JPS6339801B2 - - Google Patents

Info

Publication number
JPS6339801B2
JPS6339801B2 JP58221711A JP22171183A JPS6339801B2 JP S6339801 B2 JPS6339801 B2 JP S6339801B2 JP 58221711 A JP58221711 A JP 58221711A JP 22171183 A JP22171183 A JP 22171183A JP S6339801 B2 JPS6339801 B2 JP S6339801B2
Authority
JP
Japan
Prior art keywords
passage
combustor
row
air
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58221711A
Other languages
Japanese (ja)
Other versions
JPS60114616A (en
Inventor
Kenji Mori
Hidekazu Harada
Kunpei Ozaki
Michihiro Shiraha
Chikatoshi Kurata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP58221711A priority Critical patent/JPS60114616A/en
Publication of JPS60114616A publication Critical patent/JPS60114616A/en
Publication of JPS6339801B2 publication Critical patent/JPS6339801B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/04Arrangements of recuperators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)
  • Air Supply (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、セラミツクハニカムの一体構造物
で燃焼器の本体が形成され、排ガスと燃焼用の空
気および燃料との間で熱交換を行なわせ、かつ、
面燃焼により被加熱体を均一に加熱させるセラミ
ツクハニカム燃焼器に関するものである。
Detailed Description of the Invention (Industrial Application Field) This invention has a combustor main body formed of an integral structure of ceramic honeycomb, which enables heat exchange between exhaust gas, combustion air, and fuel. ,and,
This invention relates to a ceramic honeycomb combustor that uniformly heats a heated object through surface combustion.

(従来技術) 燃焼器により被加熱体を効率よく加熱するため
には、排熱回収を行なう、すなわち、燃焼器から
の排ガスと燃焼器へ供給される空気および燃料と
の間で熱交換を行なわせるとよい。
(Prior art) In order to efficiently heat an object to be heated by a combustor, exhaust heat recovery is performed, that is, heat exchange is performed between the exhaust gas from the combustor and the air and fuel supplied to the combustor. It is better to let

一方、燃料と空気を多数の通路から燃焼部分の
全体にわたつて均一に供給して、いわゆる面燃焼
を行なわせると、単一の通路から燃料と空気を供
給する通常燃焼と比較して、被加熱体を均一に加
熱できるうえに、火炎面積が大きくなつて火炎か
らの熱放射量が多くなり、火炎最高温度が低下す
る利点がある。
On the other hand, if fuel and air are uniformly supplied throughout the combustion section from multiple passages, resulting in so-called surface combustion, the combustion area will be much lower compared to normal combustion where fuel and air are supplied from a single passage. In addition to being able to uniformly heat the heating element, the area of the flame becomes larger and the amount of heat radiated from the flame increases, which has the advantage of lowering the maximum flame temperature.

そこで、被加熱体を効率よく、かつ均一に加熱
するためには、排熱回収を行ないつつ、面燃焼さ
せるのがよいことがわかる。ところが、そうする
ためには、従来つぎのような問題があつた。
Therefore, in order to efficiently and uniformly heat the object to be heated, it is found that it is better to carry out surface combustion while recovering exhaust heat. However, in order to do so, the following problems have conventionally occurred.

つまり、排熱回収を行なうと加熱の効率は向上
するが、 (1) 排熱回収を行なう従来の燃焼器は、バーナ部
と熱交換部とが別体になつているため、燃焼器
全体が大型化するうえに、製造組立が面倒で生
産性に劣る。
In other words, waste heat recovery improves heating efficiency, but (1) in conventional combustors that recover waste heat, the burner section and heat exchange section are separate, so the entire combustor In addition to being large in size, manufacturing and assembly is troublesome and productivity is poor.

(2) 面燃焼を行なう従来の燃焼器(たとえばシユ
バンク式ガスバーナ)は、燃料と空気を予め混
合してから燃焼部分に供給する予混合燃焼方式
であるため、この燃焼器に排熱回収の機能を付
加すると、空気温度が上昇して逆火を発生し、
燃焼が継続できなくなる。つまり、従来の面燃
焼は不可能になり、被加熱体に均一加熱が困難
となる。
(2) Conventional combustors that perform surface combustion (for example, Schwank gas burners) use a premix combustion method in which fuel and air are mixed in advance and then supplied to the combustion section. When added, the air temperature rises and flashback occurs,
Combustion cannot continue. In other words, the conventional surface combustion becomes impossible, and it becomes difficult to uniformly heat the object to be heated.

他方、面燃焼を行なうと均一加熱はできるが、
(1)上記したように、燃料と空気を予混合する必要
上、逆火の発生を防止するために空気温度を上げ
ることができず、その結果、充分な排熱回収がで
きなくなつて、加熱効率が低下する。
On the other hand, surface combustion allows for uniform heating, but
(1) As mentioned above, due to the need to premix fuel and air, it is not possible to raise the air temperature to prevent flashback, and as a result, sufficient exhaust heat recovery is not possible. Heating efficiency decreases.

(発明の目的) この発明は、上記従来の問題に鑑みてなされた
もので、小型軽量であり、生産性に優れていなが
ら、排ガスにより空気予熱を行ないつつ面燃焼を
行なわせ、被加熱体を高効率で、かつ均一に加熱
できる等の優れた特性を有するセラミツクハニカ
ム燃焼器を提供することを目的とする。
(Purpose of the Invention) This invention was made in view of the above-mentioned conventional problems.It is small and lightweight, has excellent productivity, and performs surface combustion while preheating the air with exhaust gas, thereby heating the heated object. It is an object of the present invention to provide a ceramic honeycomb combustor that has excellent characteristics such as high efficiency and uniform heating.

