JPS6339625B2 - - Google Patents

Info

Publication number
JPS6339625B2
JPS6339625B2 JP10647179A JP10647179A JPS6339625B2 JP S6339625 B2 JPS6339625 B2 JP S6339625B2 JP 10647179 A JP10647179 A JP 10647179A JP 10647179 A JP10647179 A JP 10647179A JP S6339625 B2 JPS6339625 B2 JP S6339625B2
Authority
JP
Japan
Prior art keywords
weight
parts
self
resin
insulated wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10647179A
Other languages
Japanese (ja)
Other versions
JPS5630472A (en
Inventor
Bunichi Sano
Nobuyuki Nakamura
Katsuyuki Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP10647179A priority Critical patent/JPS5630472A/en
Publication of JPS5630472A publication Critical patent/JPS5630472A/en
Publication of JPS6339625B2 publication Critical patent/JPS6339625B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐熱性に優れた自己融着性絶縁電線に
関するものである。 自己融着性絶縁電線は含浸ワニスを使用せずに
線間の固着ができるため、生産性の向上、合理
化、公害等の点で大きな利点を有するものであ
る。しかしながら従来の自己融着性絶縁電線は接
着層にブチラール樹脂、フエノキシ樹脂、ポリア
ミド樹脂等の熱可塑性樹脂が多く使用されてお
り、そのため軟化点以上では固着力を保持し得
ず、又総体的に耐熱性の低い樹脂を使用していた
ため、高温中での使用はむずかしいものでありせ
いぜい100℃以下の雰囲気でしか用いられなかつ
たのが実状であつた。 本発明者等は上記の実情にかんがみ、耐熱性に
すぐれ、しかも高温中でも十分使用に耐える自己
融着性絶縁電線を得るため鋭意研究を行つた結
果、本発明を達成するに至つたものである。すな
わち図に示した如く電気導体1上に他の絶縁物層
2を介してポリヒダントイン樹脂100重量部に対
して分子中にOH基を有する分子量10000以上の
線状ポリエステル樹脂10〜200重量部及び次の構
造式 で示されるチタンオクチレングリコールキレート
化合物を全樹脂100重量部に対して5〜25重量部
を配合し、必要により安定化イソシアネートを配
合しこれを有機溶媒に溶解した溶液をBステージ
に塗布焼付て自己融着層3を設けたことを特徴と
する自己融着性絶縁電線である。 次に本発明で用いるポリヒダントイン樹脂溶液
とは、溶液の状態でポリヒダントイン酸又は一部
閉環してポリヒダントイン環を形成しているもの
であり、通常グリシン誘導体及びイソシアネー
ト、アミン等の反応により得られる。又、ポリヒ
ダントイン樹脂溶液の詳細な製造方法としては例
えば日特公昭44−20115号に記されている。又、
ポリヒダントイン樹脂溶液として市販されている
ものに独国バイエル社製商品名PH―20がある。 次に本発明で用いる分子量10000以上の分子中
に反応性のOH基を有する線状ポリエステルとし
ては例えば、東洋紡績株式会社製商品名バイロン
―200、同バイロン―300、米国グツドイヤー社製
商品名PE―200、PE207等がある。ここで該線状
ポリエステル樹脂の分子量を10000以上と限定し
た理由は分子量が10000以下であると得られる自
己融着性絶縁電線の可とう性に影響を及ぼすため
である。又、該線状ポリエステル樹脂の配合量を
ポリヒダントイン樹脂溶液の固形分100重量部に
対して10〜200重量部と限定した理由は、10重量
部以下であると融着に要する温度が高くなりすぎ
るため好ましくなく、又200重量部を超えると耐
熱性及び高温雰囲気での接着強度の低下が著しい
ためである。 次に前記構造式で示したチタンオクチレングリ
コールキレート化合物として市販されているもの
にTC―200(松本製薬工業株式会社製商品名、70
%ブタノール溶液)がある。またチタンオクチレ
ングリコールキレートの配合量を全樹脂分100重
量部に対して5〜25重量部と限定した理由は5重
量部以下であると架橋効果に乏しく、高温雰囲気
における接着強度が低下し、又、25重量部を超え
て配合した場合は架橋密度が高くなりすぎて、接
着性能が低下するためである。 なお、これにさらに全樹脂量の10重量%以下で
安定化イソシアネートを配合して、さらに耐熱性
を改良することもできる。安定化イソシアネート
としては日本ポリウレタン社製商品名コロネート
APスチーブル等が好適である。次に本発明を実
施例及び比較例をあげて説明する。 実施例 1 直径0.5mmの銅線にエステルイミド絶縁塗料
(日触スケネクタデイケミカル社製商品名アイソ
ミツド)を塗布焼付して、絶縁厚25μを有するエ
ステルイミド絶縁電線を得た。この絶縁電線に以
下により調整した融着塗料を炉長4m、温度250℃
で速度12m/分で3回ダイス塗にて15μ厚に塗布
焼付して本発明による自己融着性絶縁電線を得
た。 〔融着塗料の調整〕 ポリヒダントイン樹脂溶液(独バイエル社製商
品名PH20をクレゾールで20重量%に希釈したも
の)100重量部、線状ポリエステル樹脂(東洋紡
績株式会社製商品名バイロン200)をクレゾール
に溶解して20重量%の濃度に調整したもの50重量
部及びチタンオクチレングリコールキレート化合
物(松本製薬工業株式会社製商品名TC―200―70
%ブタノール溶液)4.5重量部以上を撹拌混合し
て融着塗料を得た。 実施例2〜5、比較例1〜3 第1表に示す成分割合で混合撹拌して得た融着
塗料を実施例−1と同様に直径0.5mmの銅線にエ
ステルイミド塗料(日触スケネクタデイ社製商品
名アイソミツド)を塗付焼付けて得た皮膜厚25μ
を有する絶縁電線上に実施例−1と同様に塗布焼
付けて全体で40μの皮膜厚を有する自己融着性絶
縁電線を得、実施例2〜5、比較例1〜3とし
た。 実施例 6 直径0.5mmの銅線にエステルイミド塗料(日触
スケネクタデイ社商品名アイソミツド)を20μ厚
に塗布焼付け、さらにその上にアミドイミド塗料
(日立化成社製商品名HI―400)を5μ厚に塗布焼
付けて、いわゆるアミドイミドオーバーコート絶
縁電線を得、さらにその上に実施例−1で用いた
融着塗料を実施例−1と同様な条件で塗布焼付け
て自己融着性絶縁電線を得た。
The present invention relates to a self-bonding insulated wire with excellent heat resistance. Self-bonding insulated wires can be bonded between wires without using impregnated varnish, so they have great advantages in terms of improved productivity, rationalization, and pollution reduction. However, conventional self-bonding insulated wires often use thermoplastic resins such as butyral resin, phenoxy resin, polyamide resin, etc. for the adhesive layer, and therefore cannot maintain adhesive strength above the softening point. Because it used a resin with low heat resistance, it was difficult to use it at high temperatures, and in reality it could only be used in an atmosphere below 100°C. In view of the above-mentioned circumstances, the inventors of the present invention have conducted extensive research in order to obtain a self-bonding insulated wire that has excellent heat resistance and can withstand use even at high temperatures, and as a result has achieved the present invention. . That is, as shown in the figure, 10 to 200 parts by weight of a linear polyester resin having an OH group in the molecule and having a molecular weight of 10,000 or more and The following structural formula 5 to 25 parts by weight of the titanium octylene glycol chelate compound shown by is blended with 100 parts by weight of the total resin, blended with a stabilizing isocyanate if necessary, and a solution of this dissolved in an organic solvent is applied and baked on the B stage. This is a self-bonding insulated wire characterized in that a self-bonding layer 3 is provided. Next, the polyhydantoin resin solution used in the present invention is polyhydantoin acid in a solution state or partially ring-closed to form a polyhydantoin ring, and is usually obtained by reaction of a glycine derivative, an isocyanate, an amine, etc. It will be done. Further, a detailed method for producing a polyhydantoin resin solution is described in, for example, Japanese Patent Publication No. 1973-20115. or,
