
JPS6340024B2 (en)
JPS6340025B2 (en)
JP3515161B2 (en) Solid polymer electrolyte fuel cell
JP4238423B2 (en) Carbon sheet manufacturing method and fuel cell electrode manufacturing method
JPS624832B2 (en)
JP2008147145A (en) Fuel cell, and manufacturing method of this fuel cell
KR101300290B1 (en) Liquid electrolyte fuel cell having an anode substrate layer thicker than the cathode substrate layer
JP2004071297A (en) Solid polyelectrolyte type fuel cell, separator for solid polyelectrolyte type fuel cell, and manufacturing method of that separator
JP2002216777A (en) Polymer electrolyte fuel cell
JPH09283154A (en) Electrode for solid high molecular fuel cell
JP4468501B2 (en) Humidifying member for polymer electrolyte fuel cell
JP4206710B2 (en) Polymer electrolyte fuel cell stack
JP2633522B2 (en) Fuel cell
JP2010015805A (en) Fuel cell
JPH07262997A (en) Electrode base for fuel cell
JP2001513940A (en) Gas diffusion electrode and polymer electrolyte membrane fuel cell with low water diffusion capacity
JPH10270063A (en) Phosphatic fuel cell
JPS6258110B2 (en)
JPH0695459B2 (en) Fuel cell
JPH081803B2 (en) Fuel cell
JPH07254421A (en) Fuel cell