JPS6339686B2 - - Google Patents

Info

Publication number
JPS6339686B2
JPS6339686B2 JP13260678A JP13260678A JPS6339686B2 JP S6339686 B2 JPS6339686 B2 JP S6339686B2 JP 13260678 A JP13260678 A JP 13260678A JP 13260678 A JP13260678 A JP 13260678A JP S6339686 B2 JPS6339686 B2 JP S6339686B2
Authority
JP
Japan
Prior art keywords
fibers
fiber length
spinning
fiber
wool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13260678A
Other languages
Japanese (ja)
Other versions
JPS5562217A (en
Inventor
Yoshihiro Konno
Juzaburo Nakayama
Hajime Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP13260678A priority Critical patent/JPS5562217A/en
Publication of JPS5562217A publication Critical patent/JPS5562217A/en
Publication of JPS6339686B2 publication Critical patent/JPS6339686B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はウール混紡用ポリエステルステープル
に関するものであり、更に詳しくは染色性と抗ピ
ル性に優れ、かつ工程通過性をも改良したウール
混用改質ポリエチレンテレフタレート繊維に関す
るものである。 従来、ウールからなる編織物は風合、光沢およ
び色調などの特性が優れているため、広く一般に
使用されていたが反面、寸法安定性、防しわ性、
ウオツシユアンドウエアー性など機能的な性能面
では必ずしも十分ではなかつた。そこでウールの
機能的欠点を解消すべく合成繊維、特にポリエス
テル繊維の優れた機能を付与する目的でウールに
ポリエステル繊維を混紡する方法が工業的に採用
されている。 ポリエステル繊維はポリエステル100%、レー
ヨン混用ポリエステルにおいてはほぼ満足すべき
特性を備えている。しかしながら、ウール混用に
要求される諸特性、すなわち高次加工性の不良あ
るいは染色性の不良に伴うキヤリア公害の問題、
更には製品の抗ピル性不良などの欠点を有してい
た。その後、これら解決すべき問題点のうち、例
えば、抗ピル性、染色性などについては改良され
たポリエステルが提案され、これらの欠点は幾分
軽減されはしたものの、なおウール混用素材とし
ての好ましい諸特性を、全て兼備したポリエステ
ルを得るに至つていない。従つて、これらの分野
においてはその用途がおのずから限定されている
のが実情であつた。また、ポリエステル繊維は高
温染色あるいはキヤリア染色でなければ十分濃色
に染色することができなかつた。すなわち、分散
染料、アゾイツク染料以外の染料で染色すること
が困難であるため、鮮明かつ深みのある色相が得
にくい欠点を有していた。 この欠点を解決する目的で特公昭34−10497号
公報に代表される各種塩基性染料可染型ポリエス
テル繊維が提案され、その結果優れた鮮明性を有
する塩基性染料の使用が可能となつた。しかしな
がら市販されている塩基性染料可染型ポリエステ
ル繊維はノンキヤリアで100℃以下の温度では十
分な濃色に染色されないため、高温染色するかあ
るいはキヤリアを使用するいわゆるキヤリア染色
が一般的に実施されている。高温染色を行なう場
合は高価な高圧染色機が必要であるばかりでなく
耐熱性の不良な繊維、特にウールとの混紡の場合
には110℃以上の高温染色はウールを著じるしく
劣化させることになるので105℃以下、好ましく
は100℃以下で染色する必要がある。しかし100℃
以下の染色温度では上述のポリエステル繊維を染
色することは不可能であつた。 一方キヤリア染色を採用する場合にはキヤリア
臭による作業環境の悪化をもたらし、かつキヤリ
ア公害防止のための排水処理施設の設置、あるい
は充実が必要である。更にはキヤリア使用による
コストアツプばかりでなく、特にウール混紡品の
場合染色後のキヤリアの除去が困難な欠点があ
る。 よりよい染色性を得るために、例えば特公昭34
−10497号公報に開示されたエチレン5−ソジユ
ームスルフオイソフタレート単位を多量に含有さ
せる方法はキヤリアを用いることなく、100℃以
下で塩基性染料で濃色に染色しうるが、反面得ら
れた原綿の強力が不十分であるため、精紡時の糸
切れの多発、製品の強力不足および紡績性不良に
起因するところの製品品位の低下など種々の欠点
があることが明確になり、そのため現在商業的な
改質ポリエステル繊維はエチレン5−ソジユーム
スルフオイソフタレート単位を2.5モル%前後適
用し市販しているのが実情である。 一方、分散染料によるノンキヤリア常圧可染ポ
リエステル繊維も一部市販されているが分散染料
でノンキヤリア常圧可染できるポリエステル繊維
は次のような致命的欠陥を有している。すなわ
ち、染色物の堅牢度が不良である。一般に分散
染料で染色すると染色しやすいものほど、逆に染
料が抜けやすい。特に湿潤時の堅牢度が著しく低
下するため商品価値に乏しい。染色廃液が汚濁
する。分散染料による染色は染色後の残液に多量
の染料が残存するため、排水の汚濁が問題とな
る。特に濃色においてその傾向は著しく、ノンキ
ヤリア常圧可染のメリツトの1つである排水の浄
化の目的を達成することができない。染色コス
トが高い。分散染料は単価が高く更に塩基性染料
と異なり染料完全吸尽タイプでないので染料使用
量が多い。 本発明の目的は前記した公知技術によつて得ら
れるウール混用ポリエステル繊維の欠点、即ち(1)
ノンキヤリア常圧では十分な濃色が得られないと
いう染色性不良、(2)高次加工工程の生産性が低
い、(3)高次加工性と製品の抗ピル性の付与との両
者を満足しにくいという欠点を排除し、良好な染
色性、高生産性および最終製品の特性を十分満足
させることのできるポリエステル繊維を得るもの
である。いわば、塩基性染料にノンキヤリアで常
圧染色でき製糸、紡績、製織、編成の各工程が高
生産性であり、かつ最終製品の風合および機能性
を十分保持しうるウール混用ポリエステル繊維を
提供することにある。 即ち本発明は、全構成単位の4.0〜5.5モル%が
エチレン5−ソジユームスルフオイソフタレート
であり、相対粘度が8.6〜11.5であるポリエチレ
ンテレフタレート繊維からなり、該繊維はキヤリ
アを用いることなく98℃以下で染色が可能であ
り、かつ原綿の引張強度T(g/d)、引張伸度E
(%)、屈曲強度K(回)、繊度D(デニール)、平均
繊維長L(mm)、繊維長分布の構成比率および捲縮
数C(山/25mm)の各特性値および各特性値間で
下式(1)〜(7)を満足する高染色性ウール混用ポリエ
ステル繊維である。 3.2T(1+E/100)4.6 (1) 150T−250K150T+250 (2) 2.3D5.2 (3) 7.4L105 (4) 0.23N10.58 (5) 0.48N20.89 (6) 16.5−0.5D−L/15C20.5−0.5D−L/15 (7) (ここで N1:全繊維本数に対してL±0.03Lの繊維長を有
する本数の比率 N2:全繊維本数に対してL±0.06Lの繊維長を有
する本数の比率) 本発明による改質ポリエステル繊維の第1の特
徴は塩基性染料であるマラカイトグリーンの吸尽
率がキヤリアを用いることなく98℃で45%以上と
なることである。 常圧可染性ポリエステル繊維が塩基性染料に可
染のタイプでなく、例えば分散染料などの非イオ
ン染料の場合は、前述の如く染色物の堅牢性不
良、染色残液の排水汚濁、染色コスト高など実用
に耐えないものとなる。またイオン染料でも酸性
染料に可染性の場合は染色コストが高くなるなど
の欠点を有し好ましくない。 本発明で採用される塩基性染料型のマラカイト
グリーンの吸尽率がキヤリアを用いることなく98
℃で45%未満である場合は、各種の色相において
十分な濃色が得られない。特に黒色の発色が不十
分となり好ましくないばかりでなく、淡色の際に
も発色性が不十分となり好ましくない。これらの
染色性を満足するためには、全くり返し単位の
4.0モル%以上のエチレン5−ソジユームスルフ
オイソフタレートを共重合する必要がある。しか
しながら、5.5モル%を越える量では染色性がほ
ぼ飽和点に達し、コスト的に不利になるととも
に、改質ポリマの溶融粘度の大幅な増加をもたら
し、その結果製糸が困難となるなどの問題があ
る。 本発明の第2の特徴は相対粘度が8.6〜11.5の
範囲にあり、原綿の引張強度T(g/d)、引張伸
度E(%)、屈曲強度K(回)、繊度D(デニール)、
平均繊維長L(mm)繊維長の分布の構成比率およ
び捲縮数C(山/25mm)の各特性値および各特性
値間に下記式(1)〜(7)を満足するウール混用ポリエ
ステル繊維であることである。 3.2T(1+E/100)4.6 (1) 150T−250K150T+250 (2) 2.3D5.2 (3) 74L105 (4) 0.23N10.58 (5) 0.48N20.89 (6) 16.5−0.5D−L/15C20.5−0.5D−L/15 (7) (ここで N1:全繊維本数に対してL±0.03Lの繊維長を有
する本数の比率 N2:全繊維本数に対してL±0.06Lの繊維長を有
する本数の比率) 相対粘度(ηr)が8.6より低いと製糸性、紡績
性、編成性、製織性などの生産性が著じるしく低
下するのみならず得られた製品の品位引張強力の
不足、摩耗減量の増大など製品特性も低下するの
で好ましくない。一方相対粘度(ηr)が11.5より
高くなると溶融粘度の増大に起因する製糸性の不
良および製品、特に編成物での抗ピル性が不良と
なり好ましくない。 ポリエステル繊維をウールと混紡する場合も高
次加工性および製品特性が良好であることが不可
欠の要件である。そのためにまず高次加工性につ
いてはポリエステル繊維とウールとのなじみが非
常に重要であり、なじみが不十分のときは高次加
工性が不良となり生産性が低下するのみならず製
品品位も低下する。ウールのなじみとは主として
繊度、繊維長、ケン縮数などに関係があり、これ
らの諸特性がある特定された範囲に存在しなけれ
ばならないことは当然であるがこれだけでは不十
分である。要するにこれら諸特性の総合的なバラ
ンスが重要なのである。更には高次加工工程にお
けるカーデイング、精紡巻上げ張力、製織準備に
おける整経などに対して十分耐え得る原綿である
ことが必要であり、それを満たすためには引張強
度、引張破断伸度および屈曲強度などが本発明で
規定した如くの限定された範囲にないと、良好な
高次加工性および良好な製品特性は得られないの
である。T(1+E/100)が3.2より低いと主として 糸切れによる製糸性、紡績性、編成性、製織性な
ど生産性の低下および製品の引張強力、摩耗減量
率の増大など製品特性の低下を招き好ましくな
い。T(1+E/100)が4.6より高いと製品の抗ピル 性が不良となり、特に編物では商品価値を著じる
しく低下させ好ましくない。 引張強度は一般に生産性に大きく影響し、また
屈曲強度は一般に主として抗ピル性に大きく影響
を与えることは良く知られているが編成性にも影
響を与えるものである。従つて生産性をより向上
