JP3737913B2 - Insulated wire - Google Patents

Insulated wire Download PDF

Info

Publication number
JP3737913B2
JP3737913B2 JP21124599A JP21124599A JP3737913B2 JP 3737913 B2 JP3737913 B2 JP 3737913B2 JP 21124599 A JP21124599 A JP 21124599A JP 21124599 A JP21124599 A JP 21124599A JP 3737913 B2 JP3737913 B2 JP 3737913B2
Authority
JP
Japan
Prior art keywords
mol
cresol
equivalent
reaction
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21124599A
Other languages
Japanese (ja)
Other versions
JP2001035257A (en
Inventor
孝志 八木田
正雄 池田
節夫 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichiseika Color and Chemicals Mfg Co Ltd
Ukima Chemicals and Color Mfg Co Ltd
Original Assignee
Dainichiseika Color and Chemicals Mfg Co Ltd
Ukima Chemicals and Color Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichiseika Color and Chemicals Mfg Co Ltd, Ukima Chemicals and Color Mfg Co Ltd filed Critical Dainichiseika Color and Chemicals Mfg Co Ltd
Priority to JP21124599A priority Critical patent/JP3737913B2/en
Publication of JP2001035257A publication Critical patent/JP2001035257A/en
Application granted granted Critical
Publication of JP3737913B2 publication Critical patent/JP3737913B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、耐熱性、耐湿熱性及び半田剥離性を有するポリエステル系絶縁電線に関する。
【0002】
【従来の技術】
近年においては、モーターやトランス等の電気機器の小型軽量化や高性能化が著しい。
電気機器の信頼性向上のために使用材料である絶縁電線の耐熱性化が進展し、耐熱性F種以上のポリエステル系絶縁電線(PEW、EIW)やポリアミドイミド絶縁電線(AIW)等が開発され実用化されている。
【0003】
また、電気機器の密閉化に伴い、電気機器内部に水分が封じ込められた雰囲気における電気機器の使用温度が上昇することが多くなり、電気機器の信頼性向上のために使用材料である絶縁電線の耐湿熱性化も望まれている。
一方、電気機器メーカーでは、主としてコストダウンを目的に省力自動化等工程の合理化が図られており、絶縁電線には先に述べた耐熱性や耐湿熱性のみならず、省力自動化につながる各種特性も要求されるようになってきた。
【0004】
省力自動化につながる各種特性のひとつとして、絶縁電線の端末剥離のライン化がある。
絶縁電線の端末剥離の方法には、
(1)機械剥離、
(2)熱分解剥離、
(3)薬品剥離、
(4)半田剥離
等の方法があるが、作業時間、導体の無傷化、連続処理等を考慮した時、(4)の半田剥離による方法が最も好ましいとされている。
このため、電気機器メーカーからは耐熱性及び耐湿熱性を有し、かつ半田剥離性を有する絶縁電線が望まれている。
【0005】
【発明が解決しようとする課題】
上記の絶縁電線においては、耐熱性等の諸特性に加えて生産性、経済性を兼ね備えたポリエステル系絶縁電線が最も汎用化されている。
ところが、実用化されているポリエステル系絶縁電線においては、耐熱性と耐湿熱性を有する物は半田剥離性を有せず、耐熱性と半田剥離性を有する物は耐湿熱性が不充分であり、これらの特性を共に満足する絶縁電線が求められている。 従って、本発明の目的は、前述した従来のポリエステル系絶縁電線の欠点を克服し、耐熱性及び耐湿熱性を有し、かつ半田剥離性を有するポリエステル系絶縁電線を提供することにある。
【0006】
本発明者は、上記目的を達成すべく鋭意検討した結果、2,6−ナフタレンジカルボン酸或いはその誘導体を10当量%以上含む酸成分とアルコール成分を用いて得られるポリエステル系樹脂を絶縁被膜形成樹脂とする絶縁塗料を、導体上に塗布及び焼き付けしてなるポリエステル系絶縁電線は、従来のポリエステル系絶縁電線の欠点を克服し、耐熱性、耐湿熱性に優れ、かつ半田剥離性をも有することを見いだし、本発明を完成するに至った。
【0007】
【課題を解決するための手段】
上記目的は以下の本発明によって達成される。即ち、本発明は、10〜60当量%の2,6−ナフタレンジカルボン酸或いはその誘導体(A)と90当量%未満〜40当量%の無水トリメリット酸及び無水トリメリット酸と4,4′−ジアミノジフェニルメタンからなるジイミドジカルボン酸から選ばれる少なくとも一種(B)とからなる酸成分と、炭素数が2〜8の脂肪族多価アルコールの少なくとも一種であるアルコール成分(C)とを、アルコール成分(C)が全酸成分当量の1.2〜2.0倍当量となる量で反応させて得られるポリエステル系樹脂を有機溶剤に溶解してなる絶縁塗料を、導体上に塗布及び焼き付けしてなることを特徴とする半田剥離性を有するポリエステル系絶縁電線である。
【0008】
【発明の実施の形態】
次に発明の実施の形態を挙げて本発明を更に詳しく説明する。
本発明の絶縁電線は、2,6−ナフタレンジカルボン酸或いはその誘導体(A)と無水トリメリット酸、無水トリメリット酸と4,4′−ジアミノジフェニルメタンからなるジイミドジカルボン酸のいずれか又はこれらの混合物(B)からなる酸成分と、炭素数が2〜8の脂肪族多価アルコールの少なくとも一種をアルコール成分(C)として反応させて得られるポリエステル系樹脂を絶縁被膜形成樹脂として含む絶縁塗料を導体に焼き付けてなることが特徴である。
【0009】
上記のポリエステル系樹脂において、酸成分中の成分(A)の使用割合が10〜60当量%、成分(B)の使用割合が90当量%未満〜40当量%(但し、成分(A)と(B)の合計は100当量%である。)で、アルコール成分(C)の使用割合が、全酸成分当量の1.2〜2.0倍当量であることが、耐熱性、耐湿熱性と半田剥離性が両立する絶縁被膜を形成するうえで必要である。
酸成分中の成分(A)の割合が10当量%未満では得られる絶縁電線の耐湿熱性が不充分となるばかりではなく、成分(B)の種類によっては半田剥離性そのものが付与されないことがある。
【0010】
