JP3577150B2 - Gas burner for glass melting furnace - Google Patents

Gas burner for glass melting furnace Download PDF

Info

Publication number
JP3577150B2
JP3577150B2 JP32641995A JP32641995A JP3577150B2 JP 3577150 B2 JP3577150 B2 JP 3577150B2 JP 32641995 A JP32641995 A JP 32641995A JP 32641995 A JP32641995 A JP 32641995A JP 3577150 B2 JP3577150 B2 JP 3577150B2
Authority
JP
Japan
Prior art keywords
flame
auxiliary
main
flame hole
auxiliary flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32641995A
Other languages
Japanese (ja)
Other versions
JPH09145022A (en
Inventor
孝司 竜田
広一 市来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP32641995A priority Critical patent/JP3577150B2/en
Publication of JPH09145022A publication Critical patent/JPH09145022A/en
Application granted granted Critical
Publication of JP3577150B2 publication Critical patent/JP3577150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Description

【0001】
【産業上の利用分野】
本発明は蓄熱式の大型ガラス溶解炉(タンク窯)に用いるガスバーナに関するものである。
【0002】
【従来の技術】
一般に大型ガラス溶解炉には重油を燃料とするものが多いが、近年設備費の安いガス燃焼式も用いられるようになった。図1はガス燃焼式ガラス溶解炉の概略構造を示したもので、炉壁6に貫設されたガスバーナ9の火炎からの直射熱と天井からの反射熱によって、下方の溶解槽5を加熱するものであり、ガスバーナ9には燃料と空気を別々に炉内へ供給する先混合式を採用して、拡散燃焼により放射率の高い長炎を形成するようにしたものである。
【0003】
【発明が解決しようとする課題】
しかしガラス溶解炉は、炉内が1500〜1600℃ときわめて高温であるために熱伝達は輻射が支配的であり、一方LPGやメタン系のガス燃料を用いるガス燃焼式は、重油燃焼式に比し火炎の輻射強度が低く、特に火炎の根元の未燃焼部分が比較的長いために、バーナ9に近い側の温度が遠い側の温度に比しかなり低くなるという問題がある。図2は、炉内の温度分布を天井の3箇所に設けた温度センサT1 , T2 , T3 により測定したもので、同図中破線は従来の単孔型ガスバーナ9を使用した場合の温度分布であるが、実線で示した理想温度分布に比し、火炎の最大放射部分が先端側に偏っていることが分かる。
【0004】
図3はこれを改善するために試みられた分岐型ガスバーナの構造を示したもので、主ガスノズル11から補助ガスノズル12を分岐して、それぞれ炉壁6に複数穿設したバーナ挿通孔10に嵌挿し、補助炎孔の口径を主炎孔よりも小さくすることによって、主炎よりも火炎長の短い補助炎を噴出するようにしたものである。この構成によれば、主ガスノズル11と補助ガスノズル12の間に火炎同士が混じり合わない程度の距離が確保されるために、補助炎は主炎に影響されることなく独立に燃焼し、それによって主炎の根元の低温部分の側方に補助炎の最大放射部分がくるように構成することが可能となり、主炎の長さを短くすることなく、炉内の温度分布を理想パターンに近付けることができる。
【0005】
しかし図4の構成は、炉壁3の主ノズル挿通孔8の両側に2個の補助ノズル挿通孔9を設けなければならず、そのために築炉工事が複雑となってコストアップを招く上に、既設の溶解炉にバーナだけ取り替えて利用するわけには行かないという欠点があった。本発明はかかる点に鑑み、主炎とは独立した補助炎を形成することができ、しかも補助ノズル挿通孔9を必要とせず、従って既設の溶解炉にもそのまま採用できるようなガスバーナの構造を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明によるガラス溶解炉用ガスバーナは、図4に示すように、ノズルチップ1の中心に設けられた主炎孔2の周囲に、炎孔軸が外側へ傾斜した複数の補助炎孔3を設けて、補助炎孔の口径を主炎孔の1/4〜1/10とすると共に、補助炎孔3の傾斜角を15〜30度とし、更に補助炎孔3の長さを口径の5〜15倍としたものであり、請求項2記載の発明は、同図(b)に示すように、補助炎孔3の炎孔軸を更に円周方向へ15〜45度傾斜させたものである。
【0007】
【作用】
上記の構成によれば、主炎と補助炎が互いに混じり合わない程度の距離が確保されるために、補助炎は主炎に影響されることなく独立に燃焼し、それによって主炎の根元の低温部分の側方に補助炎の最大放射部分がくるように構成することが可能となり、主炎の長さを短くすることなく、炉内の温度分布を理想パターンに近付けることができる。もちろん補助炎孔3に傾斜角を設けなくても、主炎孔2と補助炎孔3の距離を大きくすれば、補助炎を独立に燃焼させることは可能であるが、炉内が1500〜1600℃ときわめて高温であるために、ガスノズル4を太くすることはノズル挿通孔5からの熱の放散やノズルチップ1の熱損傷などの点で問題があり、またノズル先端部分のみを炉壁面から突出させて太くすることも、金属製のガスノズルの耐熱性の点で不可能である。
【0008】
また図4(b)に示されているように、補助炎孔2の炎孔軸を円周方向に傾斜させれば、比較的口径の大きな補助炎孔でも短炎と同等の効果を得ることができるので、補助炎からの熱輻射を一層向上することができる。
【0009】
【発明の実施の形態】
図1は本発明バーナを使用するガラス溶解炉の一例を示したもので、天井が湾曲したかまぼこ型の炉4の下部に設けられた溶解槽5は、一端から原料が装入され、他端から溶融ガラスが取り出されるようになっており、左右の炉壁6にはそれぞれ蓄熱室7に連通した通気口8が複数箇所に設けられて、各通気口8のすぐ下の炉壁6にガスバーナ9が貫設されている。左右のガスバーナ9は、一定時間(15〜30分)毎に交互に燃料ガスが供給されて燃焼と停止を繰り返し、燃焼側(図では左側)の通気口8からは蓄熱室7を通って900〜1100℃に予熱された燃焼用空気が噴出し、この燃焼用空気にガスノズルから噴出する燃料ガスが接触して拡散燃焼して、長くて赤い火炎を形成する。また高温の排気は停止側(図では右側)の通気口8に吸引されて、蓄熱室7を通って蓄熱材を加熱したのち、外部に排出されるようになっている。
【0010】
図4は本発明に使用するガスバーナの先端に被着されるノズルチップの構造を示したもので、ノズルチップ1の中心に設けられた主炎孔2の周囲に、炎孔軸が外側へα度、円周方向へβ度傾斜した複数(3〜8個)の補助炎孔3を設けて、補助炎孔の口径D2 を主炎孔2の口径D1 (100万kcal/hの場合、D1 =10〜20mm)の1/4〜1/10(すなわちD2 =1〜5mm)とすると共に、傾斜角α=15〜30度、β=15〜45度とし、更に補助炎孔3の長さD3 をその口径D2 の5〜15倍としたものである。このように補助炎孔3を主炎孔2よりも小さくするのは、主炎よりも火炎長の短い補助炎を噴出させ、補助炎による放射強度を炉の中央よりも手前側に分布させるためであり、補助炎孔2の数を適当に選ぶことにより、図2に実線で示したように、理想温度分布にきわめて近い温度分布を実現することができるのである。また燃焼量をn倍にする場合には、主炎孔2の断面積及び補助炎孔3の合計断面積がそれぞれn倍になるようにすればよい。
【0011】
なお主炎孔に対する補助炎孔の口径比D2 /D1 の上限を1/4としたのは、それ以上補助炎を長くすると、補助炎の放射強度の中心が炉の中央に近付き過ぎて、放射強度を均等に分布させるという目的から外れてしまうからであり、また下限を1/10としたのは、それ以上補助炎を短くすると、補助炎からの放射強度が小さくなって、やはり手前側の強度を高めるという効果がなくなってしまうからである。また補助炎孔の口径に対する長さの比D3 /D2 を十分に大きくする理由は、補助炎孔内でガス流を整流して方向性を持たせることにより、補助炎と主炎とが混合して火炎が一体化し、補助炎が主炎により冷却されて手前で燃焼するのが妨げられてしまうのを防止するためであるが、この比が15を超えると通気抵抗が大きくなり過ぎて補助炎が小さくなってしまい、またこの比が5以下になると、補助炎が層流にならないために炎孔3を出たところで拡散し、主炎と混じってしまうからである。また補助炎の外側への傾斜角αを15〜30度としたのは、これ以下では補助炎が主炎に近付き過ぎ、これ以上では周囲に広がり過ぎて火炎温度が下がってしまうからである。また補助炎を円周方向へ傾斜させた理由は、補助炎を主炎の周りで旋回させることによって、できるだけ噴出速度を落とさずに短炎化を図ると共に、補助炎の根元部分で主炎から十分に離れたのちは、補助炎同士がなるべく接近して燃焼温度が下がらないようにし、放射強度を維持するためであるが、その傾斜角βを15〜45度としたのは、これ以下でも以上でも効果的な旋回がかからないためである。