させながら抗ピル性を付与するためには引張強度
は高い方が望ましく、屈曲強度は特定の範囲に限
定する必要がある。 即ち、屈曲強度Kが150・T−250よりも低いと
抗ピル性は良好であるものの編成性が不良とな
り、また得られた製品は繊維が摩擦によつてフイ
ブリル化し白つぽく見える(いわゆるフロステイ
ング)現象が生じて商品価値を低下させる。一
方、屈曲強度Kが150・T+250よりも大きいと抗
ピル性が著じるしく悪化し、特に編物ではその傾
向が著じるしく不良となり好ましくない。 繊度Dが2.3dより小さいと精紡時の糸切れ、ネ
ツプなどによる紡績糸の品質が低下する。繊度D
が5.2dより大きい場合は混紡時の均一混合が困難
となり混合斑、繊維長さ方向の太さ斑などが増大
し好ましくない。 ケン縮数は紡績工程、特に前紡工程において重
要な原綿特性の1つである。またケン縮数は原綿
の繊度、繊維長とも密接な関連を示し一般的には
太繊度、長繊維長ほどケン縮数が少ない方が望ま
しい。更に低重合度原綿の場合ケン縮による座屈
部の損傷で物性変化が生じ易くケン縮特性につい
て充分な管理が必要となる。本発明の原綿も非常
に狭い範囲に管理することなしに目的を達成する
ことはできない。本発明者らが鋭意検討した結果
得たケン縮数の適性範囲は前述した式(7)を満足す
る必要がある。 ケン縮数Cが16.5−0.5D−L/15よりも少ないと 特に前紡工程での繊維相互の絡合性が不足し紡績
糸の太さムラ、弱糸、更には精紡時の糸切れとな
り好ましくない。ケン縮数Cが20.5−0.5D−L/15 よりも多くなると過度の絡合が生じ、やはり紡績
糸の太さムラを誘因しまた原綿強度の低下を招く
ことになる。 平均繊維長Lが74mmよりも短かいと紡績糸の強
力不足が生じ、特に低強度原綿ではこの傾向が著
じるしい。逆に平均繊維長Lが105mmよりも長い
と使用できる紡績設備に制限があり汎用性に欠け
ることおよびウールと混紡する場合使用できるウ
ールにも制限が生じ好ましくない。更には繊維長
は紡績性向上、紡績の糸の太さムラ、強力ムラを
減少させる意味から特定の範囲で分布しているこ
とが望ましくウールのように繊維長分布の大きい
繊維と混紡する場合には特に必要である。 かかる好適な繊維長分布をもつ繊維を得る方法
の1つを第2図で説明する。第2図はヤーンカツ
ターの正面モデル図である。繊維束Fは、回転す
るヤーンホイールWとそれと連動するプロングP
間に把持される。ヤーンホイールについている溝
CはヤーンホイールWの円周方向に対しθ1,θ2
角をもち、かつθ1,θ2は交互になつておりθ1
90゜、θ2>90゜である。カツトするナイフは溝Cに
沿つて作動し繊維束Fを切断する。かくして得ら
れた繊維長の分布のモデルは第1図のようにな
る。第1図は繊維長の短かいものから順に同じ繊
維本数密度で並らべたものである。全繊維本数に
対してL+0.03L、L−0.03Lの範囲に入る繊維本
数比をN1で示した。 本発明者らが鋭意検討した結果、ウール混とし
て最も適した繊維長分布は前述式(5)、(6)を満足す
るのが望ましい。 N1が0.23未満の場合およびN2が0.48未満の場
合には事実上繊維長を一定にした場合と変らず、
繊維長に分布を与えた効果が認められず紡績性、
弱糸の発生、太さムラが増加する。逆にN1
0.58を越す場合およびN2が0.89を越す場合は過長
な繊維が多くなる分布を与えるため紡績時のトラ
ブルが多発する。 本発明によつて得られるポリエステル繊維はポ
リエステル繊維の基本的な欠陥である染色性不良
を、キヤリアを用いることなく塩基性染料に常圧
で染色可能となし、かつ従来の欠点であつた湿潤
堅牢性の問題を排除することのできたものであ
る。 このようにキヤリアを用いることなく98℃以下
で染色できる原綿であるため、ポリエステルとウ
ールを混合した上に更にいかなる他の繊維を混
紡、交撚、交織、交編してもよく、ポリウレタン
繊維、ポリアクリロニトリル繊維など耐熱性の不
良な繊維においてその効果は顕著である。 エチレン5−ソジユームスルフオイソフタレー
トを4.0〜5.5モル%共重合することは良好な染色
特性を付与すると共にポリマの溶融粘度の向上に
寄与するものである。本発明になるかかる特定の
共重合率は低重合度ポリエステルの紡糸性の向上
をもたらし、好適な抗ピル特性を得るものであ
る。 また原綿特性を本発明に於て特定した如く、繊
度、強度、伸度、屈曲強度、捲縮特性、繊維長の
各特性値およびこれらの特性の相互関係を特定す
る範囲に全てを満足することによつてはじめて従
来達成できなかつたポリエステル/ウール混の紡
績性向上および該紡績糸、さらに該紡績糸から得
られる布帛の品位、風合向上に著じるしい効果が
ある。 本発明のポリエチレンテレフタレートとは、エ
チレン5−ソジユームスルフオイソフタレート単
位を有しているものであるが、その製造法として
は、直接重合法またはエステル交換法あるいは
EO法いずれの方法でもよいことは勿論である。 該ポリエチレンテレフタレートは必要に応じて
エチレンテレフタレート単位、エチレン5−ソジ
ユームスルフオイソフタレート単位以外の構成単
位を5モル%以下の範囲内で含んでいてもよい。
具体的にはアジピン酸、セバシン酸、ドデカン酸
等の脂肪族ジカルボン酸、1,4−シクロヘキサ
ンジカルボン酸等の脂環式ジカルボン酸、イソフ
タル酸、2,6−ナフタレンジカルボン酸等の芳
香族ジカルボン酸、ブチレングリコール、ネオペ
ンチルグリコール等の脂肪族ジオール、1,4−
シクロヘキサンジメタノール等の脂環式ジオー
ル、キシリレングリコール、2,2−ビス(β−
ヒドロキシエトキシフエニル)プロパン等の芳香
族ジオール、4−β−ヒドロキシエトキシ安息香
酸等のオキシカルボン酸およびポリエチレングリ
コール等のポリオキシアルキレングリコール等か
らの構成単位を挙げることができる。 なお、エステル交換反応法においてはエステル
交換触媒としてアルカリ金属化合物、マンガン化
合物、コバルト化合物、亜鉛化合物からなる群か
ら選ばれた1種あるいは2種以上の化合物を使用
するのが、エチレン5−ソジユームスルフオイソ
フタレート単位に起因すると思われる溶融時の増
粘をより軽減する上で特に好ましい。 本発明の原綿の製造は通常のポリエステルの溶
融紡糸方法を採用できる。すなわち、ポリマの重
合に際してはテレフタル酸ジメチル、ソジユーム
スルフオイソフタレートジメチル、エチレングリ
コールと通常使用されている触媒を添加してエス
テル交換後、高度の減圧下で重合し相対粘度が
8.6〜11.5になつたとき重合缶から取り出し冷却
後粒状のポリマ塊となす。得られたポリマ塊を減
圧乾燥し、特定化された繊度Dになるように吐出
量を定め口金孔から押し出す溶融紡糸を行ない約
1000m/minの引取速度で引取を行なう。引取つ
た繊維を約50万Dの繊維束となし液浴延伸後、特
定されたケン縮特性を有するように押し込みケン
縮機でケン縮を付与し約120℃の温度で実質的な
弛緩下で熱固定を行なう。熱固定後必要な仕上げ
油剤を付与し指定された範囲になるような平均繊
維長、繊維長分布になるように、例えば第2図の
ような原理を有するカツターでカツトする。得ら
れた原綿は必要に応じた割合と適切な工程でウー
ルと混紡した後通常の方法で精紡し紡績糸を得
る。紡績糸あるいは編成、製織後にノンキヤリ
ア、98℃以下で染色される。 なお、紡糸は一般に用いられている溶融紡糸で
あればよく1500m/min以下の引取速度で未延伸
糸を得てもよく、また1500m/min以上の引取速
度でいわゆるPOY(プレ・オリエンテイド・ヤー
ン)にしてもよい。更に直接紡糸延伸をしても本
発明で得られる効果は変らない。延伸方法は液
浴、スチームあるいはピン延伸でもかまわない。
延伸後、湿熱、乾燥、緊張、定長、弛緩などいか
なる熱処理を施こしてもよい。得られた延伸糸に
ケン縮を付与するがこの場合ケン縮前にスチーム
加熱してもよい。更にケン縮付与後80〜140℃で
熱固定してもよいのは勿論、50℃以下で単なる乾
燥のみを行ない沸収率5〜30%高収縮原綿にして
もかまわない。仕上油剤の付与は延伸後であれば
どの工程で付与してもよい。 また、繊維束の切断方法は前述のように第2図
に示した原理を有するカツター以外でもよく、要
は特定された平均繊維長、繊維長分布をもつもの
であればよい。 以下実施例を挙げて本発明を具体的に説明す
る。 なお実施例中の各特性の測定法は次の通りであ
る。 (屈曲強度(回)) 単繊維2本をループ状に60゜交叉角となるよう、
交叉させた上糸に200mg/dの荷重をかけ、下糸
を30゜往復させ上下いずれかが切断するまでの往
復回数を求める。 (相対粘度:ηr) 8gのポリマを100℃で100mlのオルソクロロフ
エノールに1時間かけて溶解させる。 このポリマ溶液の粘度とオルソクロロフエノー
ル自体の粘度とを25℃で同一単位で測定し、その
比で表わす。 (MG吸尽率(%)) 付着している油剤を通常の精練方法にて除去し
た試料繊維を、マラカイトグリーン染料(MGと
称す)5%owf、染色液PH5、浴比1:100、染
色液の加熱還流下(98℃)で60分間常圧振とうす
る条件下で染色し、十分に水洗した後染色法をオ
ルソクロロフエノールに溶解せしめてその吸光度
を測定して吸尽率を求めた。MG吸尽率が45%以
上であれば98℃で十分濃色に染色し得るといえ
る。 実施例 1 ポリエチレンテレフタレートユニツトに対し、
4.8モル%のエチレン5−ソジユームスルホイソ
フタレートを共重合してなる相対粘度が9.6の変
性ポリエチレンテレフタレートを吐出量348g/
分、孔径0.28mmφ、孔数360の口金を用い、引取
速度1000m/分の条件で未延伸糸を得た。この未
延伸糸を集束して60万デニールとなし、次いで延
伸温度75℃の液浴で3.36倍に延伸後、スタツフイ
ングボツクスにより11〜12山/25mmの捲縮を付与
し、125℃で20分間熱固定した。その後、仕上げ
油剤を付与し、繊維長に分布を与えるバリアブル
カツテイング法により繊維を切断した。 この原綿とウールを重量比で1:1となるよう
に練条工程で混合して得たポリエステル/ウール
混紡糸を95℃でチーズ染色し、編成後婦人用セー
タとなした。原綿特性、工程通過性および製品特
性は表1に示した。表1から明らかな如く、得ら
れた原綿はウール混用ポリエステルとして、満足
のいくものであつた。 実施例 2、3 エチレン5−ソジユームスルフオイソフタレー
トの共重合率を表1の如く変えた以外は実施例1
と全く同一条件で重合製糸を行い、表1に示す原
綿を得た。この原綿を実施例1と同様に婦人用セ
ータとなした。結果は表1に示した如く、工程通
過性、製品特性とも十分満足のいくものであつ
た。 比較実施例 1、2 エチレン5−ソジユームスルフオイソフタレー
トを比較実施例1では3.2および比較実施例2で
は6.0モル%とし、また延伸倍率をそれぞれ3.62
および3.06に変更した以外は実施例1と同様な条
件で重合、紡糸および紡績を行つた。結果は表1
に示した。エチレン5−ソジユームスルフオイソ
フタレート成分が3.2モル%の場合はMG吸尽率
が3.5%と低く、濃色の染色物が得られなかつた。
加えて、鮮明性の点で実施例1と比較し著しく劣
つているため、ウールとの染色差が大きいため染
イラツキがあり商品価値が著しく劣るものであつ
た。なお、試みに120℃で染色した結果、良好に
黒染は行えたもののウールの劣化が著しかつた。 一方、エチレン5−ソジユームスルフオイソフ
タレート成分を6.0モル%としたものは染色性は
優れているものの強度が低く、製糸工程での単糸
切れが頻発し、また紡績工程においては精紡糸の
単糸切れが多かつた。 比較実施例 3、4 相対粘度を比較実施例3では低くし、かつ延伸
倍率を3.62とし、比較実施例4では相対粘度を高