A commercially available polyhydantoin resin solution is the product name PH-20 manufactured by Bayer AG, Germany. Next, examples of the linear polyester having a reactive OH group in the molecule having a molecular weight of 10,000 or more used in the present invention include, for example, Byron-200 (trade name) manufactured by Toyobo Co., Ltd., Byron-300 (trade name) manufactured by Toyobo Co., Ltd., and PE (trade name) manufactured by Gutdeyer Co., Ltd. (USA). -200, PE207, etc. The reason why the molecular weight of the linear polyester resin is limited to 10,000 or more is that if the molecular weight is 10,000 or less, it will affect the flexibility of the self-bonding insulated wire. Also, the reason why the amount of the linear polyester resin is limited to 10 to 200 parts by weight per 100 parts by weight of solid content of the polyhydantoin resin solution is that if it is less than 10 parts by weight, the temperature required for fusion will be high. This is not preferable because it is too much, and if it exceeds 200 parts by weight, the heat resistance and adhesive strength in a high temperature atmosphere are significantly reduced. Next, the commercially available titanium octylene glycol chelate compound shown by the above structural formula is TC-200 (trade name, manufactured by Matsumoto Pharmaceutical Co., Ltd., 70
% butanol solution). The reason why the amount of titanium octylene glycol chelate was limited to 5 to 25 parts by weight based on 100 parts by weight of the total resin content is that if it is less than 5 parts by weight, the crosslinking effect will be poor and the adhesive strength in a high temperature atmosphere will decrease. Moreover, if more than 25 parts by weight is blended, the crosslinking density will become too high and the adhesive performance will deteriorate. In addition, it is also possible to further improve the heat resistance by adding a stabilizing isocyanate in an amount of 10% by weight or less based on the total resin amount. As a stabilizing isocyanate, the product name Coronate manufactured by Nippon Polyurethane Co., Ltd.
AP Steeble etc. are suitable. Next, the present invention will be explained by giving Examples and Comparative Examples. Example 1 An esterimide insulating paint (trade name: Isomid, manufactured by Nippon Schenecta Dei Chemical Co., Ltd.) was coated and baked on a copper wire having a diameter of 0.5 mm to obtain an esterimide insulated wire having an insulation thickness of 25 μm. Apply fusion paint to this insulated wire as follows: Furnace length: 4 m, temperature: 250°C.
A self-bonding insulated wire according to the present invention was obtained by coating and baking to a thickness of 15 μm by die coating three times at a speed of 12 m/min. [Adjustment of adhesive coating] 100 parts by weight of polyhydantoin resin solution (product name: PH20, manufactured by Bayer AG, Germany, diluted to 20% by weight with cresol), linear polyester resin (product name: Byron 200, manufactured by Toyobo Co., Ltd.). 50 parts by weight dissolved in cresol and adjusted to a concentration of 20% by weight and titanium octylene glycol chelate compound (manufactured by Matsumoto Pharmaceutical Co., Ltd., trade name TC-200-70)
% butanol solution) was stirred and mixed to obtain a fusion coating. Examples 2 to 5, Comparative Examples 1 to 3 The esterimide paint (Nippon Schenectady Film thickness: 25 μm obtained by applying and baking
The insulated wires were coated and baked in the same manner as in Example 1 to obtain self-bonding insulated wires having a total film thickness of 40 μm, which were designated as Examples 2 to 5 and Comparative Examples 1 to 3. Example 6 A copper wire with a diameter of 0.5 mm was coated with esterimide paint (trade name Isomid, manufactured by Nippon Schenectaday Co., Ltd.) to a thickness of 20 μm and baked, and on top of that, an amide-imide paint (trade name HI-400, manufactured by Hitachi Chemical Co., Ltd.) was applied to a thickness of 5 μm. This was coated and baked to obtain a so-called amide-imide overcoated insulated wire, and the fusing paint used in Example-1 was further applied and baked under the same conditions as in Example-1 to obtain a self-bonding insulated wire. .