従来の技術から見て、酸成分として2,6−ナフタレンジカルボン酸或いはその誘導体(A)を用いてポリエステル系樹脂を作製することで、該樹脂の耐熱性や耐湿熱性を向上させ得ることは充分予測できることであるが、耐熱性が向上すると、耐熱性と相反する特性である半田剥離性は阻害されることも容易に予測されることである。
しかしながら、上記のごとく酸成分として2,6−ナフタレンジカルボン酸或いはその誘導体を上記の量用いることで耐熱性や耐湿熱性に加えて、半田剥離性は付与されないと予測されるポリエステル系樹脂に半田剥離性が付与され、耐熱性を有するポリエステル系樹脂であるにも拘らず半田剥離性も付与されるということは予想外のことであった。
【0011】
本発明で使用するポリエステル系樹脂を構成する酸成分として、2,6−ナフタレンジカルボン酸或いはその誘導体(A)とともに、無水トリメリット酸、無水トリメリット酸と4,4′−ジアミノジフェニルメタンからなるジイミドジカルボン酸のいずれか又はこれらの混合物(B)を使用することが、得られる絶縁電線に耐熱性を付与するうえで必要であり、上記以外の酸成分の使用は耐熱性を阻害するので好ましくない。
2,6−ナフタレンジカルボン酸の誘導体としては、2,6−ナフタレンジカルボン酸ジメチルエステルが挙げられる。
また、無水トリメリット酸と4,4′−ジアミノジフェニルメタンからなるジイミドジカルボン酸は、無水トリメリット酸2モルと4,4′−ジアミノジフェニルメタン1モルとを脱水反応させることで得られるジイミドジカルボン酸である。
【0012】
本発明で上記酸成分と反応させるアルコール成分(C)としては、炭素数が2〜8の脂肪族多価アルコールが適当である。炭素数が9以上の脂肪族多価アルコールは耐熱性を低下させるので好ましくない。また、芳香族や複素環を有する多価アルコールの使用は半田剥離性を阻害するので好ましくない。
本発明で使用するポリエステル系樹脂を得るには、酸成分(A)と(B)に対するアルコール成分(C)の使用割合は、全酸成分当量に対してアルコール成分(C)を1.2〜2.0倍当量で使用することが必要であり、1.2倍未満ではポリエステル系樹脂の合成反応中にゲル化を起こしやすく実用化が困難であり、2.0倍を超えると得られるポリエステル系樹脂の重合度が低すぎて絶縁塗料として焼き付けた際の皮膜形成能に劣り好ましくない。
【0013】
炭素数が2〜8の脂肪族多価アルコールとしては、例えば、
エチレングリコール、
ジエチレングリコール、
1,3−プロパンジオール、
1,4−ブタンジオール、
1,5−ペンタンジオール、
1,6−ヘキサンジオール、
1,2−プロピレングリコール、
1,3−ブタンジオール等が挙げられる。
【0014】
本発明で使用するポリエステル系樹脂は、上記の酸成分(A)及び(B)と、アルコール成分(C)を前記の量で用いてエステル化反応ないしはエステル交換反応等の従来公知の方法よって合成(製造)することができ、合成方法は特に限定されない。合成反応は、通常、溶剤の存在下に行われる。
合成反応時の溶剤及び希釈の溶剤の例としては、例えば、
フェノール、
クレゾール、
クレゾール酸、
キシレノール、
ジメチルホルムアミド、
N−メチル−2−ピロリドン等の極性溶剤が単独又は混合して用いられる。
また、希釈時の補助溶剤としては、例えば、トルエン、キシレン、ソルベントナフサ、メチルエチルケトン、シクロヘキサノン等の炭化水素系溶剤を用いることができる。特に有用なものは芳香族炭化水素であるキシレンやソルベントナフサであって、絶縁塗料を導体上に焼き付けて絶縁電線を製造する際の作業性を向上させることができる。
【0015】
本発明で使用する絶縁塗料は、上記のようにして得られるポリエステル系樹脂を溶剤に溶解することにより製造される。通常は、該樹脂の合成反応後の溶液がそのまま、或いは希釈されて使用される。
また、絶縁塗料には、それを導体上に焼き付けて絶縁電線を製造する際に、少量の金属乾燥剤やチタン酸の化合物を添加することは絶縁電線の製造引き取り速度を速くすると共に絶縁電線の表面平滑性を一層向上させるので好ましい。
金属乾燥剤としては、例えばオクテン酸亜鉛やナフテン酸鉛等が挙げられる。最も有用なものは、チタン酸の化合物であり、例えばテトラブチルチタネート、テトライソプロピルチタネート等が挙げられ、添加量としては前記絶縁塗料の固形分100重量部に対して0.1〜8.0重量部、好ましくは1.0〜6.0重量部である。
【0016】
金属乾燥剤以外に、本発明で使用する絶縁塗料には、本発明の特徴が損なわれない範囲で、ポリイソシアネートのイソシアネート基をフェノール等でブロックした安定化イソシアネートやポリアミド、ポリエステル、ポリスルホン等の熱可塑性樹脂、メラミン樹脂、フェノール樹脂等の熱硬化性樹脂、染料、顔料、潤滑剤、その他塗料用添加剤等を適宜添加することができる。
【0017】
本発明の絶縁電線は、上記の絶縁塗料を適当な溶剤にて作業に適した粘度に調整後、軟銅線等の導体上に従来公知の方法に従って塗布、焼き付けして絶縁層(被膜)を形成することで製造される。
更に、本発明の絶縁電線は、上記の絶縁層の上層に、巻線性のために流動パラフィンや固形パラフィン等のルブリカントを塗布させることができる他、他の諸特性を付与させるために一般的に行われている如く、他の絶縁塗料を塗布、焼き付けして絶縁層を設けることもできる。例えば、更に耐熱性を要求される場合にはポリイミド系絶縁塗料又はポリアミドイミド系絶縁塗料、巻線性を要求される場合には6,6ナイロンのようなポリアミド系塗料、コイル自己支持化を要求される場合には自己融着塗料、例えば、ポリビニルブチラール、フェノキシ、ポリエステル、ポリアミド、ポリスルホン系塗料が用いられる。
【0018】
【実施例】
次に製造例、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。文中の%は重量基準である。
【0019】
参考製造例1
攪拌機、窒素導入管、コンデンサー及び温度計付き5リットルフラスコに、2,6−ナフタレンジカルボン酸ジメチルエステル1,220g(5モル)、エチレングリコール233g(3.75モル)、グリセリン233g(2.5モル)を仕込み、窒素を吹き込みながら加熱していくと160℃にてエステル交換反応に伴う脱メタノールが開始した。10時間かけて240℃に昇温した後、240℃にて3時間反応させ、クレゾール1,360gを仕込んで反応を停止させた。更にクレゾール431g、キシレン185gで希釈後、100℃にて、テトラブチルチタネート68gを配合し、樹脂分40%の参考例の絶縁塗料を得た。
【0020】
製造例
参考製造例1と同様にして、フラスコに2,6−ナフタレンジカルボン酸ジメチルエステル427g(1.75モル)、エチレングリコール326g(5.25モル)、プロピレングリコール171g(2.25モル)を仕込み、窒素を吹き込みながら加熱していくと160℃にてエステル交換反応に伴う脱メタノールが開始した。8時間かけて200℃とした後、クレゾール760gを加えて一旦反応を停止させた。この系を120℃とした後、無水トリメリット酸416g(2.17モル)を仕込み再び加熱すると180℃にてエステル化反応に伴う脱水が開始した。180℃から240℃まで6時間かけて昇温しながら反応させた後、クレゾール383gを仕込み反応を停止させた。更にクレゾール363g、キシレン155gで希釈後、100℃にて、テトラブチルチタネート57gを配合し、樹脂分40%の絶縁塗料−を得た。
【0021】
製造例