くし、かつ延伸倍率を2.98とした以外は製糸、紡
績、染色および編成を実施例1と同様な条件で行
ない婦人用セータとした。結果は表1に示した。 ここで比較実施例3は紡糸時にドリツプや単糸
切れが多発するとともに、紡績工程でも精紡時に
糸切れが多発し工程通過性が著しく劣つていた。
また製品の耐摩耗性も不良であつた。一方、比較
実施例4は工程通過性は良好であつたものの、製
品にピルが多発し、著しく商品価値を損うもので
あつた。 比較実施例 5、6 比較実施例5では口金孔径0.23mmφ、孔数450、
吐出量321g/分および延伸倍率を3.21に、比較
実施例6では口金孔径0.23mmφ、孔数180、吐出
量370g/分で延伸倍率を3.63に変更した以外は
実施例1と同様に製糸、紡績、染色および編成を
行つた。結果を表1にまとめた。 比較実施例5では製糸時のドリツプ、単糸切れ
が多発し、また紡績工程でも糸切れが多く特にネ
ツプ状の不均一糸が多く見られた。比較実施例6
は製糸上問題はなかつたが紡績時のトラブル、特
に練条での不均一混合とみられる粗紡、精紡での
糸切れが頻発し、製品品位に劣るものであつた。 比較実施例 7〜12 実施例1で得た延伸糸より表1に示すような繊
維長、繊維長分布、捲縮数を各々変更した比較実
施例7〜12の原綿をつくり評価した。その結果、
比較実施例7ではネツプ状部分が多発して粗紡、
精紡での糸切れが多く、比較実施例8では練条、
粗紡、精紡ドラフト部での太さむらが多発し、比
較実施例9では精紡糸で糸切れが多発し太さむら
を生じた。比較実施例10、11では精紡ドラフト部
での糸切れおよび単繊維の飛散が多発し、比較実
施例12では各紡績工程でのスヌケによる糸切れが
多発し、更に比較実施例13においてはネツプが多
発し、太さむらが大となるとともに精紡糸での糸
切れが多発した。以上の如く、繊維長、繊維長分
布および捲縮数が本発明外であるものは紡績工程
でのトラブルが多発するとともに不均一混合ある
いは太さむらなど種々の問題が生じた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polyester staple for wool blends, and more specifically to a modified polyethylene terephthalate fiber for wool blends that has excellent dyeability and anti-pilling properties and has improved process passability. be. Traditionally, knitted fabrics made of wool have been widely used due to their excellent properties such as texture, gloss, and color tone, but on the other hand, they have poor dimensional stability, wrinkle resistance,
Functional performance, such as wash and wear characteristics, was not always sufficient. Therefore, in order to eliminate the functional defects of wool, a method of blending polyester fiber with synthetic fiber, particularly polyester fiber, has been adopted industrially for the purpose of imparting superior functions to polyester fiber. Polyester fibers are 100% polyester, and polyester mixed with rayon have almost satisfactory properties. However, the problems of carrier pollution due to the various properties required for wool blends, such as poor high-order processability or poor dyeability,
Furthermore, the product had drawbacks such as poor anti-pilling properties. Later, polyesters with improved anti-pilling properties and dyeability were proposed, and although these drawbacks were alleviated to some extent, desirable characteristics as wool-mixed materials still remain. Polyester that has all of these properties has not yet been obtained. Therefore, the reality is that its use in these fields is naturally limited. In addition, polyester fibers could not be dyed sufficiently deep unless they were dyed at high temperatures or carrier dyed. That is, since it is difficult to dye with dyes other than disperse dyes and azoic dyes, it has been difficult to obtain clear and deep hues. In order to solve this drawback, various types of polyester fiber dyeable with basic dyes, as typified by Japanese Patent Publication No. 34-10497, have been proposed, and as a result, it has become possible to use basic dyes with excellent clarity. However, commercially available polyester fibers that can be dyed with basic dyes are non-carrier and cannot be dyed to a sufficiently deep color at temperatures below 100°C, so high-temperature dyeing or so-called carrier dyeing, which uses a carrier, is generally carried out. There is. When performing high-temperature dyeing, not only is an expensive high-pressure dyeing machine required, but also fibers with poor heat resistance, especially when blended with wool, high-temperature dyeing of over 110°C can significantly deteriorate the wool. Therefore, it is necessary to dye at a temperature of 105°C or lower, preferably 100°C or lower. But 100℃
It was not possible to dye the above-mentioned polyester fibers at dyeing temperatures below. On the other hand, when carrier dyeing is adopted, the working environment is deteriorated due to carrier odor, and it is necessary to install or enhance wastewater treatment facilities to prevent carrier pollution. Furthermore, the use of a carrier not only increases costs, but also has the disadvantage that it is difficult to remove the carrier after dyeing, especially in the case of wool blend products. In order to obtain better dyeability, for example,
The method disclosed in Publication No. 10497, in which a large amount of ethylene 5-sodium sulfoisophthalate units is contained, allows dyeing to a deep color with a basic dye at 100°C or lower without using a carrier, but on the other hand, It has become clear that due to the insufficient strength of the raw cotton produced, there are various drawbacks such as frequent thread breakage during spinning, insufficient strength of the product, and a decline in product quality due to poor spinning properties. Therefore, the current commercially available modified polyester fibers are commercially available with approximately 2.5 mol% of ethylene 5-sodium sulfoisophthalate units applied thereto. On the other hand, some polyester fibers that are non-carrier atmospheric pressure dyeable with disperse dyes are commercially available, but polyester fibers that are non-carrier atmospheric pressure dyeable with disperse dyes have the following fatal defects. That is, the fastness of the dyed product is poor. Generally