【表】
(単位 重量部)
比較例 4 直径0.5mmの銅線にエステルイミド塗料(日触
スケネクタデイ社商品名アイソミツド)を25μ厚
に塗布焼付け、さらにその上にフエノキシ樹脂
(米国UCC社製商品名PKHH)の20%クレゾール
溶液を15μ厚に塗布焼付けた自己融着性絶縁電線
を得た。 以上実施例1〜6および比較例1〜4で得た各
各の自己融着性絶縁電線の融着性能を調べた。 先ず、5mm径の巻付棒に各々の自己融着性絶縁
電線を密に巻付け、長さ70mmのヘリカルコイルを
作成し、これを200℃にて30分加熱し融着させた
後、ASTMD―2519に準じて折曲げによる線相
互間の接着強度を測定して、得られた結果を第2
表に示した。 又、高温雰囲気中で接着強度の低下の度合をみ
るため、150℃中での接着強度を測定した。得ら
れた結果を第2表に併記した。 又、220℃で7日間熱劣化させた後の接着強度
についても各々測定し、得られた結果を第2表に
併記した。
【table】
(Unit: parts by weight)
Comparative Example 4 A copper wire with a diameter of 0.5 mm was coated with 25μ thick esterimide paint (trade name: Isomid, manufactured by Nippon Schenectaday Co., Ltd.) and baked, and then a 20% cresol solution of phenoxy resin (trade name: PKHH, manufactured by UCC Corporation in the United States) was applied on top of it. A self-bonding insulated wire coated and baked to a thickness of 15μ was obtained. The fusing performance of each of the self-fusing insulated wires obtained in Examples 1 to 6 and Comparative Examples 1 to 4 was investigated. First, each self-bonding insulated wire was tightly wound around a winding rod with a diameter of 5 mm to create a helical coil with a length of 70 mm, which was heated at 200°C for 30 minutes to fuse, and then ASTMD - Measure the adhesive strength between wires by bending according to 2519, and use the obtained results as the second
Shown in the table. In addition, in order to see the degree of decrease in adhesive strength in a high temperature atmosphere, adhesive strength was measured at 150°C. The obtained results are also listed in Table 2. In addition, the adhesive strength after heat deterioration at 220° C. for 7 days was also measured, and the obtained results are also listed in Table 2.