製造例と同様にして、フラスコに2,6−ナフタレンジカルボン酸ジメチルエステル488g(2モル)、テレフタル酸ジメチルエステル291g(1.5モル)、エチレングリコール326g(5.25モル)、グリセリン140g(1.5モル)を仕込んで反応させた後、クレゾール287gを添加して一旦反応を停止させ、この系に無水トリメリット酸192g(1モル)を仕込み再び反応させ、クレゾール882gを仕込み反応を停止させた。更にクレゾール370g、キシレン159gで希釈後、100℃にて、テトラブチルチタネート59gを配合し、樹脂分40%の絶縁塗料−を得た。
【0022】
製造例
製造例と同様にして、2,6−ナフタレンジカルボン酸ジメチルエステル366g(1.5モル)、テレフタル酸ジメチルエステル485g(2.5モル)、エチレングリコール279g(4.5モル)、グリセリン186g(2モル)をフラスコに仕込んで反応させた後、クレゾール263gを加えて一旦反応を停止させた。100℃以下に冷却して、この系に無水トリメリット酸384g(2モル)と4,4′−ジアミノジフェニルメタン198g(1モル)を仕込み再び加熱していくと、140℃にてイミド化反応に伴う脱水が、続いて180℃にてエステル化反応に伴う脱水が開始する。140℃から6時間かけて210℃とし、更に210℃にて3時間反応させた後、クレゾール286gを仕込み反応を停止させた。更にクレゾール494g、キシレン212gで希釈後、100℃にてテトラブチルチタネート79gを配合し、樹脂分40%の絶縁塗料−を得た。
【0023】
製造例
製造例と同様にして、2,6−ナフタレンジカルボン酸ジメチルエステル366g(1.5モル)、エチレングリコール372g(6モル)、グリセリン93g(1モル)をフラスコに仕込んで反応させ、クレゾール644gを添加して一旦反応を停止させた。この系に無水トリメリット酸704g(3.67モル)、4,4′−ジアミノジフェニルメタン198g(1モル)を仕込み再び反応させた後、クレゾール860gを加えて反応を停止させた。更にクレゾール475g、キシレン203gで希釈後、100℃にてテトラブチルチタネート75gを配合し、樹脂分40%の絶縁塗料−を得た。
【0024】
製造例
製造例と同様にして、フラスコに2,6−ナフタレンジカルボン酸ジメチルエステル732g(3モル)、エチレングリコール233g(3.75モル)、グリセリン233g(2.5モル)を仕込んで反応させた後、クレゾール1,655gを添加して一旦反応を停止させた。この系に無水トリメリット酸768g(4モル)、4,4′−ジアミノジフェニルメタン396g(2モル)を仕込み、再び反応させた後、クレゾール368gを加えて反応を停止させた。更にクレゾール638g、キシレン274gで希釈後、100℃にて、テトラブチルチタネート101gを配合し、樹脂分40%の絶縁塗料−を得た。
【0025】
製造例
製造例と同様にして、フラスコに2,6−ナフタレンジカルボン酸ジメチルエステル366g(1.5モル)、エチレングリコール233g(3.75モル)、プロピレングリコール114g(1.5モル)、グリセリン140g(1.5モル)を仕込んで反応させた後、クレゾール669gを加えて一旦反応を停止させた。この系に無水トリメリット酸512g(2.67モル)、4,4′−ジアミノジフェニルメタン198g(1モル)を仕込み、再び反応させた後、クレゾール894gを仕込んで反応を停止させた。更にクレゾール494g、キシレン212gで希釈後、100℃にて、テトラブチルチタネート78gを配合し、樹脂分40%の絶縁塗料−を得た。
【0026】
製造例
参考製造例1と同様にして、フラスコにテレフタル酸ジメチルエステル970g(5モル)、エチレングリコール233g(3.75モル)、グリセリン233g(2.5モル)を仕込んで反応を行った後、クレゾール1,108gを仕込み反応を停止させた。更にクレゾール351g、キシレン151gで希釈後、100℃にて、テトラブチルチタネート56gを配合し、樹脂分40%の絶縁塗料−比1を得た。
【0027】
製造例
参考製造例1と同様にして、フラスコに2,6−ナフタレンジカルボン酸ジメチルエステル61g(0.25モル)、テレフタル酸ジメチルエステル922g(4.75モル)、エチレングリコール233g(3.75モル)、グリセリン233g(2.5モル)を仕込んで反応を行った後、クレゾール1,120gを加えて反応を停止させた。更にクレゾール355g、キシレン152gで希釈後、100℃にて、テトラブチルチタネート56gを配合し、樹脂分40%の絶縁塗料−比2を得た。
【0028】
製造例
製造例と同様にして、テレフタル酸ジメチルエステル679g(3.5モル)、エチレングリコール372g(6モル)、グリセリン93g(1モル)をフラスコに仕込んで反応を行い、クレゾール1,068g添加して一旦反応を停止させた後、無水トリメリット酸192g(1モル)を仕込んで再び反応させ、クレゾール1,068gを仕込んで反応を停止させた。更にクレゾール339g、キシレン145gで希釈後、100℃にて、テトラブチルチタネート54gを配合し、樹脂分40%の絶縁塗料−比3を得た。
【0029】
製造例10
製造例と同様にして、テレフタル酸ジメチルエステル582g(3モル)、エチレングリコール233g(3.75モル)、グリセリン233g(2.5モル)をフラスコ仕込み、反応させた後、クレゾール698gを添加して一旦反応を停止させた。この系に、無水トリメリット酸768g(4モル)、4,4′−ジアミノジフェニルメタン396g(2モル)を仕込んで再び反応させた後、クレゾール341gを加えて反応を停止させた。更にクレゾール591g、キシレン253gで希釈後、100℃にて、テトラブチルチタネート94gを配合し、樹脂分40%の絶縁塗料−比4を得た。
【0030】
製造例11
参考製造例1と同様の装置にて、無水トリメリット酸1,280g(6.67モル)、エチレングリコール465g(7.5モル)、4,4′−ジアミノジフェニルメタン495g(2.5モル)、クレゾール1、634gを仕込んで反応させた後、クレゾール364gを加えて反応を停止させた。更にクレゾール630g、キシレン270gで希釈後、100℃にて、テトラブチルチタネート100gを配合し、樹脂分40%の絶縁塗料−比5を得た。
【0031】
製造例12
参考製造例1と同様の装置にて、テレフタル酸ジメチルエステル776g(4モル)、エチレングリコール233g(3.75モル)、トリス(2−ヒドロキシエチル)イソシアヌレート653g(2.5モル)、無水トリメリット酸384g(2モル)、4,4′−ジアミノジフェニルメタン198g(1モル)、クレゾール211gを仕込み反応させた後、クレゾール1,702gを仕込んで反応を停止させた。更にクレゾール603g、キシレン259gで希釈後、100℃にて、テトラブチルチタネート96gを配合し、樹脂分40%の絶縁塗料−比6を得た。
【0032】
実施例1〜、比較例1〜6
上記の各絶縁塗料を、炉長2.5mの横型焼付炉にて、導体径0.32mmの銅線に、炉温500℃、ダイス6回、引取速度22m/分の条件で塗布、焼き付けし、皮膜厚さ0.018mmの絶縁電線を製造した。
得られた絶縁電線について、外観、密着性、ピンホール、可撓性、軟化点、絶縁破壊電圧及び半田剥離性をJIS C 3003(エナメル銅線及びエナメルアルミニウム線試験方法)に従って試験した。耐湿熱性は、700mlのオートクレーブに、JIS C3003の絶縁破壊電圧試験における2ケ撚り試料を水0.2vol%と共に封入し、120℃の恒温槽に168時間放置後、JIS C3003の絶縁破壊電圧試験に従って行い、その初期値に対する保持率を測定した。以上の試験結果を表1及び表2に示す。
【0033】