speaking, the easier it is to dye with disperse dyes, the easier the dye will come off. In particular, the fastness when wet is significantly reduced, resulting in poor commercial value. Dyeing waste liquid becomes polluted. Dyeing with disperse dyes leaves a large amount of dye in the residual solution after dyeing, which poses a problem of contamination of wastewater. This tendency is particularly noticeable in dark colors, and the purpose of purifying wastewater, which is one of the advantages of non-carrier atmospheric dyeing, cannot be achieved. Dyeing costs are high. Disperse dyes have a high unit price, and unlike basic dyes, they are not completely exhaustion type, so they require a large amount of dye to be used. The object of the present invention is to solve the drawbacks of the wool-blended polyester fiber obtained by the above-mentioned known technology, namely (1)
(2) Low productivity in higher-order processing steps; (3) Satisfying both higher-order processability and imparting anti-pilling properties to the product. The object of the present invention is to obtain a polyester fiber which can eliminate the disadvantage of being difficult to dye and which can sufficiently satisfy the characteristics of good dyeability, high productivity, and final products. In other words, to provide a wool-blended polyester fiber that can be dyed with a basic dye using non-carrier pressure and has high productivity in each step of spinning, spinning, weaving, and knitting, and can sufficiently maintain the texture and functionality of the final product. There is a particular thing. That is, the present invention consists of a polyethylene terephthalate fiber in which 4.0 to 5.5 mol% of the total structural units are ethylene 5-sodium sulfoisophthalate and a relative viscosity of 8.6 to 11.5, and the fiber can be processed without using a carrier. Dyeing is possible at temperatures below 98°C, and the tensile strength T (g/d) and tensile elongation E of raw cotton are
(%), bending strength K (times), fineness D (denier), average fiber length L (mm), composition ratio of fiber length distribution, and crimp number C (crest/25 mm), and the characteristics between each characteristic value. This is a highly dyeable wool blended polyester fiber that satisfies the following formulas (1) to (7). 3.2T (1+E/100) 4.6 (1) 150T−250K150T+250 (2) 2.3D5.2 (3) 7.4L105 (4) 0.23N 1 0.58 (5) 0.48N 2 0.89 (6) 16.5−0.5D−L/ 15C20.5−0.5D−L/15 (7) (where N 1 : Ratio of the number of fibers with a fiber length of L±0.03L to the total number of fibers N 2 : L±0.06L to the total number of fibers The first feature of the modified polyester fiber according to the present invention is that the exhaustion rate of malachite green, which is a basic dye, is 45% or more at 98°C without using a carrier. . If the pressure-dyeable polyester fiber is not a type that can be dyed with basic dyes, but is dyed with non-ionic dyes such as disperse dyes, as mentioned above, the dyed product may have poor fastness, wastewater pollution from dyeing residue, and dyeing costs. It is too high to be of practical use. In addition, even ionic dyes that are dyeable with acidic dyes have drawbacks such as increased dyeing costs, which is not preferable. The exhaustion rate of malachite green, a basic dye employed in the present invention, is 98% without using a carrier.
If it is less than 45% in °C, sufficiently deep colors cannot be obtained in various hues. In particular, not only is the black color development insufficient, which is undesirable, but also the color development is insufficient even in light colors, which is undesirable. In order to satisfy these dyeing properties, it is necessary to
It is necessary to copolymerize 4.0 mol% or more of ethylene 5-sodium sulfoisophthalate. However, if the amount exceeds 5.5 mol%, the dyeability will almost reach the saturation point, resulting in a cost disadvantage and a significant increase in the melt viscosity of the modified polymer, resulting in problems such as difficulty in spinning. be. The second feature of the present invention is that the relative viscosity is in the range of 8.6 to 11.5, and the tensile strength T (g/d), tensile elongation E (%), bending strength K (times), and fineness D (denier) of the raw cotton are in the range of 8.6 to 11.5. ,
Wool-blended polyester fiber that satisfies the following formulas (1) to (7) between the characteristic values of the average fiber length L (mm), the composition ratio of the fiber length distribution, and the number of crimp C (peaks/25 mm), and the relationship between each characteristic value. It is to be. 3.2T (1+E/100) 4.6 (1) 150T-250K150T+250 (2) 2.3D5.2 (3) 74L105 (4) 0.23N 1 0.58 (5) 0.48N 2 0.89 (6) 16.5-0.5D-L/15C20 .5−0.5D−L/15 (7) (where N 1 : Ratio of the number of fibers with a fiber length of L±0.03L to the total number of fibers N 2 : Ratio of the number of fibers with a fiber length of L±0.06L to the total number of fibers If the relative viscosity (ηr) is lower than 8.6, productivity such as spinning, spinning, knitting, and weaving properties will not only decrease significantly, but also