(発明の構成) 上記目的を達成するために、この発明は、燃焼
器本体を、軸方向に延びる直線状の通路を多数寄
せ集めた横断面ハニカム形状のセラミツクス一体
構造物で形成し、上記多数の通路を、上記軸方向
に延びて上記燃焼器本体の前後端面に開口する第
1の通路列と、通路に閉塞部材が設けられて、一
端部が燃焼器本体の1つの側面に設けられた貫通
孔に連通し、他端部が燃焼器本体の前端面に開口
する第2の通路列と、通路に閉塞部材が設けられ
て、一端部が燃焼器本体の他の側面に設けられた
貫通孔に連通し、他端部が燃焼器本体の前端面に
開口する第3の通路列とから構成する一方で、上
記燃焼器本体の前端側に、火炎を保持するための
空間を介して上記3つの通路列の開口を覆う被加
熱体を配置し、上記第1ないし第3の通路列のそ
れぞれを、上記排ガス、空気もしくは燃料からな
る流体のうちのいずれか1つが流れる通路列と
し、かつ燃料が流れる通路列の両側に空気が流れ
る通路列を配置し、この空気が流れる通路列に隣
接して排ガスが流れる通路列を配置している。
(Structure of the Invention) In order to achieve the above-mentioned object, the present invention forms a combustor main body with a ceramic integral structure having a honeycomb-shaped cross section in which a large number of linear passages extending in the axial direction are gathered together, and a first row of passages extending in the axial direction and opening at the front and rear end surfaces of the combustor body; and a closing member provided in the passage, one end of which is provided on one side surface of the combustor body. a second row of passages that communicate with the through holes and whose other ends are open to the front end surface of the combustor body; and a through hole in which the passages are provided with closing members and whose one ends are provided on the other side of the combustor body. a third row of passages communicating with the holes and having the other end opening at the front end surface of the combustor body; A heated body is arranged to cover the openings of the three passage rows, and each of the first to third passage rows is a passage row through which any one of the fluids consisting of exhaust gas, air, or fuel flows, and A passage row through which air flows is arranged on both sides of a passage row through which fuel flows, and a passage row through which exhaust gas flows is arranged adjacent to this passage row through which air flows.

これにより、バーナ部と熱交換部とを一体化し
て、小型軽量化を実現し、さらに、燃焼器本体を
セラミツクハニカムの押出し成形で造つたのち、
セラミツクハニカムの燃成前に、この燃焼器本体
に簡単な二次加工を程こすだけで燃焼器を得るこ
とができるようにして、生産性の向上をも実現し
ている。また、燃料と空気を多くの通路から別個
に燃焼部分に供給して面燃焼を行なわせ、排ガス
による充分な空気予熱と均一加熱を両立させてい
る。さらに、3つの通路列の上記した特別の配置
により、排ガスの高熱により燃料が炭化するのを
防止するとともに、空気と排ガス間の熱交換効率
を高めている。
As a result, the burner part and the heat exchange part are integrated, making it smaller and lighter.Furthermore, after making the combustor body by extrusion molding of ceramic honeycomb,
Prior to combustion of the ceramic honeycomb, the combustor can be obtained by simply performing secondary processing on the combustor body, thereby improving productivity. In addition, fuel and air are separately supplied to the combustion section through many passages to achieve surface combustion, thereby achieving both sufficient air preheating by exhaust gas and uniform heating. Furthermore, the above-mentioned special arrangement of the three rows of passages prevents the fuel from carbonizing due to the high heat of the exhaust gas, and increases the efficiency of heat exchange between the air and the exhaust gas.

(実施例) 以下、この発明の実施例を図面にしたがつて説
明する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図において、11はセラミツクスの一体構
造物からなる燃焼器本体で、軸方向12に延びる
直線状の通路13を多数寄せ集めて、第2図に示
すように、横断面ハニカム形状を呈している。こ
の燃焼器本体11は、粘土状のセラミツクス材料
をハニカム形状のダイスから押出し成形すること
により造られる。
In FIG. 1, reference numeral 11 denotes a combustor body made of an integral structure of ceramics, which has a honeycomb shape in cross section as shown in FIG. There is. The combustor body 11 is made by extruding a clay-like ceramic material through a honeycomb-shaped die.

ここで、ハニカム形状とは、3角形、4角形、
およびそれ以上の多角形を軸方向12から見て、
上下左右に多数重合して配列した形状を言い、こ
の例では、4角形を多数隣接させたものとしてい
る。また、一体構造物とは、上記押出し成形のよ
うに、初めから一体物として形成されたものを言
い、複数の部品を後から積層するような手段で一
体化したものを含まない。
Here, the honeycomb shape is triangular, quadrilateral,
and more polygons viewed from the axial direction 12,
It refers to a shape in which a large number of squares are arranged vertically and horizontally, and in this example, a large number of quadrangles are arranged adjacent to each other. Furthermore, the term "integral structure" refers to something that is formed as a single piece from the beginning, such as by extrusion molding, and does not include something that is integrated by laminating a plurality of parts later.