Figure 0003737913
【0034】
Figure 0003737913
【0035】
表1及び表2の結果は、本発明の絶縁電線が、従来のポリエステル系絶縁電線の欠点を克服し、耐熱性、耐湿熱性及び半田剥離性を有していることを示している。
【0036】
【発明の効果】
以上の本発明によれば、半田剥離性を有すると同時に耐熱性と耐湿熱性をも有する絶縁電線が提供される。本発明の絶縁電線は、近年の電気機器に用いるポリエステル系絶縁電線に対する要求特性に充分応えることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyester-based insulated wire having heat resistance, wet heat resistance, and solder releasability.
[0002]
[Prior art]
In recent years, electric devices such as motors and transformers have been remarkably reduced in size, weight and performance.
In order to improve the reliability of electrical equipment, the heat resistance of insulated wires, which are the materials used, has progressed, and polyester-based insulated wires (PEW, EIW) and polyamide-imide insulated wires (AIW), etc. that are heat-resistant Class F or higher, have been developed. It has been put into practical use.
[0003]
In addition, with the sealing of electrical equipment, the operating temperature of the electrical equipment in an atmosphere where moisture is contained inside the electrical equipment often increases, and the insulation wire, which is the material used, is used to improve the reliability of the electrical equipment. It is also desired to have heat and moisture resistance.
On the other hand, electrical equipment manufacturers are rationalizing processes such as labor saving automation mainly for the purpose of cost reduction, and insulated wires require not only the heat resistance and heat and humidity resistance mentioned above, but also various characteristics that lead to labor saving automation. It has come to be.
[0004]
One of the various characteristics that leads to labor-saving automation is the line separation of insulated wire ends.
For the method of stripping the end of an insulated wire,
(1) machine peeling,
(2) Pyrolysis peeling
(3) chemical peeling,
(4) Although there is a method such as solder peeling, the method by (4) solder peeling is most preferable when considering the working time, making the conductor intact, continuous processing, and the like.
For this reason, an electric wire manufacturer is demanding an insulated wire having heat resistance, moisture and heat resistance, and solder releasability.
[0005]
[Problems to be solved by the invention]
Among the above insulated wires, polyester-based insulated wires that have productivity and economy in addition to various characteristics such as heat resistance are most widely used.
However, in polyester-based insulated wires that have been put to practical use, those that have heat resistance and moist heat resistance do not have solder releasability, and those that have heat resistance and solder releasability have insufficient moist heat resistance. There is a need for an insulated wire that satisfies both of these characteristics. Accordingly, an object of the present invention is to overcome the above-described drawbacks of the conventional polyester-based insulated wires, and to provide a polyester-based insulated wire having heat resistance, moisture and heat resistance, and solder releasability.
[0006]
As a result of intensive studies to achieve the above object, the present inventor has obtained a polyester-based resin obtained by using an acid component containing 10 equivalent% or more of 2,6-naphthalenedicarboxylic acid or a derivative thereof and an alcohol component as an insulating film forming resin. Polyester insulated wires formed by applying and baking an insulating coating on the conductor to overcome the disadvantages of conventional polyester insulated wires, have excellent heat resistance, moisture and heat resistance, and have solder releasability. As a result, the present invention has been completed.
[0007]
[Means for Solving the Problems]
The above object is achieved by the present invention described below. That is, the present invention is from 10 to 60 equivalent percent of 2,6-naphthalenedicarboxylic acid or its derivative (A) and 90 equivalents% less than 40 equivalent percent of trimellitic San及 beauty trimellitic anhydride 4,4 ' An alcohol component comprising an acid component comprising at least one (B) selected from diimidedicarboxylic acids comprising diaminodiphenylmethane and an alcohol component (C) which is at least one of aliphatic polyhydric alcohols having 2 to 8 carbon atoms An insulating coating obtained by dissolving a polyester resin obtained by reacting (C) in an amount that is equivalent to 1.2 to 2.0 times equivalent of the total acid component equivalent in an organic solvent is applied and baked on the conductor. This is a polyester-based insulated wire having solder releasability.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail with reference to embodiments of the invention.
Insulated wire of the present invention, 2,6-naphthalene dicarboxylic acid or its derivative (A) and anhydrous trimellitic acid, either or these diimide dicarboxylic acid consisting of trimellitic anhydride and 4,4'-diaminodiphenylmethane An insulating paint comprising, as an insulating film-forming resin, a polyester resin obtained by reacting an acid component comprising the mixture (B) and at least one of aliphatic polyhydric alcohols having 2 to 8 carbon atoms as the alcohol component (C) It is characterized by being baked on the conductor.
[0009]
In the above polyester-based resin, the use ratio of the component (A) in the acid component is 10 to 60 equivalent %, and the use ratio of the component (B) is less than 90 equivalent% to 40 equivalent% (however, the components (A) and ( B) is 100 equivalent%.) And the proportion of alcohol component (C) used is 1.2 to 2.0 times equivalent of the total acid component equivalent. Necessary for forming an insulating film having both excellent peelability.
When the ratio of the component (A) in the acid component is less than 10 equivalent%, not only the heat and moisture resistance of the resulting insulated wire is insufficient, but depending on the type of the component (B), the solder releasability itself may not be imparted. .
[0010]
From the viewpoint of the prior art, it is sufficient that the heat resistance and heat-and-moisture resistance of the resin can be improved by preparing a polyester resin using 2,6-naphthalenedicarboxylic acid or its derivative (A) as an acid component. It can be predicted that when the heat resistance is improved, it is easily predicted that the solder releasability, which is a characteristic contrary to the heat resistance, is inhibited.
However, by using 2,6-naphthalenedicarboxylic acid or a derivative thereof as an acid component in the above amount as described above, soldering to a polyester resin that is predicted not to impart solder releasability in addition to heat resistance and moist heat resistance. It was unexpected that the releasability was imparted and the solder releasability was imparted even though it was a polyester resin having heat resistance.
[0011]
As the acid component constituting the polyester resin used in the present invention, together with 2,6-naphthalene dicarboxylic acid or its derivative (A), anhydrous trimellitic acid, consisting of trimellitic anhydride and 4,4'-diaminodiphenylmethane Use of any one of diimide dicarboxylic acids or a mixture thereof (B) is necessary for imparting heat resistance to the obtained insulated wire, and use of an acid component other than the above is preferable because it impairs heat resistance. Absent.
Derivatives of 2,6-naphthalene dicarboxylic acid, 2,6-naphthalene dicarboxylic acid dimethyl ester le.
Diimide dicarboxylic acid composed of trimellitic anhydride and 4,4'-diaminodiphenylmethane is diimide dicarboxylic acid obtained by dehydrating 2 mol of trimellitic anhydride and 1 mol of 4,4'-diaminodiphenylmethane. is there.