the quality of the resulting product will deteriorate. This is undesirable because product properties such as insufficient strength and increased wear loss occur. On the other hand, if the relative viscosity (ηr) is higher than 11.5, it is undesirable because it results in poor thread-spinning properties due to an increase in melt viscosity and poor anti-pilling properties in products, especially knitted fabrics. Also when blending polyester fiber with wool, it is essential that the processability and product properties are good. For this reason, first of all, the compatibility between polyester fiber and wool is very important for higher processability, and if the compatibility is insufficient, higher processability will be poor, which will not only reduce productivity but also reduce product quality. . The conformability of wool is mainly related to fineness, fiber length, shrinkage number, etc., and it goes without saying that these properties must be within a certain range, but this alone is not sufficient. In short, the overall balance of these characteristics is important. Furthermore, it is necessary for the raw cotton to be able to withstand carding in high-order processing processes, spinning winding tension, warping in weaving preparation, etc., and in order to satisfy this, tensile strength, tensile elongation at break, and bending are necessary. Unless the strength and other properties are within the limited range defined in the present invention, good high-order processability and good product properties cannot be obtained. If T (1 + E / 100) is lower than 3.2, it is preferable because it leads to a decrease in productivity such as spinning properties, spinnability, knitting properties, and weavability mainly due to thread breakage, and a decrease in product properties such as an increase in the tensile strength of the product and an increase in abrasion loss rate. do not have. If T(1+E/100) is higher than 4.6, the pill resistance of the product will be poor, and especially in knitted fabrics, the commercial value will be significantly lowered, which is not preferable. It is well known that tensile strength generally greatly affects productivity, and flexural strength generally largely affects pill resistance, but also affects knitting properties. Therefore, in order to provide anti-pilling properties while further improving productivity, it is desirable that the tensile strength is high, and the bending strength must be limited to a specific range. In other words, if the bending strength K is lower than 150/T-250, the pill resistance is good but the knitting properties are poor, and the resulting product has a whitish appearance (so-called floss) because the fibers become fibrillated due to friction. This phenomenon occurs and reduces the product value. On the other hand, if the bending strength K is greater than 150·T+250, the anti-pilling properties will be significantly deteriorated, and this tendency will be particularly poor in knitted fabrics, which is not preferable. If the fineness D is smaller than 2.3d, the quality of the spun yarn will deteriorate due to yarn breakage and neps during spinning. Fineness D
If it is larger than 5.2d, it becomes difficult to achieve uniform mixing during blending, resulting in increased mixing unevenness and thickness unevenness in the length direction of the fibers, which is not preferable. The shrinkage number is one of the important raw cotton characteristics in the spinning process, especially in the pre-spinning process. In addition, the number of shrinkages is closely related to the fineness and fiber length of raw cotton, and generally, the thicker the fineness and the longer the fiber length, the smaller the number of shrinkages is desirable. Furthermore, in the case of raw cotton with a low degree of polymerization, physical properties change easily due to damage to the buckled portion due to crimp, and sufficient management of crimp characteristics is required. The purpose of the raw cotton of the present invention cannot be achieved without controlling it within a very narrow range. The appropriate range of the Ken reduction number obtained as a result of intensive studies by the present inventors needs to satisfy the above-mentioned formula (7). If the Ken contraction number C is less than 16.5-0.5D-L/15, the intertwining of the fibers will be insufficient especially in the pre-spinning process, resulting in uneven thickness of the spun yarn, weak yarn, and even yarn breakage during spinning. This is undesirable. If the Ken reduction number C is more than 20.5-0.5D-L/15, excessive entanglement will occur, which will also cause unevenness in the thickness of the spun yarn and a decrease in the strength of the raw cotton. If the average fiber length L is shorter than 74 mm, the strength of the spun yarn will be insufficient, and this tendency is particularly noticeable with low-strength raw cotton. On the other hand, if the average fiber length L is longer than 105 mm, there will be restrictions on the spinning equipment that can be used, resulting in a lack of versatility, and there will also be restrictions on the wool that can be used when blended with wool, which is undesirable. Furthermore, it is desirable that the fiber length be distributed within a specific range in order to improve spinnability and reduce uneven thickness and strength of the spun yarn, and when blended with fibers such as wool that have a wide fiber length distribution. is especially necessary. One method for obtaining fibers having such a suitable fiber length distribution will be explained with reference to FIG. Figure 2 is a front model diagram of the yarn cutter. The fiber bundle F consists of a rotating yarn wheel W and a prong P that interlocks with the yarn wheel W.
gripped between. The grooves C on the yarn wheel have angles of θ 1 and θ 2 with respect to the circumferential direction of the yarn wheel W, and θ 1 and θ 2 are alternate, and θ 1 <
90°, and θ 2 >90°. The cutting knife operates along the groove C and cuts the fiber bundle F. The fiber length distribution model thus obtained is shown in FIG. In Figure 1, the fibers are arranged at the same fiber number density in descending order of fiber length. The ratio of the number of fibers within the range of L+0.03L and L-0.03L to the total number of fibers is indicated by N1 . As a result of intensive studies by the present inventors, it is desirable that the fiber length distribution most suitable for wool blends satisfies the above-mentioned formulas (5) and (6). When N 1 is less than 0.23 and when N 2 is less than 0.48, it is virtually the same as when the fiber length is constant;
No effect on fiber length distribution was observed, resulting in poor spinnability.
Weak threads occur and thickness unevenness increases. On the contrary, N 1
When N 2 exceeds 0.58 and when N 2 exceeds 0.89, problems occur frequently during spinning because a distribution with a large number of overlong fibers is produced. The polyester fiber obtained by the present invention overcomes the basic defect of polyester fibers, which is poor dyeability, by making it possible to dye with basic dyes at normal pressure without using a carrier, and by improving wet fastness, which was a conventional drawback. It was possible to eliminate gender issues. Since it is raw cotton that can be dyed at 98°C or lower without using a carrier, in addition to mixing polyester and wool, any other fibers may be blended, twisted, woven, or knitted, such as polyurethane fibers, The effect is remarkable in fibers with poor heat resistance such as polyacrylonitrile fibers. Copolymerizing 4.0 to 5.5 mol % of ethylene 5-sodium sulfoisophthalate provides good dyeing properties and contributes to improving the melt viscosity of the polymer. Such a specific copolymerization rate according to the present invention improves the spinnability of the low polymerization degree polyester and provides suitable anti-pilling properties. Furthermore, as specified in the present invention, the raw cotton characteristics must satisfy all of the characteristic values of fineness, strength, elongation, bending strength, crimp characteristics, and fiber length, and the interrelationships among these characteristics. It has a remarkable effect on improving the spinnability of polyester/wool blends and improving the quality and feel of the spun yarns, as well as the fabrics obtained from the spun yarns, which could not be achieved conventionally. The polyethylene terephthalate of the present invention has ethylene 5-sodium sulfoisophthalate units, and can be produced by direct polymerization, transesterification, or
Of course, either EO method may be used. The polyethylene terephthalate may contain constitutional units other than ethylene terephthalate units and ethylene 5-sodium sulfoisophthalate units within a range of 5 mol % or less, if necessary.
Specifically, aliphatic dicarboxylic acids such as adipic acid, sebacic acid, and dodecanoic acid, alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, and aromatic dicarboxylic acids such as isophthalic acid and 2,6-naphthalene dicarboxylic acid. , butylene glycol, aliphatic diol such as neopentyl glycol, 1,4-
Alicyclic diols such as cyclohexanedimethanol, xylylene glycol, 2,2-bis(β-
Examples include structural units from aromatic diols such as hydroxyethoxyphenyl)propane, oxycarboxylic acids such as 4-β-hydroxyethoxybenzoic acid, and polyoxyalkylene glycols such as polyethylene glycol. In addition, in the transesterification method, it is preferable to use one or more compounds selected from the group consisting of alkali metal compounds, manganese compounds, cobalt compounds, and zinc compounds as transesterification catalysts. It is particularly preferred in terms of further reducing the thickening during melting that is thought to be caused by the eumusulfoisophthalate unit. The raw cotton of the present invention can be produced by a conventional polyester melt spinning method. In other words, when polymerizing a polymer, dimethyl terephthalate, dimethyl sodium sulfoisophthalate, and ethylene glycol are added to transesterify the polymer, followed by polymerization under highly reduced pressure to reduce the relative viscosity.
When the temperature reaches 8.6 to 11.5, it is taken out from the polymerization can, cooled, and turned into a granular polymer mass. The resulting polymer mass is dried under reduced pressure, and melt-spun is performed by determining the discharge amount so that it has a specified fineness D and extruding it from the spinneret hole.
Pulling is done at a drawing speed of 1000m/min. The collected fibers are made into fiber bundles of approximately 500,000 D, stretched in a liquid bath, and then crimped in a crimping machine to have specified crimping properties. Perform heat fixation. After heat setting, the necessary finishing oil is applied and the fibers are cut using a cutter having the principle shown in FIG. 2, for example, so that the average fiber length and fiber length distribution are within the specified range. The obtained raw cotton is blended with wool in an appropriate proportion and in an appropriate process as required, and then spun in a conventional manner to obtain spun yarn. After spun yarn, knitting, and weaving, it is non-carrier and dyed at 98℃ or below. Note that any commonly used melt spinning may be used for spinning, and undrawn yarn may be obtained at a take-up speed of 1500 m/min or less, and so-called POY (pre-oriented yarn) may be obtained at a take-up speed of 1500 m/min or more. ). Furthermore, even if direct spinning and drawing is performed, the effects obtained by the present invention will not change. The stretching method may be liquid bath, steam or pin stretching.
After stretching, any heat treatment such as moist heat, drying, tensioning, fixed length, and relaxation may be performed. The obtained drawn yarn is crimped, but in this case it may be heated with steam before crimping. Furthermore, it is of course possible to heat-set at 80 to 140°C after imparting shrinkage, or it is also possible to simply dry at 50°C or lower to obtain a highly shrinkable raw cotton with a boiling yield of 5 to 30%. The finishing oil may be applied at any step after stretching. Furthermore, the method for cutting the fiber bundle may be any method other than the cutter having the principle shown in FIG. 2, as described above, as long as it has a specified average fiber length and fiber length distribution. The present invention will be specifically explained below with reference to Examples. In addition, the measurement method of each characteristic in an Example is as follows. (Bending strength (times)) Two single fibers are looped so that they cross at a 60° angle.
Apply a load of 200 mg/d to the crossed upper thread, reciprocate the lower thread by 30 degrees, and calculate the number of reciprocations until either the upper or lower thread breaks. (Relative viscosity: ηr) 8 g of polymer is dissolved in 100 ml of orthochlorophenol at 100° C. over 1 hour. The viscosity of this polymer solution and the viscosity of orthochlorophenol itself are measured in the same unit at 25°C and expressed as a ratio. (MG exhaustion rate (%)) Sample fibers from which the attached oil was removed by the usual scouring method were dyed with malachite green dye (referred to as MG) 5% owf, dyeing solution PH5, bath ratio 1:100. The dye was dyed under conditions of heating and refluxing the solution (98°C) and shaking under normal pressure for 60 minutes, and after thorough washing with water, the dyeing method was dissolved in orthochlorophenol and its absorbance was measured to determine the exhaustion rate. . If the MG exhaustion rate is 45% or more, it can be said that dyeing can be sufficiently dark at 98°C. Example 1 For polyethylene terephthalate unit,
Discharge amount of 348g/modified polyethylene terephthalate with a relative viscosity of 9.6, which is obtained by copolymerizing 4.8 mol% ethylene 5-sodium sulfoisophthalate.
An undrawn yarn was obtained using a nozzle with a hole diameter of 0.28 mmφ and 360 holes at a take-up speed of 1000 m/min. This undrawn yarn was bundled to 600,000 denier, then stretched to 3.36 times in a liquid bath at a drawing temperature of 75°C, crimped with 11 to 12 ridges/25 mm in a stuffing box, and then stretched at 125°C for 20 Heat set for a minute. Thereafter, a finishing oil was applied, and the fibers were cut using a variable cutting method that gave a distribution to the fiber length. This raw cotton and wool were mixed in a drawing process at a weight ratio of 1:1, and the resulting polyester/wool blend yarn was dyed with cheese at 95°C and knitted into a women's sweater. The raw cotton properties, process passability, and product properties are shown in Table 1. As is clear from Table 1, the obtained raw cotton was satisfactory as a wool blended polyester. Examples 2 and 3 Example 1 except that the copolymerization rate of ethylene 5-sodium sulfoisophthalate was changed as shown in Table 1.
Polymerized yarn spinning was carried out under exactly the same conditions as above to obtain the raw cotton shown in Table 1. This raw cotton was made into a women's sweater in the same manner as in Example 1. As shown in Table 1, the results were fully satisfactory in terms of process passability and product characteristics. Comparative Examples 1 and 2 Ethylene 5-sodium sulfoisophthalate was 3.2 mol% in Comparative Example 1 and 6.0 mol% in Comparative Example 2, and the stretching ratio was 3.62, respectively.
Polymerization, spinning and spinning were carried out under the same conditions as in Example 1, except that the conditions were changed to 3.06 and 3.06. The results are in Table 1
It was shown to. When the ethylene 5-sodium sulfoisophthalate component was 3.2 mol %, the MG exhaustion rate was as low as 3.5%, and a dark dyed product could not be obtained.
In addition, the clarity was significantly inferior to that of Example 1, and the difference in dyeing from wool was large, resulting in uneven dyeing and significantly lower commercial value. As a result of attempting dyeing at 120°C, although the black dyeing was achieved well, the wool deteriorated significantly. On the other hand, products containing 6.0 mol% of ethylene 5-sodium sulfoisophthalate have excellent dyeing properties but have low strength, frequently breakage of single threads during the spinning process, and There were many single thread breaks. Comparative Examples 3 and 4 Reeling, spinning, dyeing and A women's sweater was knitted under the same conditions as in Example 1. The results are shown in Table 1. Here, in Comparative Example 3, there were frequent occurrences of dripping and single yarn breakage during spinning, as well as frequent yarn breakage during spinning during the spinning process, resulting in extremely poor process passability.
The wear resistance of the product was also poor. On the other hand, in Comparative Example 4, although the processability was good, there were many pills in the product, which significantly impaired the commercial value. Comparative Examples 5 and 6 In Comparative Example 5, the mouth hole diameter was 0.23 mmφ, the number of holes was 450,
Yarn spinning and spinning were carried out in the same manner as in Example 1, except that the discharge rate was changed to 321 g/min and the draw ratio was 3.21, and in Comparative Example 6, the mouth hole diameter was 0.23 mmφ, the number of holes was 180, the discharge rate was 370 g/min, and the draw ratio was changed to 3.63. , dyed and organized. The results are summarized in Table 1. In Comparative Example 5, there were frequent drips and single yarn breakages during yarn spinning, and there were also many yarn breakages during the spinning process, and in particular, many uneven yarns with neps were observed. Comparative Example 6
Although there were no problems in spinning, there were frequent troubles during spinning, especially yarn breakage during roving and spinning, which appeared to be due to non-uniform mixing in the drawing, and the quality of the product was poor. Comparative Examples 7 to 12 From the drawn yarn obtained in Example 1, raw cotton of Comparative Examples 7 to 12 was prepared and evaluated, in which the fiber length, fiber length distribution, and number of crimps were changed as shown in Table 1. the result,
In Comparative Example 7, there were many net-like parts, and the roving and
There were many thread breakages during spinning, and in Comparative Example 8, drawing
Thickness unevenness occurred frequently in the roving and spinning draft parts, and in Comparative Example 9, thread breakage occurred frequently in the spun yarn, resulting in thickness unevenness. In Comparative Examples 10 and 11, yarn breakage and scattering of single fibers occurred frequently in the spinning draft section, in Comparative Example 12, yarn breakage due to snakes occurred frequently in each spinning process, and in Comparative Example 13, yarn breakage occurred frequently due to snakes in each spinning process. This occurred frequently, the thickness became uneven, and the spun yarn frequently broke. As described above, fibers whose fiber length, fiber length distribution, and number of crimps are outside the scope of the present invention frequently cause troubles in the spinning process, and various problems such as non-uniform mixing and uneven thickness occur. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は繊維長分布を説明するための概念図、
第2図は本発明で規定する好適な繊維長分布を得
るためのバリアブルカツターの正面モデル図であ
る。
Figure 1 is a conceptual diagram for explaining fiber length distribution.
FIG. 2 is a front model view of a variable cutter for obtaining a suitable fiber length distribution defined by the present invention.

Claims (1)

【特許請求の範囲】 1 全構成単位の4.0〜5.5モル%がエチレン5−
ソジユームスルホイソフタレートであり、相対粘
度が8.6〜11.5であるポリエチレンテレフタレー
ト繊維からなり、該繊維はキヤリアを用いること
なく98℃以下で染色が可能であり、かつ、原綿の
引張強度T(g/d)、引張伸度E(%)、屈曲強度
K(回)、繊度D(デニール)、平均繊維長L(mm)、
繊維長分布の構成比率および捲縮数C(山/25mm)
の各特性値および各特性値間で下式(1)〜(7)を満足
する高染色性ウール混用ポリエステル繊維。 3.2≦T(1+E/100)≦4.6 ……(1) 150T−250≦K≦150T+250 ……(2) 2.3≦D≦5.2 ……(3) 74≦L≦105 ……(4) 0.23≦N1≦0.58 ……(5) 0.48≦N2≦0.89 ……(6) 16.5−0.5D−L/15≦C≦20.5−0.5D−L/15
……(7) 〔ここで N1:全繊維本数に対してL±0.03Lの繊維長を有
する本数の比率 N2:全繊維本数に対してL±0.06Lの繊維長を有
する本数の比率〕
[Claims] 1. 4.0 to 5.5 mol% of all structural units is ethylene 5-
Sodium sulfoisophthalate is made of polyethylene terephthalate fiber with a relative viscosity of 8.6 to 11.5, and the fiber can be dyed at 98°C or lower without using a carrier, and the tensile strength T (g /d), tensile elongation E (%), bending strength K (times), fineness D (denier), average fiber length L (mm),
Composition ratio of fiber length distribution and number of crimp C (crest/25mm)
A highly dyeable wool-blend polyester fiber that satisfies the following formulas (1) to (7) between each characteristic value and each characteristic value. 3.2≦T(1+E/100)≦4.6 …(1) 150T−250≦K≦150T+250 …(2) 2.3≦D≦5.2 …(3) 74≦L≦105 …(4) 0.23≦N 1 ≦0.58 ……(5) 0.48≦N 2 ≦0.89 ……(6) 16.5−0.5D−L/15≦C≦20.5−0.5D−L/15
...(7) [Here, N 1 : Ratio of the number of fibers having a fiber length of L±0.03L to the total number of fibers N 2 : Ratio of the number of fibers having a fiber length of L±0.06L to the total number of fibers ]
JP13260678A 1978-10-30 1978-10-30 High-dyeability polyester fiber for blend with wool Granted JPS5562217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13260678A JPS5562217A (en) 1978-10-30 1978-10-30 High-dyeability polyester fiber for blend with wool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13260678A JPS5562217A (en) 1978-10-30 1978-10-30 High-dyeability polyester fiber for blend with wool

Publications (2)

Publication Number Publication Date
JPS5562217A JPS5562217A (en) 1980-05-10
JPS6339686B2 true JPS6339686B2 (en) 1988-08-08

Family

ID=15085255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13260678A Granted JPS5562217A (en) 1978-10-30 1978-10-30 High-dyeability polyester fiber for blend with wool

Country Status (1)

Country Link
JP (1) JPS5562217A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57176227A (en) * 1981-04-20 1982-10-29 Toyo Boseki Polyester spun sewing machine yarn
JPS5936767A (en) * 1982-08-20 1984-02-29 東洋紡績株式会社 Production of raised fabric
JPS62238834A (en) * 1986-04-03 1987-10-19 東レ株式会社 Polyester/wool blended spun yarn

Also Published As

Publication number Publication date
JPS5562217A (en) 1980-05-10

Similar Documents

Publication Publication Date Title
JP2015045026A (en) Normal-pressure cation-dyeable polyester composition and fiber
DE60121694T2 (en) POLYTRIMETHYLENEEPHTHALATE FIBERS WITH FINE DENIER
US7036299B2 (en) Stretch polyster/cotton spun yarn
JPS6339686B2 (en)
US4359557A (en) Process for producing low pilling textile fiber and product of the process
EP1956121B1 (en) Stretch polyester/cotton spun yarn
JP2006161263A (en) Polyester core-sheath conjugate fiber and fabric therefrom
JP2007231473A (en) Blended spun yarn and method for producing the same
EP0070703A2 (en) Polyester conjugate crimped yarns, process for preparation thereof, and polyester stretch fabrics
JP3665171B2 (en) Composite split filament and assembly comprising the same
JP3252615B2 (en) Polyester crimped yarn for carpet and tufting carpet
JPH0860442A (en) Conjugate fiber excellent in coloring property and gloss
JPH08127916A (en) Polyester crimped yarn for carpet and carpet
JP2007056412A (en) Blended article of polyester fiber and polytrimethylene terephthalate-based fiber
JP3796522B2 (en) Polyester different shrinkage mixed yarn
JP2001214335A (en) Low-shrinkage polyester slub yarn and combined polyester filament yarn composed thereof
JP3757710B2 (en) Latent crimped polyester fiber and production method
JP2001164436A (en) Polyester combined filament yarn and woven and knitted fabric using the same
JP3570171B2 (en) Method for producing core-sheath composite fiber and method for producing false twisted yarn comprising the same
JP3029682B2 (en) Composite fiber aggregate having excellent retardation crimp
JP2882692B2 (en) Composite fiber aggregate and method for treating fabric using the fiber
JP3570166B2 (en) Method for producing core-sheath composite fiber and method for producing false twisted yarn comprising the same
JPH03124839A (en) Woven fabric of blended yarn of polyester yarn and wool yarn
JP2911060B2 (en) Composite fiber aggregate
JPH07278982A (en) Combined spun yarn