【0012】
【発明の効果】
本発明によれば上述のように、主炎と補助炎の間に火炎同士が混じり合わない程度の距離が確保されるために、補助炎は主炎に影響されることなく独立に燃焼し、それによって主炎の根元の低温部分の側方に補助炎の最大放射部分がくるように構成して炉内の温度分布を理想パターンに近付けることができるという利点があり、またその際に図3の従来例のように、炉壁6にバーナ挿通孔10を複数設ける必要がないので、築炉が容易且つ低コストで行える上に、既設の炉をバーナを取り替えるだけで改良することができるという利点がある。
【図面の簡単な説明】
【図1】本発明及び従来例に共通のガラス溶解炉の断面図。
【図2】本発明の動作状態を示す炉内温度分布図。
【図3】従来例の断面図。
【図4】(a)は本発明の要部断面図、(b)は同上の上面図。
【符号の説明】
1 ノズルチップ
2 主炎孔
3 補助炎孔
4 炉
5 溶解槽
6 炉壁
7 蓄熱室
8 通気口
9 ガスバーナ
10 バーナ挿通孔
11 主ガスノズル
12 補助ガスノズル
[0001]
[Industrial applications]
The present invention relates to a gas burner used in a large-capacity heat storage type glass melting furnace (tank kiln).
[0002]
[Prior art]
In general, many large glass melting furnaces use heavy oil as fuel, but in recent years, gas-fired furnaces with low equipment costs have been used. FIG. 1 shows a schematic structure of a gas-fired glass melting furnace, in which a lower melting tank 5 is heated by direct heat from a flame of a gas burner 9 provided through a furnace wall 6 and reflected heat from a ceiling. The gas burner 9 employs a premixing type in which fuel and air are separately supplied into a furnace, and a long flame having a high emissivity is formed by diffusion combustion.
[0003]
[Problems to be solved by the invention]
However, in a glass melting furnace, radiation is dominant in heat transfer because the inside of the furnace is extremely high at 1500 to 1600 ° C. On the other hand, a gas combustion type using LPG or methane gas fuel is compared with a heavy oil combustion type. Since the radiant intensity of the flame is low, and particularly the unburned portion at the base of the flame is relatively long, there is a problem that the temperature near the burner 9 is considerably lower than the temperature far away. FIG. 2 shows the temperature distribution in the furnace measured by temperature sensors T1, T2, and T3 provided at three places on the ceiling. In FIG. 2, the broken line indicates the temperature distribution when a conventional single-hole gas burner 9 is used. However, compared to the ideal temperature distribution shown by the solid line, it can be seen that the maximum radiating portion of the flame is biased toward the tip.
[0004]
FIG. 3 shows a structure of a branch type gas burner which has been attempted to improve this. The auxiliary gas nozzle 12 is branched from a main gas nozzle 11 and fitted into a plurality of burner insertion holes 10 formed in the furnace wall 6. By inserting and making the diameter of the auxiliary flame hole smaller than that of the main flame hole, an auxiliary flame having a shorter flame length than the main flame is ejected. According to this configuration, a distance is secured between the main gas nozzle 11 and the auxiliary gas nozzle 12 such that the flames do not mix with each other, so that the auxiliary flame burns independently without being affected by the main flame, and It is possible to configure so that the maximum emission part of the auxiliary flame comes to the side of the low temperature part at the base of the main flame, so that the temperature distribution in the furnace approaches the ideal pattern without shortening the length of the main flame Can be.
[0005]
However, in the configuration of FIG. 4, two auxiliary nozzle insertion holes 9 must be provided on both sides of the main nozzle insertion hole 8 in the furnace wall 3, which complicates the furnace construction work and increases the cost. However, there is a drawback that it is not possible to use the existing melting furnace by replacing only the burner. In view of the above, the present invention has a gas burner structure that can form an auxiliary flame independent of the main flame, does not require the auxiliary nozzle insertion hole 9, and can therefore be used as it is in an existing melting furnace. It is intended to provide.
[0006]
[Means for Solving the Problems]