[0012]
As the alcohol component (C) to be reacted with the acid component in the present invention, an aliphatic polyhydric alcohol having 2 to 8 carbon atoms is suitable. Aliphatic polyhydric alcohols having 9 or more carbon atoms are not preferred because they reduce heat resistance. Also, the use of polyhydric alcohols having an aromatic or heterocyclic ring is not preferable because it hinders solder releasability.
In order to obtain the polyester resin used in the present invention, the ratio of the alcohol component (C) to the acid components (A) and (B) is such that the alcohol component (C) is 1.2 to It is necessary to use it at an equivalent of 2.0 times, and if it is less than 1.2 times, it is easy to cause gelation during the synthesis reaction of the polyester resin, and it is difficult to put it to practical use. The polymerization degree of the resin is too low, and the film forming ability when baked as an insulating paint is not preferable.
[0013]
Examples of the aliphatic polyhydric alcohol having 2 to 8 carbon atoms include:
ethylene glycol,
Diethylene glycol,
1,3-propanediol,
1,4-butanediol,
1,5-pentanediol,
1,6-hexanediol,
1,2-propylene glycol,
1,3-butanediol and the like can be mentioned.
[0014]
The polyester resin used in the present invention is synthesized by a conventionally known method such as esterification reaction or transesterification reaction using the acid components (A) and (B) and the alcohol component (C) in the above amounts. The production method is not particularly limited. The synthesis reaction is usually performed in the presence of a solvent.
As an example of the solvent during the synthesis reaction and the solvent for dilution, for example,
Phenol,
Cresol,
Cresolic acid,
Xylenol,
Dimethylformamide,
Polar solvents such as N-methyl-2-pyrrolidone are used alone or in combination.
Moreover, as a cosolvent at the time of dilution, hydrocarbon solvents, such as toluene, xylene, solvent naphtha, methyl ethyl ketone, cyclohexanone, can be used, for example. Particularly useful are xylene and solvent naphtha, which are aromatic hydrocarbons, which can improve the workability when an insulated wire is manufactured by baking an insulating coating on a conductor.
[0015]
The insulating paint used in the present invention is produced by dissolving the polyester resin obtained as described above in a solvent. Usually, the solution after the synthetic reaction of the resin is used as it is or after being diluted.
In addition, when an insulated wire is manufactured by baking it on a conductor, adding a small amount of a metal desiccant or a titanic acid compound increases the production rate of the insulated wire and increases the insulation wire. Since surface smoothness is further improved, it is preferable.
Examples of the metal desiccant include zinc octenoate and lead naphthenate. The most useful are titanic acid compounds such as tetrabutyl titanate, tetraisopropyl titanate, etc., and the addition amount is 0.1 to 8.0 weight with respect to 100 parts by weight of the solid content of the insulating coating. Parts, preferably 1.0 to 6.0 parts by weight.
[0016]
In addition to the metal desiccant, the insulating paint used in the present invention is a heat-resistant material such as stabilized isocyanate, polyamide, polyester, polysulfone, etc., in which the isocyanate group of the polyisocyanate is blocked with phenol or the like, as long as the characteristics of the present invention are not impaired. Thermosetting resins such as plastic resins, melamine resins, and phenol resins, dyes, pigments, lubricants, other paint additives, and the like can be appropriately added.
[0017]
The insulated wire of the present invention is formed by adjusting the above-mentioned insulating paint to a viscosity suitable for work with an appropriate solvent, and then applying and baking on a conductor such as an annealed copper wire according to a conventionally known method to form an insulating layer (film). It is manufactured by doing.
Furthermore, the insulated wire of the present invention can be coated with a lubricant such as liquid paraffin or solid paraffin on the upper layer of the above insulating layer for winding properties, and generally has other characteristics. As is done, other insulating paints can be applied and baked to provide an insulating layer. For example, if further heat resistance is required, polyimide insulating coating or polyamideimide insulating coating is required, and if winding properties are required, polyamide coating such as 6,6 nylon, coil self-supporting is required. In such a case, a self-bonding paint such as polyvinyl butyral, phenoxy, polyester, polyamide, or polysulfone paint is used.
[0018]
【Example】
Next, although a manufacture example, an Example, and a comparative example are given and this invention is demonstrated further more concretely, this invention is not limited to these Examples. The percentages in the text are based on weight.
[0019]
Reference production example 1
In a 5 liter flask equipped with a stirrer, nitrogen inlet tube, condenser and thermometer, 1,6-naphthalenedicarboxylic acid dimethyl ester 1,220 g (5 mol), ethylene glycol 233 g (3.75 mol), glycerin 233 g (2.5 mol) ), And while heating with nitrogen blowing, demethanol accompanying transesterification started at 160 ° C. After heating up to 240 degreeC over 10 hours, it was made to react at 240 degreeC for 3 hours, cresol 1,360g was prepared and reaction was stopped. Furthermore cresol 431 g, was diluted with xylene 185 g, at 100 ° C., mixed with tetrabutyl titanate 68 g, to obtain an insulating paint resin content of 40% Reference Example.
[0020]
Production Example 1
In the same manner as in Reference Production Example 1, 427 g (1.75 mol) of 2,6-naphthalenedicarboxylic acid dimethyl ester, 326 g (5.25 mol) of ethylene glycol, and 171 g (2.25 mol) of propylene glycol were charged in a flask. When heated while blowing nitrogen, demethanol accompanying transesterification started at 160 ° C. After setting to 200 ° C. over 8 hours, 760 g of cresol was added to temporarily stop the reaction. After this system was set to 120 ° C., 416 g (2.17 mol) of trimellitic anhydride was added and heated again, and dehydration accompanying the esterification reaction started at 180 ° C. After reacting while heating from 180 ° C. to 240 ° C. over 6 hours, 383 g of cresol was added to stop the reaction. Furthermore, after diluting with 363 g of cresol and 155 g of xylene, 57 g of tetrabutyl titanate was blended at 100 ° C. to obtain an insulating paint- 1 having a resin content of 40%.
[0021]
Production Example 2
In the same manner as in Production Example 1 , 488 g (2 mol) of 2,6-naphthalenedicarboxylic acid dimethyl ester, 291 g (1.5 mol) of dimethyl terephthalate, 326 g (5.25 mol) of ethylene glycol, 140 g of glycerin ( 1.5 mol) was added to the reaction, 287 g of cresol was added to temporarily stop the reaction, 192 g (1 mol) of trimellitic anhydride was added to this system and reacted again, and 882 g of cresol was added to stop the reaction. I let you. Further, after dilution with 370 g of cresol and 159 g of xylene, 59 g of tetrabutyl titanate was blended at 100 ° C. to obtain an insulating paint- 2 having a resin content of 40%.
[0022]
Production Example 3