上記多数の通路13は、第1図に示すように、
上記燃焼器本体11の前後端面14,15に開口
する第1の通路列16と、燃焼器本体11の上側
面17と上記前端面14とに開口する第2の通路
列19と、燃焼器本体11の下側面20と上記前
端面14とに開口する第3の通路列21とで構成
されている。
As shown in FIG. 1, the numerous passages 13 are as follows:
A first passage row 16 that opens to the front and rear end surfaces 14 and 15 of the combustor main body 11, a second passage row 19 that opens to the upper surface 17 of the combustor main body 11 and the front end surface 14, and a combustor main body 11 and a third passage row 21 opening to the front end surface 14.

上記第1の通路列16は、第3図に明示するよ
うに、燃焼器本体11に上記軸方向12に延びて
上記燃焼器本体11の前後端面14,15に開口
している。
As clearly shown in FIG. 3, the first passage row 16 extends in the axial direction 12 of the combustor main body 11 and opens into the front and rear end surfaces 14 and 15 of the combustor main body 11.

また、上記第2の通路列19は、第4図に明示
するように、通路13の途中に閉塞部材22が設
けられ、この閉塞された一端部19aが、燃焼器
本体11の上側面17に設けられた貫通孔23に
連通し、他端部19bが燃焼器本体11の前端面
14に開口している。上記閉塞部材22は、通路
13の途中ではなく、後端部13aに設けてもよ
い。
Further, as clearly shown in FIG. 4, in the second passage row 19, a closing member 22 is provided in the middle of the passage 13, and this closed end 19a is attached to the upper side 17 of the combustor main body 11. It communicates with the provided through hole 23, and the other end 19b opens to the front end surface 14 of the combustor main body 11. The closing member 22 may be provided not in the middle of the passage 13 but at the rear end 13a.

上記第3の通路列21は、第5図に明示するよ
うに、通路13の後端部13aに閉塞部材22が
設けられて、一端部21aが燃焼器本体11の下
側面20に設けられた貫通孔24に連通し、他端
部21bが燃焼器本体11の前端面14に開口し
ている。
As clearly shown in FIG. 5, the third passage row 21 has a closing member 22 provided at the rear end 13a of the passage 13, and one end 21a provided on the lower surface 20 of the combustor main body 11. It communicates with the through hole 24, and the other end 21b opens to the front end surface 14 of the combustor main body 11.

上記第1ないし第3の通路列16,19,21
のそれぞれは、排ガス、空気もしくは燃料からな
る流体のうちのいずれか1つが流れる通路列とさ
れ、かつ上記3つの通路列16,19,21を流
れる流体が互いに異なるようにされるのである
が、この実施例では、第1図に示すように、上記
第1の通路列16に排ガス25を、上記第2の通
路列19に燃料26を、上記第3の通路列21に
空気27をそれぞれ矢印方向に流している。
The first to third passage rows 16, 19, 21
Each of these is a passage row through which one of the fluids consisting of exhaust gas, air, or fuel flows, and the fluids flowing through the three passage rows 16, 19, and 21 are different from each other. In this embodiment, as shown in FIG. 1, exhaust gas 25 is directed to the first passage row 16, fuel 26 is directed to the second passage row 19, and air 27 is directed to the third passage row 21, as indicated by the arrows. flowing in the direction.

また、上記燃焼器本体11の前端側には、第6
図に示すように、火炎を保持するための空間29
を介して上記3つの通路列16,19,21の開
口を覆う板状の被加熱体30が配置され、この被
加熱体30は、ブラケツト31を介して燃焼器本
体11に漏れのないように固定されている。
Further, on the front end side of the combustor main body 11, a sixth
Space 29 for holding the flame as shown in the figure
A plate-shaped heated body 30 is arranged to cover the openings of the three passage rows 16, 19, and 21, and this heated body 30 is inserted into the combustor main body 11 through the bracket 31 so that there is no leakage. Fixed.

ところで、上記3つの通路列16,19,21
はどのように組み合わせてもよいのであるが、こ
の実施例では、燃料26が流れる第2の通路列1
9の両側に空気27が流れる第3の通路列21を
配置し、第3の通路列21に隣接して排ガス25
が流れる第1の通路列16を配置しており、これ
によつて、排ガス25の高熱で燃料26が炭化す
るのを防止する一方で、排ガス25と空気27と
の間で熱交換を行なわせて、空気27を予熱して
いる。
By the way, the three passage rows 16, 19, 21
may be combined in any way, but in this embodiment, the second passage row 1 through which the fuel 26 flows
A third passage row 21 through which air 27 flows is arranged on both sides of the exhaust gas 25 adjacent to the third passage row 21.
A first row of passages 16 through which fuel flows is arranged, thereby preventing the fuel 26 from being carbonized due to the high heat of the exhaust gas 25 while allowing heat exchange to occur between the exhaust gas 25 and the air 27. The air 27 is preheated.

さらに、この実施例では、燃料26が流れる第
2の通路列19と空気27が流れる第3の通路列
21とを仕切る通路壁33の前端縁33aが、他
の通路列間、すなわち、空気27が流れる第3の
通路列21と排ガス25が流れる第1の通路列1
6とを仕切る通路壁34の前端縁34aよりも、
後方に設定されている。これにより、燃料26と
空気27は、空間29に入る前に十分混合される
ことになり、燃焼効率が向上する。また、上記通
路壁33の前端縁33aは、押しつぶされて若干
膨らんだ膨出部となつており、この膨出部が、空
気27を乱して保炎の働きをする。
Further, in this embodiment, the front end edge 33a of the passage wall 33 that partitions the second passage row 19 through which the fuel 26 flows and the third passage row 21 through which the air 27 flows is located between the other passage rows, that is, between the air 27 The third passage row 21 through which the gas flows and the first passage row 1 through which the exhaust gas 25 flows
6 and the front edge 34a of the passage wall 34 that partitions the
It is set backwards. Thereby, the fuel 26 and the air 27 are sufficiently mixed before entering the space 29, improving combustion efficiency. Further, the front end edge 33a of the passage wall 33 is crushed to form a slightly swollen bulge, and this bulge disturbs the air 27 and functions to stabilize the flame.