As shown in FIG. 4, the gas burner for a glass melting furnace according to the present invention is provided with a plurality of auxiliary flame holes 3 having a flame hole axis inclined outward around a main flame hole 2 provided at the center of a nozzle tip 1. Thus, the diameter of the auxiliary flame hole is set to 1/4 to 1/10 of the main flame hole, the inclination angle of the auxiliary flame hole 3 is set to 15 to 30 degrees, and the length of the auxiliary flame hole 3 is set to 5 to 5 mm of the diameter. In the invention according to claim 2, the flame hole axis of the auxiliary flame hole 3 is further inclined by 15 to 45 degrees in the circumferential direction, as shown in FIG. .
[0007]
[Action]
According to the above configuration, since the distance that the main flame and the auxiliary flame do not mix with each other is ensured, the auxiliary flame burns independently without being affected by the main flame, and thereby, the base of the main flame is thereby reduced. It is possible to configure so that the maximum emission part of the auxiliary flame comes to the side of the low temperature part, and the temperature distribution in the furnace can be made closer to the ideal pattern without shortening the length of the main flame. Of course, the auxiliary flame can be burned independently by increasing the distance between the main flame hole 2 and the auxiliary flame hole 3 without providing the auxiliary flame hole 3 with an inclination angle. Due to the extremely high temperature of about 0 ° C., making the gas nozzle 4 thick has problems in that heat is dissipated from the nozzle insertion hole 5 and that the nozzle tip 1 is damaged, and only the nozzle tip protrudes from the furnace wall. It is not possible to make the metal gas nozzle thicker in view of the heat resistance of the metal gas nozzle.
[0008]
Also, as shown in FIG. 4B, if the flame hole axis of the auxiliary flame hole 2 is inclined in the circumferential direction, the same effect as that of the short flame can be obtained even with the auxiliary flame hole having a relatively large diameter. Therefore, heat radiation from the auxiliary flame can be further improved.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an example of a glass melting furnace using the burner of the present invention. In a melting tank 5 provided at the lower part of a furnace 4 having a curved ceiling, raw materials are charged from one end and the other end. The left and right furnace walls 6 are provided with vent holes 8 communicating with the heat storage chambers 7 at a plurality of locations, and the furnace wall 6 immediately below each vent hole 8 is provided with a gas burner. 9 are penetrated. The left and right gas burners 9 are alternately supplied with fuel gas at regular intervals (15 to 30 minutes) to repeat combustion and stop, and from the combustion side (left side in the figure) vent 8 through the heat storage chamber 7 to 900 Combustion air preheated to 11100 ° C. is ejected, and fuel gas ejected from a gas nozzle comes into contact with the combustion air to diffuse and burn, thereby forming a long and red flame. The high-temperature exhaust gas is sucked into the ventilation port 8 on the stop side (the right side in the figure), passes through the heat storage chamber 7, heats the heat storage material, and is then discharged to the outside.
[0010]
FIG. 4 shows the structure of a nozzle tip attached to the tip of a gas burner used in the present invention. Around the main flame hole 2 provided at the center of the nozzle tip 1, a flame hole axis is directed outward by α. A plurality of (3 to 8) auxiliary flame holes 3 inclined at an angle of β degrees in the circumferential direction are provided, and the diameter D2 of the auxiliary flame hole is set to the diameter D1 of the main flame hole 2 (D1 in the case of 1,000,000 kcal / h, = 10 to 20 mm) and 1/4 to 1/10 (that is, D2 = 1 to 5 mm), the inclination angles α = 15 to 30 degrees, β = 15 to 45 degrees, and the length of the auxiliary flame hole 3 D3 is 5 to 15 times the diameter D2. The auxiliary flame hole 3 is made smaller than the main flame hole 2 in order to emit an auxiliary flame having a shorter flame length than the main flame and distribute the radiation intensity of the auxiliary flame to the front side of the center of the furnace. By appropriately selecting the number of auxiliary flame holes 2, a temperature distribution very close to the ideal temperature distribution can be realized as shown by the solid line in FIG. When the amount of combustion is increased by n times, the sectional area of the main flame hole 2 and the total sectional area of the auxiliary flame holes 3 may be increased by n times.