In the same manner as in Production Example 1 , 366 g (1.5 mol) of 2,6-naphthalenedicarboxylic acid dimethyl ester, 485 g (2.5 mol) of dimethyl terephthalate, 279 g (4.5 mol) of ethylene glycol, 186 g of glycerin ( 2 mol) was charged into a flask and reacted, and then 263 g of cresol was added to temporarily stop the reaction. After cooling to 100 ° C. or lower and charging 384 g (2 mol) of trimellitic anhydride and 198 g (1 mol) of 4,4′-diaminodiphenylmethane to this system and heating again, an imidization reaction is carried out at 140 ° C. The accompanying dehydration then begins at 180 ° C. with the esterification reaction. From 140 ° C. to 210 ° C. over 6 hours and further reacted at 210 ° C. for 3 hours, 286 g of cresol was added to stop the reaction. Furthermore, after diluting with 494 g of cresol and 212 g of xylene, 79 g of tetrabutyl titanate was blended at 100 ° C. to obtain an insulating paint- 3 having a resin content of 40%.
[0023]
Production Example 4
In the same manner as in Production Example 3 , 366 g (1.5 mol) of 2,6-naphthalenedicarboxylic acid dimethyl ester, 372 g (6 mol) of ethylene glycol and 93 g (1 mol) of glycerin were charged and reacted, and 644 g of cresol was added. The reaction was stopped once by addition. To this system, 704 g (3.67 mol) of trimellitic anhydride and 198 g (1 mol) of 4,4′-diaminodiphenylmethane were charged and reacted again, and then 860 g of cresol was added to stop the reaction. Furthermore, after diluting with 475 g of cresol and 203 g of xylene, 75 g of tetrabutyl titanate was blended at 100 ° C. to obtain an insulating coating 4 having a resin content of 40%.
[0024]
Production Example 5
In the same manner as in Production Example 3 , the flask was charged with 732 g (3 mol) of 2,6-naphthalenedicarboxylic acid dimethyl ester, 233 g (3.75 mol) of ethylene glycol, and 233 g (2.5 mol) of glycerin and reacted. The reaction was stopped once by adding 1,655 g of cresol. To this system, 768 g (4 mol) of trimellitic anhydride and 396 g (2 mol) of 4,4′-diaminodiphenylmethane were charged and reacted again, and 368 g of cresol was added to stop the reaction. Further, after diluting with 638 g of cresol and 274 g of xylene, 101 g of tetrabutyl titanate was blended at 100 ° C. to obtain an insulating paint- 5 having a resin content of 40%.
[0025]
Production Example 6
In the same manner as in Production Example 3 , 366 g (1.5 mol) of 2,6-naphthalenedicarboxylic acid dimethyl ester, 233 g (3.75 mol) of ethylene glycol, 114 g (1.5 mol) of propylene glycol, and 140 g of glycerin ( 1.5 mol) was added and reacted, and then 669 g of cresol was added to temporarily stop the reaction. In this system, 512 g (2.67 mol) of trimellitic anhydride and 198 g (1 mol) of 4,4′-diaminodiphenylmethane were charged and reacted again, and then 894 g of cresol was charged to stop the reaction. Furthermore, after diluting with 494 g of cresol and 212 g of xylene, 78 g of tetrabutyl titanate was blended at 100 ° C. to obtain an insulating paint- 6 having a resin content of 40%.
[0026]
Production Example 7
In the same manner as in Reference Production Example 1, 970 g (5 mol) of dimethyl terephthalate, 233 g (3.75 mol) of ethylene glycol, and 233 g (2.5 mol) of glycerin were charged into a flask and reacted, and then cresol 1 , 108 g were charged to stop the reaction. Further, after dilution with 351 g of cresol and 151 g of xylene, 56 g of tetrabutyl titanate was blended at 100 ° C. to obtain an insulating paint ratio of 1 with a resin content of 40%.
[0027]
Production Example 8
In the same manner as in Reference Production Example 1, 61 g (0.25 mol) of 2,6-naphthalenedicarboxylic acid dimethyl ester, 922 g (4.75 mol) of dimethyl terephthalate, 233 g (3.75 mol) of ethylene glycol, After 233 g (2.5 mol) of glycerin was charged and reacted, 1,120 g of cresol was added to stop the reaction. Further, after dilution with 355 g of cresol and 152 g of xylene, 56 g of tetrabutyl titanate was blended at 100 ° C. to obtain an insulating paint ratio of 2 with a resin content of 40%.
[0028]
Production Example 9
In the same manner as in Production Example 1 , 679 g (3.5 mol) of terephthalic acid dimethyl ester, 372 g (6 mol) of ethylene glycol and 93 g (1 mol) of glycerin were charged and reacted, and 1,068 g of cresol was added. Once the reaction was stopped, 192 g (1 mol) of trimellitic anhydride was charged and reacted again, and 1,068 g of cresol was charged to stop the reaction. Further, after dilution with 339 g of cresol and 145 g of xylene, 54 g of tetrabutyl titanate was blended at 100 ° C. to obtain an insulating paint ratio of 3 with a resin content of 40%.
[0029]
Production Example 10
In the same manner as in Production Example 1 , 582 g (3 mol) of dimethyl terephthalate, 233 g (3.75 mol) of ethylene glycol and 233 g (2.5 mol) of glycerin were charged and reacted, and then 698 g of cresol was added. The reaction was stopped once. To this system, 768 g (4 mol) of trimellitic anhydride and 396 g (2 mol) of 4,4′-diaminodiphenylmethane were charged and reacted again, and then 341 g of cresol was added to stop the reaction. Furthermore, after diluting with 591 g of cresol and 253 g of xylene, 94 g of tetrabutyl titanate was blended at 100 ° C. to obtain an insulating paint ratio of 4 with a resin content of 40%.
[0030]
Production Example 11
In the same apparatus as in Reference Production Example 1, 1,280 g (6.67 mol) of trimellitic anhydride, 465 g (7.5 mol) of ethylene glycol, 495 g (2.5 mol) of 4,4′-diaminodiphenylmethane, After adding 634 g of cresol and reacting, 364 g of cresol was added to stop the reaction. Furthermore, after diluting with 630 g of cresol and 270 g of xylene, 100 g of tetrabutyl titanate was blended at 100 ° C. to obtain an insulating paint ratio of 5 with a resin content of 40%.
[0031]
Production Example 12
In the same apparatus as in Reference Production Example 1, 776 g (4 mol) of dimethyl terephthalate, 233 g (3.75 mol) of ethylene glycol, 653 g (2.5 mol) of tris (2-hydroxyethyl) isocyanurate, 384 g (2 mol) of merit acid, 198 g (1 mol) of 4,4′-diaminodiphenylmethane and 211 g of cresol were charged and reacted, and then 1,702 g of cresol was charged and the reaction was stopped. Further, after dilution with 603 g of cresol and 259 g of xylene, 96 g of tetrabutyl titanate was blended at 100 ° C. to obtain an insulating paint ratio of 6 with a resin content of 40%.
[0032]
Examples 1 6 and Comparative Examples 1 to 6
Each of the above-mentioned insulating paints was applied and baked on a copper wire having a conductor diameter of 0.32 mm in a horizontal baking furnace having a furnace length of 2.5 m under conditions of a furnace temperature of 500 ° C., six dies, and a take-up speed of 22 m / min. An insulated wire having a coating thickness of 0.018 mm was manufactured.
About the obtained insulated wire, the external appearance, adhesiveness, pinhole, flexibility, softening point, dielectric breakdown voltage, and solder peelability were tested according to JIS C 3003 (enamelled copper wire and enameled aluminum wire test method). The heat and humidity resistance is determined by enclosing two twisted samples in a dielectric breakdown voltage test of JIS C3003 together with 0.2 vol% of water in a 700 ml autoclave, leaving it in a constant temperature bath at 120 ° C. for 168 hours, and following the dielectric breakdown voltage test of JIS C3003. The retention rate relative to the initial value was measured. The above test results are shown in Tables 1 and 2.
[0033]
Figure 0003737913
[0034]
Figure 0003737913
[0035]
The results in Tables 1 and 2 show that the insulated wires of the present invention overcome the drawbacks of conventional polyester-based insulated wires and have heat resistance, moist heat resistance and solder peelability.
[0036]
【The invention's effect】
According to the present invention as described above, an insulated wire having both solder releasability and heat resistance and moist heat resistance is provided. The insulated wire of the present invention can sufficiently meet the required characteristics for polyester-based insulated wires used in recent electrical equipment.