こうして得られた燃焼器35を実際に使用する
際には、第7図に示すように、燃料ヘツダ36お
よび燃料管37と、空気ヘツダ38および空気管
39とをそれぞれ接続するとよい。
When actually using the combustor 35 obtained in this way, it is preferable to connect the fuel header 36 and fuel pipe 37 to the air header 38 and air pipe 39, respectively, as shown in FIG.

つぎに、第1図の燃焼器本体11の製造方法の
一例について説明する。
Next, an example of a method for manufacturing the combustor main body 11 shown in FIG. 1 will be described.

まず、粘土状のセラミツクス材料をハニカム形
状のダイスから押出し成形することにより、第8
図Aに示す燃焼器本体11を造る。このようなセ
ラミツクハニカム構造物は、既に自動車において
排気浄化用の三元触媒装置の触媒担体として広く
使用されている。
First, by extruding a clay-like ceramic material through a honeycomb-shaped die,
The combustor main body 11 shown in Figure A is manufactured. Such ceramic honeycomb structures have already been widely used as catalyst carriers in three-way catalyst devices for exhaust purification in automobiles.

つぎに、第8図Bに示すように、燃焼器本体1
の上側面17からカツタで切り込んで貫通孔23
を設け、この貫通孔23の後ろ側に、燃焼器本体
11と同一のセラミツクス材料からなる閉塞部材
22を詰め込んで、第2の通路列19を形成す
る。
Next, as shown in FIG. 8B, the combustor main body 1
A through hole 23 is cut from the upper side 17 of the
A closing member 22 made of the same ceramic material as the combustor main body 11 is packed behind the through hole 23 to form a second passage row 19.

さらに、第8図Cに示すように、燃焼器本体1
の下側面20からカツタで切り込んで貫通孔24
を設け、この貫通孔24の後ろ側に、燃焼器本体
11と同一のセラミツクス材料からなる閉塞部材
22を詰め込んで、第3の通路列21を形成す
る。
Furthermore, as shown in FIG. 8C, the combustor main body 1
A through hole 24 is cut from the lower side 20 of the
A closing member 22 made of the same ceramic material as the combustor main body 11 is packed behind the through hole 24 to form a third passage row 21.

第8図Aの多数の通路13のうち、閉塞されな
い通路列は第1の通路列16となる。
Among the many passages 13 in FIG. 8A, the passage row that is not blocked is the first passage row 16.

最後に、全体を焼成して、第8図Dに示す燃焼
器本体11を完成する。
Finally, the entire body is fired to complete the combustor main body 11 shown in FIG. 8D.

この発明の燃焼器35は上記のような構成にな
つており、第6図の第2の通路列19と第3の通
路列21を通つて、燃料26と空気27が空間2
9に入り、燃焼したのち、その排ガス25が第1
の通路列16を通つて排出される。
The combustor 35 of the present invention has the above-described configuration, and fuel 26 and air 27 are supplied to the space 2 through the second passage row 19 and the third passage row 21 shown in FIG.
9 and after combustion, the exhaust gas 25 enters the first
is discharged through a row of passages 16.

ここで、燃焼器本体11の前端部にバーナ部が
形成され、燃焼器本体11の上記バーナ部も含め
た全長にわたつて熱交換部が形成されているか
ら、すなわち、バーナ部と熱交換部とが一体形成
されているから、燃焼器35全体が小型で軽量に
なるとともに、製造組立が簡単になり、生産性が
向上する。
Here, a burner part is formed at the front end of the combustor main body 11, and a heat exchange part is formed over the entire length of the combustor main body 11, including the burner part. Since these are integrally formed, the entire combustor 35 becomes smaller and lighter, and manufacturing and assembly becomes easier, improving productivity.

また、多数の通路13で構成された各通路列1
6,19,21に排ガス25、燃料26、空気2
7を流すから、排ガスの熱回収が有効に行なわれ
るとともに、拡散燃焼による面燃焼が可能にな
り、熱流束が均一化され、被加熱体30にホツト
スポツトが発生しなくなる。ここで、上記燃料2
6と空気27は、燃焼部分である空間29に入つ
て初めて混合されるから、すなわち、従来のよう
な予混合式ではないから、逆火は全く生じない。
In addition, each passage row 1 composed of a large number of passages 13
6, 19, 21, exhaust gas 25, fuel 26, air 2
7, the heat of the exhaust gas is effectively recovered, surface combustion by diffusion combustion is possible, the heat flux is made uniform, and hot spots are not generated on the heated body 30. Here, the above fuel 2
6 and air 27 are mixed only after entering the space 29 which is the combustion part, that is, the premixing method is not used as in the conventional case, so no flashback occurs at all.