[0011]
The reason why the upper limit of the diameter ratio D2 / D1 of the auxiliary flame to the main flame is set to 1/4 is that if the auxiliary flame is made longer, the center of the radiation intensity of the auxiliary flame becomes too close to the center of the furnace, and This is because it deviates from the purpose of distributing the intensity evenly, and the lower limit is set to 1/10. If the auxiliary flame is shortened further, the radiation intensity from the auxiliary flame decreases, and the front side also This is because the effect of increasing the strength is lost. The reason why the ratio D3 / D2 of the length to the diameter of the auxiliary flame hole is made sufficiently large is that the auxiliary flame and the main flame are mixed by rectifying the gas flow in the auxiliary flame hole to have directionality. This is to prevent the flame from unifying and prevent the auxiliary flame from being cooled by the main flame and being hindered from burning in front, but if this ratio exceeds 15, the ventilation resistance becomes too large and the auxiliary flame becomes too large. When the ratio becomes 5 or less, the auxiliary flame does not form a laminar flow, so it diffuses at the exit of the flame hole 3 and mixes with the main flame. The angle of inclination α of the auxiliary flame to the outside is set to 15 to 30 degrees because the auxiliary flame approaches the main flame too much below this, and because it spreads too much around it, the flame temperature drops. The reason that the auxiliary flame is inclined in the circumferential direction is that the auxiliary flame is swirled around the main flame to shorten the flame without reducing the ejection speed as much as possible. After sufficient separation, the auxiliary flames approach each other as much as possible to prevent the combustion temperature from lowering and to maintain the radiation intensity, but the inclination angle β is set to 15 to 45 degrees even if it is less than this. This is because even with the above, effective turning is not performed.
[0012]
【The invention's effect】
According to the present invention, as described above, since the distance between the main flame and the auxiliary flame is such that the flames do not mix with each other, the auxiliary flame burns independently without being affected by the main flame, As a result, there is an advantage that the maximum radiating portion of the auxiliary flame comes to the side of the low temperature portion at the base of the main flame so that the temperature distribution in the furnace can be made closer to the ideal pattern. Unlike the conventional example, there is no need to provide a plurality of burner insertion holes 10 in the furnace wall 6, so that the furnace can be built easily and at low cost, and the existing furnace can be improved only by replacing the burner. There are advantages.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a glass melting furnace common to the present invention and a conventional example.
FIG. 2 is a furnace temperature distribution diagram showing an operation state of the present invention.
FIG. 3 is a sectional view of a conventional example.
4A is a sectional view of a main part of the present invention, and FIG. 4B is a top view of the same.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Nozzle tip 2 Main flame hole 3 Auxiliary flame hole 4 Furnace 5 Melting tank 6 Furnace wall 7 Heat storage room 8 Vent 9 Gas burner 10 Burner insertion hole 11 Main gas nozzle 12 Auxiliary gas nozzle