【表】 以上、第2表から明らかなように、本発明自己
融着性絶縁電線は高温雰囲気中での接着強度が高
く、高温で長時間の加熱を受けても十分な接着強
度を維持しているなど極めて優れた性能を有する
ものである。
[Table] As is clear from Table 2, the self-bonding insulated wire of the present invention has high adhesive strength in a high-temperature atmosphere, and maintains sufficient adhesive strength even when heated at high temperatures for a long time. It has extremely excellent performance.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の自己融着性絶縁電線の実施例品
の構造を説明するための断面図である。 1……電気導体、2……絶縁物層、3……自己
融着層。
The drawing is a sectional view for explaining the structure of an example product of the self-bonding insulated wire of the present invention. 1... Electric conductor, 2... Insulator layer, 3... Self-bonding layer.

Claims (1)

【特許請求の範囲】 1 電気導体上に他の絶縁物層を介してポリヒダ
ントイン樹脂溶液の固形分100重量部に対して分
子中にOH基を有する分子量10000以上の線状ポ
リエステル樹脂10〜200重量部及び次の構造式 で示されるチタンオクチレングリコールキレート
化合物を全樹脂分100重量部に対して5〜25重量
部を必須成分とし、必要により安定化イソシアネ
ートを配合し、これを有機溶媒に溶解した溶液
を、Bステージに塗布焼付けて、自己融着層を設
けたことを特徴とする自己融着性絶縁電線。
[Claims] 1. 10 to 200 linear polyester resin having an OH group in the molecule and having a molecular weight of 10,000 or more based on 100 parts by weight of the solid content of the polyhydantoin resin solution, placed on the electric conductor via another insulating layer. Parts by weight and the following structural formula A titanium octylene glycol chelate compound represented by 5 to 25 parts by weight is an essential component based on 100 parts by weight of the total resin content, a stabilizing isocyanate is blended as necessary, and a solution of this in an organic solvent is prepared as a B-stage. A self-bonding insulated wire characterized by having a self-bonding layer formed by coating and baking the wire.
JP10647179A 1979-08-21 1979-08-21 Sele-weldable insulated wire Granted JPS5630472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10647179A JPS5630472A (en) 1979-08-21 1979-08-21 Sele-weldable insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10647179A JPS5630472A (en) 1979-08-21 1979-08-21 Sele-weldable insulated wire

Publications (2)

Publication Number Publication Date
JPS5630472A JPS5630472A (en) 1981-03-27
JPS6339625B2 true JPS6339625B2 (en) 1988-08-05

Family

ID=14434435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10647179A Granted JPS5630472A (en) 1979-08-21 1979-08-21 Sele-weldable insulated wire

Country Status (1)

Country Link
JP (1) JPS5630472A (en)

Also Published As

Publication number Publication date
JPS5630472A (en) 1981-03-27

Similar Documents

Publication Publication Date Title
KR950007086B1 (en) Copper alloy cable and insulation cable component core combind wire
US4058444A (en) Process for preparing an insulated product
JPS6339625B2 (en)
JPH0368490B2 (en)
JPS6043604B2 (en) self-adhesive insulated wire
JPS63226816A (en) Self-melting insulated wire
JPH023223Y2 (en)
JPS6161487B2 (en)
JPS61168668A (en) Self-welding insulating paint
JPH0210190B2 (en)
JPS63195912A (en) Enamelled twisted wire
JPS59119613A (en) Self-adhesive insulated wire
JPS592314B2 (en) Self-bonding insulation paint
JP2890280B2 (en) Self-fusing insulated wire with excellent crazing properties and low-temperature adhesion
JPH02192614A (en) Insulated wire of self fused type
JPS61161607A (en) Insulated wire
JP3737913B2 (en) Insulated wire
JPS5851410A (en) Self-adhesive insulated wire
JPS61203509A (en) Self-adhesive insulated wire
JP3364007B2 (en) Self-fusing insulated wire and rotating electric machine using the same
JP2582680B2 (en) Solderable self-fusing polyesterimide insulated wire with an inner coating to prevent co-cracking
JPS62135569A (en) Self-welding insulating paint and insulated wire
JP2003162926A (en) Self-binding insulated wire and coil using the same
JPH0773746A (en) Self-fusional insulated electric wire
JPH0336245B2 (en)