Claims (1)

10〜60当量%の2,6−ナフタレンジカルボン酸或いはその誘導体(A)と90当量%未満〜40当量%の無水トリメリット酸及び無水トリメリット酸と4,4′−ジアミノジフェニルメタンからなるジイミドジカルボン酸から選ばれる少なくとも一種(B)とからなる酸成分と、炭素数が2〜8の脂肪族多価アルコールの少なくとも一種であるアルコール成分(C)とを、アルコール成分(C)が全酸成分当量の1.2〜2.0倍当量となる量で反応させて得られるポリエステル系樹脂を有機溶剤に溶解してなる絶縁塗料を、導体上に塗布及び焼き付けしてなることを特徴とする半田剥離性を有するポリエステル系絶縁電線。 10-60 equivalent percent of 2,6-naphthalenedicarboxylic acid or its derivative (A) and 90 equivalent% less than 40 equivalent percent trimellitic San及 beauty of trimellitic anhydride and diimide consisting of 4,4'-diaminodiphenylmethane An acid component comprising at least one (B) selected from dicarboxylic acids and an alcohol component (C) which is at least one of aliphatic polyhydric alcohols having 2 to 8 carbon atoms, and the alcohol component (C) is a total acid. An insulating paint obtained by dissolving a polyester resin obtained by reacting in an amount equivalent to 1.2 to 2.0 times the component equivalent in an organic solvent is applied and baked on a conductor. Polyester insulated wire with solder releasability.
JP21124599A 1999-07-26 1999-07-26 Insulated wire Expired - Lifetime JP3737913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21124599A JP3737913B2 (en) 1999-07-26 1999-07-26 Insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21124599A JP3737913B2 (en) 1999-07-26 1999-07-26 Insulated wire

Publications (2)

Publication Number Publication Date
JP2001035257A JP2001035257A (en) 2001-02-09
JP3737913B2 true JP3737913B2 (en) 2006-01-25

Family

ID=16602710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21124599A Expired - Lifetime JP3737913B2 (en) 1999-07-26 1999-07-26 Insulated wire

Country Status (1)

Country Link
JP (1) JP3737913B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105255331A (en) * 2015-10-16 2016-01-20 国网山东莒南县供电公司 Modified polyester wire enamel

Also Published As

Publication number Publication date
JP2001035257A (en) 2001-02-09

Similar Documents

Publication Publication Date Title
DE1645435C1 (en) Process for the production of polyesterimides
US4104221A (en) Process for making water diluted electroinsulation enamels
JP3737913B2 (en) Insulated wire
JP3884597B2 (en) Insulating paint
JP3816694B2 (en) Insulating paint
JP3490895B2 (en) Insulated wire
JP3504859B2 (en) Insulating paint
JP3764277B2 (en) Insulating paint
JP3504858B2 (en) Solder peelable insulated wire
JPS6021614B2 (en) Resin manufacturing method
JPS58127B2 (en) insulated wire
CA1199742A (en) Polyester and polyesterimide resins
KR20090036351A (en) Water-soluble polyester varnish for electric insulating of electric wire
JP3336221B2 (en) Insulated wire
JP2001006444A (en) Insulated electric wire
JPH0948910A (en) Polyester resin composition for coating and electric wire insulated therewith
JPS6134074A (en) Self-lubricating insulating paint
JPS5847801B2 (en) Jikojiyunkatsusei Enamel Settsuendensen
JPH06215635A (en) Work resistant insulating electric wire
JPH04312707A (en) Insulated wire fit for winding process
JPS62291808A (en) Insulated wire with improved working resistance
JPH08134215A (en) Production of polyester-imide, heat-resistant resin composition and insulated wire
JPH05339540A (en) Quick-curing insulating varnish and insulated wire
JPH05339523A (en) Insulating varnish and insulated wire
JPH07278302A (en) Production of polyesterimide, heat-resistant resin composition and insulated wire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051028

R150 Certificate of patent or registration of utility model

Ref document number: 3737913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term