Claims (2)

ノズルチップの中心に設けられた主炎孔の周囲に複数の補助炎孔を設け、補助炎孔の口径を主炎孔の1/4〜1/10とすると共に、補助炎孔の炎孔軸を外側へ15〜30度傾斜させ、更に補助炎孔の長さを口径の5〜15倍としたことを特徴とするガラス溶解炉用ガスバーナ。A plurality of auxiliary flame holes are provided around the main flame hole provided at the center of the nozzle tip, the diameter of the auxiliary flame hole is set to 1/4 to 1/10 of the main flame hole, and the flame hole axis of the auxiliary flame hole is provided. A gas burner for a glass melting furnace, characterized in that the outer flame is inclined 15 to 30 degrees to the outside and the length of the auxiliary flame hole is 5 to 15 times the diameter. 補助炎孔の炎孔軸を円周方向へ15〜45度傾斜させたことを特徴とする請求項1記載のガラス溶解炉用ガスバーナ。2. The gas burner for a glass melting furnace according to claim 1, wherein the flame hole axis of the auxiliary flame hole is inclined by 15 to 45 degrees in the circumferential direction.
JP32641995A 1995-11-20 1995-11-20 Gas burner for glass melting furnace Expired - Fee Related JP3577150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32641995A JP3577150B2 (en) 1995-11-20 1995-11-20 Gas burner for glass melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32641995A JP3577150B2 (en) 1995-11-20 1995-11-20 Gas burner for glass melting furnace