さらに、燃焼器本体11の前面全体を火炎面積
とすることができるので、火炎面積が大きくな
り、しかも、バーナ部である燃焼器本体11の前
端面14を被加熱体30に直交して接近させてイ
ンピンジ効果を利用することができるので、火炎
から被加熱体30への熱伝達が良好になされる。
Furthermore, since the entire front surface of the combustor main body 11 can be used as the flame area, the flame area becomes large, and the front end surface 14 of the combustor main body 11, which is a burner section, can be orthogonally approached to the heated body 30. Since the impingement effect can be utilized, heat transfer from the flame to the object to be heated 30 is improved.

また、熱伝達が良好な分だけ火炎温度が低下す
るので、各構造部材の熱負荷が軽減されるととも
に、窒素酸化物の排出量の減少、および、放熱損
失の低減が実現される。
Furthermore, since the flame temperature is lowered by the improvement in heat transfer, the thermal load on each structural member is reduced, and the amount of nitrogen oxide emissions and heat radiation loss are reduced.

さらに、燃焼器本体11は、断面ハニカムの一
体構造物からなるので、均質であつて通路壁間の
継き目がないから、熱伝達が均一になされて熱交
換効率が向上し、燃料消費率が向上するうえに、
流体抵抗が小さくなり、加えて、強度上も有利で
ある。しかも、セラミツクスの一体構造物である
から、高い強度を維持しながら、通路壁33,3
4を薄く形成できるので、熱伝達が良好になり、
熱交換効率が一層向上する。その結果、排ガス2
5や空気27の予熱が充分に行なわれるので、必
要ならば、火炎温度を高めて、燃えにくい低カロ
リー燃料を燃やすこともできる。
Furthermore, since the combustor main body 11 is made of an integral structure with a honeycomb cross section, it is homogeneous and there are no joints between passage walls, so heat transfer is uniform, heat exchange efficiency is improved, and fuel consumption rate is improved. In addition to improving
Fluid resistance is reduced, and in addition, it is advantageous in terms of strength. Moreover, since it is an integral structure made of ceramics, it maintains high strength while maintaining the passage walls 33, 3.
4 can be made thinner, which improves heat transfer.
Heat exchange efficiency is further improved. As a result, exhaust gas 2
5 and air 27 are sufficiently preheated, if necessary, the flame temperature can be raised to burn a low-calorie fuel that is difficult to burn.

ここで、各通路列16,19,21がハニカム
構造であるから、つぎの理由により、排ガス25
から空気27および燃料26への熱回収率が向上
するとともに、燃料26および空気27の片寄り
がなくなつて、効率よい面燃焼が可能になる。
Here, since each passage row 16, 19, 21 has a honeycomb structure, the exhaust gas 25
The rate of heat recovery from the fuel to the air 27 and the fuel 26 is improved, and the fuel 26 and the air 27 are no longer unevenly distributed, allowing efficient surface combustion.

すなわち、第12図Aに示すように、各通路1
6,19,21には、横壁16a,19a,21
aがあるから、排ガス25から空気27への熱伝
達は、まず、通路34と上記横壁16aの両方か
ら、それぞれ矢印a1,a2で示すように、排ガス2
5の熱を吸収し、つぎに、この熱を、上記通路壁
34と上記横壁21aの両方から、それぞれ矢印
b1,b2で示すように、空気27に与える。つま
り、大きな伝熱面積によつて、大量の熱が伝達さ
れる。言い換えれば、排ガス25の通路16に対
しては横壁16aが、空気27の通路21に対し
ては横壁21aが、それぞれ伝熱フインとして作
用する、いわゆるフイン効果が生じる結果、熱伝
達量が著しく増大するのである。
That is, as shown in FIG. 12A, each passage 1
6, 19, 21, horizontal walls 16a, 19a, 21
Since there is a, heat transfer from the exhaust gas 25 to the air 27 first occurs from both the passage 34 and the side wall 16a, as shown by arrows a 1 and a 2 , respectively, from the exhaust gas 25 to the air 27.
5 is absorbed, and then this heat is transferred from both the passage wall 34 and the side wall 21a, respectively in the directions indicated by the arrows.
It is applied to the air 27 as shown by b 1 and b 2 . In other words, a large amount of heat is transferred due to the large heat transfer area. In other words, the lateral wall 16a acts as a heat transfer fin for the passage 16 of the exhaust gas 25, and the lateral wall 21a acts as a heat transfer fin for the passage 21 of the air 27, resulting in a significant increase in the amount of heat transfer. That's what I do.

この現象は、たとえば第12図Bのように、単
純な縦長の通路16A,19A,21Aを形成し
た場合と比べれば容易に理解できる。この第12
図Bでは、排ガスと空気間および空気と燃料間の
伝熱面積は、それぞれ通路壁34A,33Aのみ
であるから、たとえば排ガスから空気への伝熱経
路はa1,b1のみとなり、上記第12図Aの場合と
比較して、熱伝達量は数分の1に過ぎない。
This phenomenon can be easily understood when compared with the case where simple longitudinal passages 16A, 19A, and 21A are formed as shown in FIG. 12B, for example. This twelfth
In Figure B, the heat transfer areas between exhaust gas and air and between air and fuel are only passage walls 34A and 33A, respectively, so for example, the heat transfer paths from exhaust gas to air are only a 1 and b 1 , and the Compared to the case in Figure 12A, the amount of heat transfer is only a fraction.

第12図Aの空気27から燃料26への熱伝達
量も同様の理由により増大する。
The amount of heat transferred from the air 27 to the fuel 26 in FIG. 12A also increases for the same reason.

また、第12図Aの構成では、燃料26および
空気27が上下左右に分散しているから、上記燃
料26および空気27は、第6図の燃焼器本体1
1の前端面14から燃焼部である空間29へ、片
寄りのない2次元的に均一な分布で流入するの
で、効率のよい面燃焼が可能になる。
In addition, in the configuration of FIG. 12A, the fuel 26 and air 27 are dispersed vertically and horizontally, so the fuel 26 and air 27 are distributed in the combustor body 1 of FIG.
Since the fuel flows from the front end surface 14 of 1 into the space 29, which is the combustion section, in a two-dimensionally uniform distribution without deviation, efficient surface combustion is possible.

これに対し、第12図Bの通路構成では、燃料
26および空気27の流れが縦方向に片寄る現
象、たとえば通路19A,21Aの上部に集中す
る現象が起きやすくなるので、この通路構成を面
燃焼タイプの燃焼器に用いても、均一な面燃焼が
得られない欠点がある。
On the other hand, in the passage configuration shown in FIG. 12B, the flow of fuel 26 and air 27 is likely to be concentrated in the vertical direction, for example, concentrated in the upper part of passages 19A and 21A. Even when used in a type of combustor, it has the disadvantage that uniform surface combustion cannot be achieved.

また、セラミツクハニカムの押出し成形で燃焼
器本体11を造つておき、この燃焼器本体11に
簡単な二次加工、すなわち、カツタでの切り込み
と、閉塞部材22の詰込みとを行なうだけで燃焼
器本体11を製造することができるから、生産性
が極めて良好である。
In addition, the combustor main body 11 is made by extrusion molding of ceramic honeycomb, and the combustor main body 11 is subjected to simple secondary processing, that is, cutting with a cutter and stuffing the closing member 22 into the combustor main body 11. Since the main body 11 can be manufactured, productivity is extremely high.

第9図はこの発明の第2の実施例を示すもの
で、燃焼器本体11の前端面14に発泡セラミツ
クからなる通気性赤熱体41を取り付けたうえ
で、被加熱体30を装着している。こうすると、
第10図に示すように、通気性赤熱体41の内部
で燃料26と空気27の混合が促進され、燃焼効
率が向上する。また、通気性赤熱体41がふく射
熱を大量に出し、被加熱体30が有効に加熱され
るとともに、通気性赤熱体41が排ガス25から
も熱を吸収してふく射熱を出すので、被加熱体3
0へのより均一な加熱が行なわれる。さらに、通
気性赤熱体41により保炎がなされ、燃焼が安定
する。
FIG. 9 shows a second embodiment of the present invention, in which a breathable incandescent body 41 made of foamed ceramic is attached to the front end surface 14 of the combustor main body 11, and a heated body 30 is attached. . In this way,
As shown in FIG. 10, mixing of the fuel 26 and air 27 is promoted inside the breathable incandescent body 41, improving combustion efficiency. In addition, the breathable incandescent body 41 emits a large amount of radiant heat, and the object to be heated 30 is effectively heated, and the breathable incandescent body 41 also absorbs heat from the exhaust gas 25 and emits radiant heat, so that the object to be heated 30
A more uniform heating to 0 is achieved. Furthermore, flame holding is achieved by the breathable incandescent body 41, and combustion is stabilized.

また、第3の実施例として、第9図の通気性赤
熱体41に酸化触媒を含浸させたものを用いとよ
い。たとえば、通気性赤熱体41の前面41a
を、白金もしくはパラジウムのような酸化触媒の
溶融液に漬けて、上記前面41aに酸化触媒を付
着させる。これによれば、着火が容易になるとと
もに、燃焼効率が向上し、また、低い温度で燃焼
させることができるので、窒素酸化物が少なくな
る。
Further, as a third embodiment, it is preferable to use the breathable incandescent body 41 shown in FIG. 9 impregnated with an oxidation catalyst. For example, the front surface 41a of the breathable incandescent body 41
is immersed in a melt of an oxidation catalyst such as platinum or palladium to adhere the oxidation catalyst to the front surface 41a. According to this, ignition is facilitated, combustion efficiency is improved, and since combustion can be performed at a low temperature, nitrogen oxides are reduced.

さらに、上記した着火が容易になることから、
着火装置として従来のプラグを用いないで、第1
1図に示すように、ヒータ43を用いて空気27
を加熱するだけで、着火が可能になり、したがつ
て、着火装置が簡略化される。
Furthermore, since the above-mentioned ignition becomes easier,
Without using a conventional plug as an ignition device, the first
As shown in Figure 1, air 27 is heated using a heater 43.
It is possible to ignite by simply heating the ignition device, which simplifies the ignition device.

(発明の効果) 以上説明したように、この発明によれば、バー
ナ部と熱交換部とが一体形成されるから、燃焼器
全体が小型で軽量になるとともに、製造組立が簡
単になり、生産性が向上する。
(Effects of the Invention) As explained above, according to the present invention, since the burner section and the heat exchange section are integrally formed, the entire combustor becomes smaller and lighter, and manufacturing and assembly becomes easier. Improves sex.

また、排熱回収を行なつて加熱の効率を高めな
がら、拡散燃焼による面燃焼ができ、火炎温度が
低下し、熱流束が均一化され、被加熱体にホツト
スポツトが発生しなくなる。しかも、ハニカム構
造であるから、伝熱面積が大きくなるので、上記
排熱回収の効率が向上する。また、燃料が流れる
通路列の両側に空気が流れる通路列を配置したか
ら、排ガスの高熱による燃料の炭化が防止される
とともに、空気が流れる通路列に隣接して排ガス
が流れる通路列を配置したから、排ガスの熱によ
る空気の予熱が効率的になされる。さらに、被加
熱体への熱伝達が良好になされ、火炎温度が低下
することから、各構造部材の熱負荷が軽減される
とともに、窒素酸化物の排出量の低下、および、
放熱損失の低減が実現される。
In addition, while increasing the heating efficiency by recovering exhaust heat, surface combustion by diffusion combustion is possible, the flame temperature is lowered, the heat flux is made uniform, and hot spots are not generated on the heated object. Moreover, since the honeycomb structure has a large heat transfer area, the efficiency of exhaust heat recovery is improved. In addition, because the row of passages through which air flows are placed on both sides of the row of passages through which fuel flows, carbonization of the fuel due to the high heat of exhaust gas is prevented, and the row of passages through which exhaust gas flows is placed adjacent to the row of passages through which air flows. Therefore, the air is efficiently preheated by the heat of the exhaust gas. Furthermore, since heat transfer to the heated object is improved and the flame temperature is lowered, the thermal load on each structural member is reduced, and the amount of nitrogen oxide emissions is reduced.
A reduction in heat radiation loss is achieved.

また、燃焼器本体が横断面ハニカム形状で、セ
ラミツクスのの一体構造物からなるので、均質で
あつて継ぎ目がなく、通路壁も薄くできるから、
熱交換効率が向上して、燃料消費率が向上するう
えに、流体抵抗が小さくなり、しかも、強度上も
有利である。さらに、セラミツクハニカムの押出
し成形で能率良く燃焼器本体を造つて、この燃焼
器本体に簡単な二次加工を施すだけで燃焼器を得
ることができるから、生産性が極めて良好であ
る。
In addition, since the combustor body has a honeycomb cross-section and is made of an integral ceramic structure, it is homogeneous and seamless, and the passage walls can be made thinner.
Heat exchange efficiency is improved, fuel consumption rate is improved, fluid resistance is reduced, and strength is also advantageous. Furthermore, the combustor body can be efficiently manufactured by extrusion molding of ceramic honeycomb, and the combustor can be obtained by simply performing a simple secondary process on the combustor body, resulting in extremely high productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1の実施例を示す斜視
図、第2図は同実施例の横断面図、第3図ないし
第5図同実施例の要部を示す切欠した斜視図、第
6図は同実施例の平面断面図、第7図は同実施例
を用いた燃焼システムの一例を示す概略断面図、
第8図は同実施例の製造工程を示す工程図、第9
図は第2の実施例を示す斜視図、第10図は同実
施例の要部を示す横断面図、第11図は第3の実
施例を用いた場合の着火装置を示す概略構成図、
第12図はこの発明の作用を示す横断面図であ
る。 11……燃焼器本体、12……軸方向、13…
…通路、14……前端面、15……後端面、16
……第1の通路列、17……1つの側面、19…
…第2の通路列、19a……一端部、19b……
他端部、20……他の側面、21……第3の通路
列、20a……一端部、20b……他端部、22
……閉塞部材、23,24……貫通孔、25……
排ガス、26……燃料、27……空気、33,3
4……通路壁、29……空間、30……被加熱
体。
FIG. 1 is a perspective view showing a first embodiment of the present invention, FIG. 2 is a cross-sectional view of the same embodiment, FIGS. 3 to 5 are cutaway perspective views showing essential parts of the same embodiment, and FIG. 6 is a plan sectional view of the same embodiment, and FIG. 7 is a schematic sectional view showing an example of a combustion system using the same embodiment.
FIG. 8 is a process diagram showing the manufacturing process of the same example, and FIG.
The figure is a perspective view showing the second embodiment, FIG. 10 is a cross-sectional view showing the main parts of the same embodiment, and FIG. 11 is a schematic configuration diagram showing the ignition device when using the third embodiment.
FIG. 12 is a cross-sectional view showing the operation of the present invention. 11... Combustor main body, 12... Axial direction, 13...
... Passage, 14... Front end surface, 15... Rear end surface, 16
...first aisle row, 17...one side, 19...
...Second passage row, 19a...One end, 19b...
Other end, 20...Other side, 21...Third passage row, 20a...One end, 20b...Other end, 22
...Closing member, 23, 24...Through hole, 25...
Exhaust gas, 26...Fuel, 27...Air, 33,3
4... Passage wall, 29... Space, 30... Heated object.

Claims (1)

【特許請求の範囲】 1 燃焼器から排出される排ガスと、燃焼器へ供
給される空気および燃料との間で熱交換させたう
えで上記空気と燃料とを混合して燃焼させる燃焼
器において、軸方向に延びる直線状の通路を軸方
向から見て上下左右に多数重合して配列した横断
面ハニカム形状で、セラミツクスの一体構造物か
らなる燃焼器本体を有し、上記多数の通路は、上
記軸方向に延びて上記燃焼器本体の前後端面に開
口する第1の通路列と、通路に閉塞部材が設けら
れて、一端部が上記燃焼器本体の1つの側面に設
けられた貫通孔に連通し、他端部が燃焼器本体の
前端面に開口する第2の通路列と、通路に閉塞部
材が設けられて、一端部が燃焼器本体の他の側面
に設けられた貫通孔に連通し、他端部が燃焼器本
体の前端面に開口する第3の通路列とからなり、
上記燃焼器本体の前端側に、火炎を保持するため
の空間を介して上記3つの通路列の開口を覆う被
加熱体を配置し、上記第1ないし第3の通路列の
それぞれは、上記排ガス、空気もしくは燃料のい
ずれか1つが流れる通路列とされ、燃料が流れる
通路列の両側に空気が流れる通路列が配置され、
この空気が流れる通路列に隣接して排ガスが流れ
る通路列が配置されていることを特徴とするセラ
ミツクハニカム燃焼器。 2 燃料が流れる通路列と空気が流れる通路列と
を仕切る通路壁の前端縁が、他の通路列間の通路
壁の前端縁よりも後方に設定されている特許請求
の範囲第1項記載のセラミツクハニカム燃焼器。
[Claims] 1. A combustor that exchanges heat between exhaust gas discharged from the combustor and air and fuel supplied to the combustor, and then mixes and burns the air and fuel, It has a combustor main body made of an integral structure of ceramics and has a honeycomb cross-sectional shape in which a large number of straight passages extending in the axial direction are arranged vertically and horizontally overlapping each other when viewed from the axial direction. A first row of passages extending in the axial direction and opening at front and rear end surfaces of the combustor main body, and a closing member provided in the passage, one end communicating with a through hole provided on one side surface of the combustor main body. a second passage row whose other end opens at the front end surface of the combustor main body; a closing member is provided in the passage; and one end communicates with a through hole provided on the other side of the combustor main body. , and a third passage row whose other end opens at the front end surface of the combustor main body,
A heated body is disposed on the front end side of the combustor body to cover the openings of the three passage rows through a space for holding flame, and each of the first to third passage rows is connected to the exhaust gas. , a row of passages through which either air or fuel flows, and rows of passages through which air flows are arranged on both sides of the row of passages through which fuel flows,
A ceramic honeycomb combustor characterized in that a row of passages through which exhaust gas flows is arranged adjacent to a row of passages through which air flows. 2 The front end edge of the passage wall that partitions the passage row in which fuel flows and the passage row in which air flows is set further back than the front end edge of the passage wall between the other passage rows. Ceramic honeycomb combustor.
JP58221711A 1983-11-24 1983-11-24 Ceramic honeycomb burner Granted JPS60114616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58221711A JPS60114616A (en) 1983-11-24 1983-11-24 Ceramic honeycomb burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58221711A JPS60114616A (en) 1983-11-24 1983-11-24 Ceramic honeycomb burner

Publications (2)

Publication Number Publication Date
JPS60114616A JPS60114616A (en) 1985-06-21
JPS6339801B2 true JPS6339801B2 (en) 1988-08-08

Family

ID=16771067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58221711A Granted JPS60114616A (en) 1983-11-24 1983-11-24 Ceramic honeycomb burner

Country Status (1)

Country Link
JP (1) JPS60114616A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0324043B1 (en) * 1988-01-15 1991-09-04 WS Wärmeprozesstechnik GmbH Industrial burner using recuperative air preheating, especially for heating the chambers of industrial furnaces
EP1016826B1 (en) * 1998-12-28 2004-11-24 Robert Bosch Gmbh Gas burner and method of operating the same
DE19860460C2 (en) * 1998-12-28 2001-03-29 Bosch Gmbh Robert Integrated recuperative burner
DE10042761C1 (en) * 2000-06-20 2001-09-13 Bosch Gmbh Robert Gas burner, with counterflow heat exchanger for exhaust heat recovery, has parallel channels linking burner body with combustion chamber, and gas guide system to direct feed and exhaust flows
DE10043091C2 (en) * 2000-09-01 2002-11-14 Bosch Gmbh Robert Gas burner working according to the recuperator principle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5579921A (en) * 1978-12-09 1980-06-16 Kernforschungsanlage Juelich Ceramic burner chip adapted to separately feed combustion gas and oxidization agent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5579921A (en) * 1978-12-09 1980-06-16 Kernforschungsanlage Juelich Ceramic burner chip adapted to separately feed combustion gas and oxidization agent

Also Published As

Publication number Publication date
JPS60114616A (en) 1985-06-21

Similar Documents

Publication Publication Date Title
EP2467642B1 (en) Radiant burner
US5458484A (en) Pre-mix flame type burner
EP0889287B1 (en) Combustion apparatus
JP2682362B2 (en) Exhaust heat recovery type combustion device
WO2023151158A1 (en) Burner piece, burner and gas water heater
JPS6339801B2 (en)
JP5857502B2 (en) Combustion heater
JP3577150B2 (en) Gas burner for glass melting furnace
JPS61128014A (en) Petroleum combustion device
JP2526669B2 (en) Water heater
CN218993395U (en) Fire row, burner and gas water heater
JP3098382B2 (en) Surface burning burner
CN212842184U (en) Low nitrogen hanging stove of gas based on secondary air
JPH0220886B2 (en)
EP1016826B1 (en) Gas burner and method of operating the same
JPS6336038Y2 (en)
JP3319796B2 (en) Surface burner
JPH09257217A (en) Surface combustion burner and combustion furnace employing the same
JPH0457936B2 (en)
JPS6242213B2 (en)
KR100224373B1 (en) Combined structure with surface-flame type premixed combustor and air preheater for heat-driven heat pump
JP2001173905A (en) Exhaust gas circulating indirect heating pyrogen unit
JP3053700B2 (en) Concentration combustion device
JPS61147010A (en) High temperature radiation panel burner
DE102011119162A1 (en) Heat exchanger and arrangement of a heat exchanger in an exhaust passage of an internal combustion engine, in particular an internal combustion engine of a vehicle