Publications (2)

Publication Number Publication Date
JPH09145022A JPH09145022A (en) 1997-06-06
JP3577150B2 true JP3577150B2 (en) 2004-10-13

Family

ID=18187588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32641995A Expired - Fee Related JP3577150B2 (en) 1995-11-20 1995-11-20 Gas burner for glass melting furnace

Country Status (1)

Country Link
JP (1) JP3577150B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2618055A4 (en) * 2010-09-14 2017-12-13 Osaka Gas Co., Ltd. Combustion device for melting furnace, and melting furnace

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100800542B1 (en) * 2001-08-27 2008-02-04 주식회사 포스코 Stabilizer with multi-hole nozzle
JP2007139380A (en) * 2005-11-22 2007-06-07 Osaka Gas Co Ltd Combustion device for heating furnace
JP6308825B2 (en) * 2014-03-17 2018-04-11 大阪瓦斯株式会社 Reformer
CN107664361B (en) * 2017-10-26 2023-09-05 山西老万生态炉业股份有限公司 Heat accumulating type flame diverter of household coal-fired boiler
JP7146250B2 (en) * 2018-10-01 2022-10-04 株式会社ニューミドルマン Full combustion cap for gas burner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2618055A4 (en) * 2010-09-14 2017-12-13 Osaka Gas Co., Ltd. Combustion device for melting furnace, and melting furnace

Also Published As

Publication number Publication date
JPH09145022A (en) 1997-06-06

Similar Documents

Publication Publication Date Title
US5458484A (en) Pre-mix flame type burner
JP3460441B2 (en) Combustion device and thermal equipment equipped with the combustion device
CN102597625A (en) Radiation burner
JPH0623605B2 (en) Radiant tube burner
CN106287708B (en) Catalytic burner and gas heater with it
CA2826780A1 (en) Infrared tube heater
US9068760B2 (en) Heating appliance for air heating
CN108954799A (en) Combustion heat-exchange device, burnt gas wall hanging furnace and gas heater
JP3577150B2 (en) Gas burner for glass melting furnace
US7011516B2 (en) Infrared radiator embodied as a surface radiator
JP5936400B2 (en) Tubular flame burner and radiant tube heating device
US3729286A (en) Heating furnace provided with high velocity gas burners
JPS63238319A (en) Burner for use in radiation furnace
US1950470A (en) Radiant burner
JPH06229522A (en) Radiant tube burner
JPH08270914A (en) Burner
JPS6122111A (en) Gas burner
JP2642590B2 (en) Gas burner
CN218914928U (en) Heating furnace burner
JPH08133747A (en) Glass fusing furnace
CN208475321U (en) Ceramic honey comb burner and water heater
KR100260226B1 (en) A high calory burner
JP4004207B2 (en) Stove burner
JP3699555B2 (en) Low NOx burner
JP3590495B2 (en) Low NOx burner for high temperature air

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040709

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees