JPS633951B2 - - Google Patents

Info

Publication number
JPS633951B2
JPS633951B2 JP9834080A JP9834080A JPS633951B2 JP S633951 B2 JPS633951 B2 JP S633951B2 JP 9834080 A JP9834080 A JP 9834080A JP 9834080 A JP9834080 A JP 9834080A JP S633951 B2 JPS633951 B2 JP S633951B2
Authority
JP
Japan
Prior art keywords
copper plating
plating solution
chemical copper
chemical
cyclic polyether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9834080A
Other languages
Japanese (ja)
Other versions
JPS5726156A (en
Inventor
Osamu Myazawa
Hitoshi Oka
Ataru Yokono
Tokio Isogai
Isamu Tanaka
Akira Matsuo
Hiroshi Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9834080A priority Critical patent/JPS5726156A/en
Publication of JPS5726156A publication Critical patent/JPS5726156A/en
Publication of JPS633951B2 publication Critical patent/JPS633951B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明はプリント板等の補造に䜿甚される無電
解銅め぀き液すなわち化孊銅め぀き液に関するも
のにしお、液の自己分解をなくしお高速析出が可
胜で、か぀皮膜の機械的性質を向䞊させる化孊銅
め぀き液に関するものである。 電気を䜿甚するこずなく、無電解的に連続的に
銅を析出させるこずができる自己觊媒䜜甚を有す
る化孊銅め぀き液は既に知られおいる。そのよう
な化孊銅め぀き液は普通氎溶性銅塩、銅むオンの
錯化剀、銅むオンの還元剀およびPH調敎剀を含ん
でなるものである。公知の化孊銅め぀き液にぱ
チレンゞアミンテトラ酢酞塩を錯化剀ずした
EDTA济や、ロツシ゚ル塩を錯化剀ずしたロツ
シ゚ル塩济がある。さらに、め぀き皮膜の機械的
性質である䌞び、匕匵り匷さを向䞊させ、たため
぀き液の安定化を図るため、これらの济に皮々の
添加物を加えるこずが知られおいる。添加物の代
衚的なものにはシアン化物、ニトリル類、窒玠を
含む耇玠環匏化合物、硫黄を含む無機化合物、ポ
リ゚チレンオキサむド、プナントロリンおよび
その誘導䜓ゞピリゞルおよびその誘導䜓、ポリ゚
ヌテル、ポリ゚ステルなどの界面掻性剀などがあ
り、これらは皮たたは皮䜵合しお䜿甚されお
いる。 しかし、埓来のこれらの添加剀はめ぀き皮膜の
機械的性質の改善を重芖しお䜿甚した堎合はめ぀
き速床が遅くなり、たため぀き速床を重芖しお䜿
甚した堎合にはめ぀き皮膜の機械的性質が劣䞋し
たため぀き液の安定性も悪くなるずいう問題を生
じおいたものである。 本発明の目的は、埓来の化孊銅め぀き液におけ
る䞊蚘の欠点を解決しお、め぀き速床および生成
する析出金属銅の物理的機械的性質に䞍利な圱響
を䞎えるこずなく、化孊銅め぀き济の安定性を改
良するずずもに、め぀き皮膜の䌞びおよび匕匵り
匷さなどの物理的機械的性質および光沢などの倖
芳を向䞊させた金属銅の生成を可胜にする化孊銅
め぀き液を提䟛するにある。 本発明の特城ずするずころは、氎溶性銅塩、
䟡銅むオンの錯化剀、PH調敎剀、および銅むオン
の還元剀を含んでなる化孊銅め぀き液においお、
環状ポリ゚ヌテルを単独たたは非むオン性界面掻
性剀ず混合しお添加されおなるこずにある。この
ような本発明になる化孊銅め぀き液によれば、埓
来䞡立するこずの䞍可胜であ぀ため぀き速床の向
䞊ずめ぀き皮膜の物理的機械的性質の向䞊をあわ
せ可胜ずするずずもにめ぀き液の安定性も確保で
きるものである。 本発明における薬剀は䞀般に金属め぀き溶液に
応甚するこずができるが、特に化孊銅め぀き液に
有効である。 本発明における化孊銅め぀き液の成分の機胜ず
しおは、氎溶性銅塩が銅むオンの䟛絊源ずなり、
銅むオンの還元剀が銅むオンを金属状態にたで還
元する電子を䟛絊する。䟡銅むオンの錯化剀は
䟡銅むオンず安定な錯䜓を圢成し、アルカリ溶
液での氎酞化第銅の生成を防止する。PH調敎剀
は济の最適な析出電䜍を調敎する。ここに、添加
剀はめ぀き液の自己分解、すなわち酞化第銅の
生成による自己析出を防止し、その結果、め぀き
液の寿呜を長くさせ、め぀き皮膜の機械的性質を
向䞊させるものである。これらの成分はいずれも
欠くこずのできない重芁なものであるが、ずくに
添加剀は、埓来の問題点解決の䞊においお重芁で
ある。 本発明はこの添加剀に極めおすぐれた特性を有
する薬剀を芋出したこずによるものである。すな
わち、化孊銅め぀き液䞭に環状ポリ゚ヌテルを加
えるこずにより、め぀き济の安定化が可胜で、析
出速床が遅くなるこずなく皮膜の機械的性質を向
䞊させるこずができるこずを、倚数の実隓結果か
ら芋出すに至぀たのである。 以䞋に本発明をさらに詳现に述べる。 本発明化孊銅め぀き液に甚いる氎溶性銅塩は、
䞀般には硫酞銅である。その遞択は䞻ずしお経枈
的な理由で、その他の塩化銅、硝酞銅、酢酞銅お
よび有機、無機の銅塩も䜿甚するこずができる。
しかし、これらの銅塩は氎に溶解しおアコむオン
を圢成するため、アルカリ領域になるず氎酞化物
の沈柱を生じおしたう。そこで銅䟡むオンず氎
酞基ず匷力に結合する錯化剀キレヌト剀が必
芁ずなる。 そのような䟡銅むオンの錯化剀ずしおはロツ
シ゚ル塩、゚チレンゞアミンテトラ酢酞のナトリ
りム塩、ニトリロトリ酢酞およびそのアルカリ塩
類、グルコン酞、トリ゚タノヌルアミン、ゞ゚チ
レントリアミンペンタ酢酞等を挙げるこずができ
るが、コスト的な芋地から゚チレンゞアミンテト
ラ酢酞塩類がも぀ずも有効的に倚く䜿甚されるこ
ずができる。 アルカリ性化孊銅め぀き液に䜿甚される銅むオ
ンの還元剀ずしおはホルムアルデヒドおよびその
瞮合物、誘導䜓䟋えば、パラホルムアルデヒド、
グリオキザヌル、トリオクサンおよびその類䌌物
が含たれる。たた、その他の還元剀ずしおアルカ
リ金属のボロハむドラむド、䟋えばナトリりム、
カリりムのボロハむドラむド、たた眮換したボロ
ハむドラむド、䟋えばナトリりムのトリメトキシ
ボロハむドラむドのようなボロハむドラむド類が
ある。さらにその他にアミンボラン、ナトリりム
およびカリりムの次亜燐酞塩およびその類䌌物も
䜿甚できる。 PH調敎剀ずしおは酞たたは塩基よりなるが、そ
の遞択はコスト的な芋地にある。普通PHを高くす
るための薬剀は氎酞化ナトリりムであり、䜎くす
るためのものは硫酞が䜿甚される。 添加剀は環状ポリ゚ヌテル単独たたは高分子系
の界面掻性剀ず混合したものである。これらは以
䞋の反応から有効ず考えられる。すなわち、還元
剀ずしおホルムアルデヒドを䜿甚した堎合の化孊
銅め぀き反応は、 CU2+2HCHO4OH- →CuH22H2O 

(1) 2HCHOOH-→CH3OHHCOO- 

(2) 2Cu2+HCHO5OH- →Cu2OHCOO-3H2O 

(3) Cu2OH2O→CuCu2+2OH- 

(4) で衚わされる。これらの内、匏(1)は化孊め぀きに
おける䞻反応であ぀お、ホルムアルデヒドが銅觊
媒䞊で銅むオンを還元析出させる。匏(2)は
Cannizars反応で、わずかに起きる。匏(3)、(4)は
自然分解反応であり副反応である。匏(3)で生成し
たCu2Oが匏(4)で生じた液䞭の金属銅Cuを觊
媒栞ずしお匏(1)の反応を促進させ、液の分解を増
加させる。たた、Cu2Oはめ぀き皮膜に混入しお
機械的性質の劣぀たもの、すなわち匕匵り匷さが
小さく、䌞びのない脆いものを圢成する。したが
぀お匏(3)、(4)の反応を抑制するこずが重芁な課題
である。 そこで化孊銅め぀き液においお環状ポリ゚ヌテ
ルは䟡銅むオンの錯化剀ずしおCu+ず安定な錯
䜓を圢成するため生じたCu2Oを溶解させる働き
があり、たた高分子系の界面掻性剀はCu2Oを吞
着させ、還元剀による攻撃反応をかわし、自己分
解を防止する䜜甚を有する。前者のみでも効果的
であるが、䞡者を䜵合するずさらにめ぀き液を安
定化させ、皮膜の機械的性質である匕匵り匷さ、
䌞びを著しく向䞊させる。 本発明は、䞻ずしお前者に属する䟡銅むオン
の錯化剀ずしお䜜甚する環状ポリ゚ヌテルに関す
るものである。本発明における環状ポリ゚ヌテル
は䞋蚘のような環状を圢成しおおり、Cu+を遞択
的に取り蟌むこずが予想される。 は以䞊の敎数 そしおCu+むオンがd2spたたはdsp2軌道を有す
るため、四面䜓ないしは平面䜓の構造を圢成する
ものず考えられる。したが぀お、非垞に安定な錯
圢成を行う。このような環状ポリ゚ヌテルはクラ
りン゚ヌテルずいう名称で、日本曹達KKより発
売されおいる。 本発明の環状ポリ゚ヌテルは、クラりン化合物
ずしお最初に合成され最も広く知られおいるもの
であ぀お、狭矩にはクラりン゚ヌテルず呌ばれお
いる。この環状ポリ゚ヌテルに぀いおは、化孊増
刊74〔1978幎月15日発行(æ ª)化孊同人〕クラりン
゚ヌテルの化孊第15頁〜第25頁、“クラりン化合
物の合成”ず題する文献においお詳しく述べられ
おいるごずく、環状ポリ゚ヌテルはアルキレンオ
キシド䞻ずしお酞化゚チレンの環状オリゎマ
ヌを基本骚栌ずし、これに個以䞊の芳銙環ベ
ンれン、ビナフチルなど、シクロヘキサン環の
ような飜和脂環の぀いたものや、フラン環、テト
ラヒドロフラン環のようなヘテロ環のをドナヌ
原子ずしおポリ゚ヌテル環を構成させるこずによ
぀お補造される。これらの環状ポリ゚ヌテルの䞭
でC2H4Oo〔ここで、は以䞊の敎数〕を基
本ずしおクラりン状の構造を有する脂肪族クラり
ン゚ヌテル、䟋えばアルキレンオキシド環状オリ
ゎマヌなどは化孊銅め぀き液に察し溶解床が倧き
く、本発明の化孊銅め぀き液に奜適に甚いるこず
ができる。 本発明の化孊銅め぀き液に甚いるこずのできる
環状ポリ゚ヌテルの具䜓的な化合物ずしお、䟋え
ば䞋蚘に瀺す反応により補造される12―クラりン
―、15―クラりン―、18―クラりン―など
を挙げるこずができる。 化孊銅め぀き液䞭に添加される環状ポリ゚ヌテ
ルは少量で有効であり、その濃床においおmg/
乃至200mg/の範囲が適圓である。この環状ポ
リ゚ヌテルは単独で添加した堎合でも十分効力を
発揮するが、高分子系界面掻性剀、すなわち既知
の非むオン性界面掻性剀ず混合しお䜵甚するこず
により著しく効果を増倧する。すなわち、め぀き
液の安定性を著しく増加させるずずもに、め぀き
皮膜の物理的機械的性質である匕匵り匷さ、䌞び
を向䞊させる。たた、め぀き速床も、この環状ポ
リ゚ヌテルの添加䜿甚により、未䜿甚の時ず同じ
かむしろ速くなるずい぀た、埓来の珟象からは党
く考えられない驚くべき事実である。 非むオン性界面掻性剀ずしおは䞀般のポリ゚チ
レンオキサむド、環状ポリ゚ヌテル以倖のポリ゚
ヌテル、ポリ゚ステルなどず、それに付加したア
ルコヌル類が䜿甚される。この非むオン性界面掻
性剀の添加適量は環状ポリ゚ヌテルの堎合ずほが
同䞀範囲である。 以䞋に本発明を実斜䟋に぀き具䜓的に説明する
ずずもに、その甚法効果に぀き述べる。なお、比
范䟋を䜵せお蚘茉するこずにより、本発明の効果
を䞀局よく理解できるようにした。 実斜䟋  本実斜䟋は基板を前凊理した埌、本発明の䞀䟋
になる化孊銅め぀き液を甚いお化孊銅め぀きを行
い、その際のめ぀き液の安定性、め぀き速床、埗
られため぀き皮膜の状態、め぀き皮膜の機械的性
質等の芳察、枬定を行぀たものである。 基板にはプノヌル暹脂の詊料片を甚いた。先
ず、詊料片の前凊理は䞋蚘の工皋(1)〜(8)を順次に
斜した。 (1) 衚面粗化 (2) 脱脂氎掗 (3) 衚面掗浄無氎クロム酞50、氎500ml、濃
硫酞比重1.84200ml液に分間浞挬 (4) 氎掗 (5) 増感塩化すず50、塩酞100ml、氎に
分間浞挬 (6) 氎掗 (7) 掻性化塩化パラゞりム0.1、氎に
分間浞挬 (8) 氎掗。 ぀ぎに、䞊蚘の前凊理を行぀た基板に化孊銅め
぀きを斜した。化孊銅め぀きに甚いため぀き液は
䞋蚘組成のものである。 化孊銅め぀き液組成 CuSO4・5H2O 12 EDTA―2Na 35 37ホルマリン 10ml NaOH 12 クラりン゚ヌテル15―クラりン― 10mg ポリ゚チレングリコヌル 50ml æ°Ž ずする量 䞊蚘のめ぀き液を甚いお、PH12.5に調敎し液枩
を70℃に維持しお、詊料を時間浞挬しお化孊銅
め぀きを斜した。 䞊蚘の操䜜によ぀お埗られた銅め぀き皮膜は光
沢のある綟密なものであ぀た。 なお、䞊蚘組成のめ぀き液の安定性、め぀きに
おけるめ぀き速床は衚に瀺すようなものであ぀
た。たた、このめ぀き液を甚いお厚さmmのステ
ンレススチヌル板100mm×10mmに玄30Όの厚
さずなるように10時間のめ぀き凊理を斜した埌、
め぀き皮膜を剥離し、その薄膜に぀きむンストロ
ン匕匵り詊隓機によ぀お機械的性質を枬定した結
果は衚に瀺すようなものであ぀た。 衚の結果から、本発明になる化孊銅め぀き液
の優れたものであるこずは、埌述の比范䟋におけ
るものず察比しおよく刀る。 実斜䟋  䞋蚘の組成の化孊銅め぀き液を甚いた以
倖は、実斜䟋におけるものず党く同様な操䜜、
詊隓を行぀た。 化孊銅め぀き液組成 CuSO4・5H2O 12 EDTA―2Na 35 37ホルマリン 10ml NaOH 12 クラりン゚ヌテル12―クラりン―30mg æ°Ž ずする量 埗られた基板䞊の銅め぀き皮膜は光沢ある緻密
なものであ぀た。 たた、各皮詊隓の結果は衚に瀺すように、埌
述の比范䟋におけるものに比し極めお優れたもの
であ぀た。
The present invention relates to an electroless copper plating solution, that is, a chemical copper plating solution, used in the manufacture of printed circuit boards, etc., which eliminates self-decomposition of the solution, enables high-speed deposition, and improves the mechanical properties of the film. This relates to a chemical copper plating solution. A chemical copper plating solution having an autocatalytic action that can continuously deposit copper electrolessly without using electricity is already known. Such chemical copper plating solutions typically include a water-soluble copper salt, a complexing agent for copper ions, a reducing agent for copper ions, and a pH adjusting agent. Known chemical copper plating solutions use ethylenediaminetetraacetate as a complexing agent.
There are EDTA baths and Rothsiel salt baths that use Rothsiel salt as a complexing agent. Furthermore, it is known that various additives are added to these baths in order to improve the mechanical properties of the plating film, such as elongation and tensile strength, and to stabilize the plating solution. Typical additives include cyanides, nitriles, nitrogen-containing heterocyclic compounds, sulfur-containing inorganic compounds, polyethylene oxide, phenanthroline and its derivatives, dipyridyl and its derivatives, polyethers, polyesters, etc. There are activators and the like, and these are used singly or in combination. However, when these conventional additives are used with emphasis on improving the mechanical properties of the plating film, the plating speed slows down, and when they are used with emphasis on the plating speed, the mechanical properties of the plating film decrease. This has caused a problem in that the stability of the eyelid solution deteriorates. It is an object of the present invention to solve the above-mentioned drawbacks of conventional chemical copper plating solutions and to improve chemical copper plating without adversely affecting the plating rate and the physical and mechanical properties of the deposited metallic copper produced. Provided is a chemical copper plating solution that enables the production of metallic copper with improved bath stability and improved physical and mechanical properties such as elongation and tensile strength of the plating film and appearance such as gloss. It is in. The features of the present invention include water-soluble copper salts, 2
In a chemical copper plating solution containing a copper ion complexing agent, a PH adjusting agent, and a copper ion reducing agent,
The cyclic polyether is added alone or in combination with a nonionic surfactant. According to the chemical copper plating solution of the present invention, it is possible to improve the heating plating speed and the physical and mechanical properties of the plating film, which were previously impossible to achieve at the same time. It is also possible to ensure the stability of The agents of the present invention can be applied to metal plating solutions in general, but are particularly effective in chemical copper plating solutions. The functions of the components of the chemical copper plating solution in the present invention include water-soluble copper salt serving as a source of copper ions,
A copper ion reducing agent provides electrons that reduce the copper ion to its metallic state. Complexing agents for divalent copper ions form stable complexes with divalent copper ions and prevent the formation of cupric hydroxide in alkaline solutions. PH regulators adjust the optimal deposition potential of the bath. Here, the additive prevents the self-decomposition of the plating solution, that is, the autodeposition due to the formation of cuprous oxide, thereby extending the life of the plating solution and improving the mechanical properties of the plating film. be. All of these components are indispensable and important, but additives are particularly important in solving conventional problems. The present invention is based on the discovery of a drug having extremely excellent properties in this additive. In other words, numerous experiments have shown that adding cyclic polyether to a chemical copper plating solution can stabilize the plating bath and improve the mechanical properties of the film without slowing down the deposition rate. I came to this conclusion from the results. The invention will be described in further detail below. The water-soluble copper salt used in the chemical copper plating solution of the present invention is
Commonly it is copper sulfate. The choice is primarily for economic reasons; other copper chlorides, copper nitrates, copper acetates and organic and inorganic copper salts can also be used.
However, since these copper salts dissolve in water to form acoions, hydroxides precipitate in alkaline regions. Therefore, a complexing agent (chelating agent) that strongly binds copper divalent ions and hydroxyl groups is required. Examples of complexing agents for divalent copper ions include Rothsiel's salt, sodium salt of ethylenediaminetetraacetic acid, nitrilotriacetic acid and its alkali salts, gluconic acid, triethanolamine, diethylenetriaminepentaacetic acid, etc.; From this point of view, ethylenediaminetetraacetic acid salts can be effectively used in large quantities. As reducing agents for copper ions used in alkaline chemical copper plating solutions, formaldehyde and its condensates and derivatives such as paraformaldehyde,
Includes glyoxal, trioxan and their analogs. In addition, as other reducing agents, alkali metal borohydrides such as sodium,
There are borohydrides of potassium, and also substituted borohydrides, such as trimethoxyborohydride of sodium. Additionally, amine borane, sodium and potassium hypophosphites and the like can be used. The pH adjuster consists of acids or bases, and the selection is based on cost considerations. The agent used to raise the pH is usually sodium hydroxide, and the agent used to lower it is sulfuric acid. The additive is cyclic polyether alone or mixed with a polymeric surfactant. These are considered to be effective from the following reactions. That is, the chemical copper plating reaction when formaldehyde is used as a reducing agent is CU 2+ (L) + 2HCHO + 4OH - → Cu + H 2 + 2H 2 O + L ... (1) 2HCHO + OH - → CH 3 OH + HCOO - ... (2) 2Cu 2+ (L) + HCHO + 5OH - → Cu 2 O + HCOO - + 3H 2 O ...... (3) Cu 2 O + H 2 O → Cu + Cu 2+ + 2OH - ... (4) It is expressed as follows. Among these, formula (1) is the main reaction in chemical plating, in which formaldehyde reduces and precipitates copper ions on a copper catalyst. Equation (2) is
Cannizars reaction occurs slightly. Formulas (3) and (4) are natural decomposition reactions and side reactions. The Cu 2 O produced in equation (3) promotes the reaction in equation (1) using metallic copper (Cu) in the liquid produced in equation (4) as a catalytic nucleus, increasing the decomposition of the liquid. Further, Cu 2 O is mixed into the plating film and forms a film with poor mechanical properties, that is, a brittle film with low tensile strength and no elongation. Therefore, it is an important issue to suppress the reactions of formulas (3) and (4). Therefore, in chemical copper plating solutions, cyclic polyether acts as a complexing agent for monovalent copper ions to form a stable complex with Cu + and dissolves Cu 2 O, and also serves as a polymeric surfactant. has the effect of adsorbing Cu 2 O, fending off the attack reaction by reducing agents, and preventing self-decomposition. The former alone is effective, but combining the two further stabilizes the plating solution and improves the tensile strength, which is the mechanical property of the film.
Significantly improves elongation. The present invention mainly relates to a cyclic polyether belonging to the former category, which acts as a complexing agent for monovalent copper ions. The cyclic polyether in the present invention forms a ring as shown below, and is expected to selectively incorporate Cu + . n is an integer of 4 or more. Since the Cu + ion has a d 2 sp or dsp 2 orbital, it is thought to form a tetrahedral or planar structure. Therefore, it forms a very stable complex. Such a cyclic polyether is sold by Nippon Soda KK under the name Crown Ether. The cyclic polyether of the present invention is the first synthesized and most widely known crown compound, and is called a crown ether in a narrow sense. This cyclic polyether is described in detail in the literature entitled "Synthesis of Crown Compounds" in Kagaku Special Edition 74 [published February 15, 1978 by Kagaku Dojin Co., Ltd.] Chemistry of Crown Ethers, pp. 15-25. As usual, cyclic polyethers have a basic skeleton of a cyclic oligomer of alkylene oxide (mainly ethylene oxide), with one or more aromatic rings (benzene, binaphthyl, etc.), saturated alicyclic rings such as cyclohexane rings, etc. It is produced by constructing a polyether ring using O of a heterocyclic ring such as a furan ring or a tetrahydrofuran ring as a donor atom. Among these cyclic polyethers, aliphatic crown ethers having a crown-like structure based on (C 2 H 4 O) o [where n is an integer of 4 or more], such as alkylene oxide cyclic oligomers, are chemical copper It has high solubility in the plating solution and can be suitably used in the chemical copper plating solution of the present invention. Specific examples of cyclic polyether compounds that can be used in the chemical copper plating solution of the present invention include 12-crown-4, 15-crown-5, and 18-crown-6 produced by the reactions shown below. can be mentioned. The cyclic polyether added to the chemical copper plating solution is effective in small amounts;
A range of from 200 mg/l to 200 mg/l is suitable. Although this cyclic polyether is sufficiently effective when added alone, the effect is significantly increased when mixed with a polymeric surfactant, that is, a known nonionic surfactant. That is, the stability of the plating solution is significantly increased, and the physical and mechanical properties of the plating film, such as tensile strength and elongation, are improved. Moreover, the plating speed is also faster by adding this cyclic polyether than when it is not used, which is a surprising fact that could not be considered based on conventional phenomena. As the nonionic surfactant, general polyethylene oxide, polyether other than cyclic polyether, polyester, etc., and alcohols added thereto are used. The appropriate amount of this nonionic surfactant to be added is approximately the same range as in the case of cyclic polyether. EXAMPLES The present invention will be specifically explained below with reference to Examples, and its usage and effects will also be described. In addition, comparative examples are also described so that the effects of the present invention can be better understood. Example 1 In this example, after pre-treating a substrate, chemical copper plating was performed using a chemical copper plating solution that is an example of the present invention, and the stability of the plating solution, plating speed, and yield were evaluated. The condition of the plating film and the mechanical properties of the plating film were observed and measured. A sample piece of phenolic resin was used as the substrate. First, the sample piece was pretreated by performing the following steps (1) to (8) in sequence. (1) Surface roughening; (2) Degreasing with water; (3) Surface cleaning (immersion in 50 g of chromic anhydride, 500 ml of water, and 200 ml of concentrated sulfuric acid (specific gravity 1.84) for 5 minutes); (4) Washing with water; (5) Increase (50 g of tin chloride, 100 ml of hydrochloric acid, immersed in 1 part of water for 3 minutes); (6) Washing with water; (7) Activation (0.1 g of palladium chloride, 1 part of water)
(8) Rinse with water. Next, the substrate subjected to the above pretreatment was subjected to chemical copper plating. The plating solution used for chemical copper plating has the following composition (). Chemical copper plating solution composition () CuSO 4・5H 2 O 12g EDTA-2Na 35g 37% formalin 10ml NaOH 12g Crown ether (15-Crown-5) 10mg Polyethylene glycol 50ml Water 1 volume Use the above plating solution Then, the pH was adjusted to 12.5, the liquid temperature was maintained at 70°C, and the sample was immersed for 1 hour to perform chemical copper plating. The copper plating film obtained by the above procedure was glossy and dense. The stability and plating speed of the plating solution having the above composition were as shown in Table 1. In addition, using this plating solution, a 2 mm thick stainless steel plate (100 mm x 10 mm) was plated for 10 hours to a thickness of approximately 30 ÎŒ.
The plating film was peeled off, and the mechanical properties of the thin film were measured using an Instron tensile tester. The results are shown in Table 1. From the results in Table 1, it can be clearly seen that the chemical copper plating solution of the present invention is superior in comparison with that in the comparative example described below. Example 2 The operation was exactly the same as in Example 1, except that a chemical copper plating solution having the following composition () was used.
I conducted a test. Chemical copper plating solution composition () CuSO 4・5H 2 O 12g EDTA-2Na 35g 37% formalin 10ml NaOH 12g Crown ether (12-Crown-4) 30mg Water 1 amount Copper plating film on the obtained substrate It was shiny and detailed. Further, as shown in Table 1, the results of various tests were extremely superior to those in the comparative examples described below.

【衚】 実斜䟋 、、、、 実斜䟋、、、、に぀き、それぞれ䞋
蚘組成、、、、の化孊
銅
め぀き液を甚いた以倖は、実斜䟋におけるもの
ず党く同様な操䜜、詊隓を行぀た。 化孊銅め぀き液組成 CuSC4・5H2O 12 EDTA―2Na 35 37ホルマリン ml NaOH 13 クラりン゚ヌテル18―クラりン―15mg アルキルアリル゚ヌテル 50mg æ°Ž ずする量 化孊銅め぀き液組成 CuSO4・5H2O 12 EDTA―2Na 35 37ホルマリン 20ml NaOH 15 クラりン゚ヌテル18―クラりン―18mg ポリオキシ゚チレンオキサむド 20mg æ°Ž ずする量 化孊銅め぀き液組成 CuSO4・5H2O 12 ロツシ゚ル塩 40 37ホルマリン 10ml NaOH 15 クラりン゚ヌテル12―クラりン―15mg ポリオキシ゚チレンポリオキシ プロピレン
ブロツク重合物 50mg æ°Ž ずする量 化孊銅め぀き液組成 CuSO4・5H2O 12 ロツシ゚ル塩 40 37ホルマリン 10ml NaOH 15 クラりン゚ヌテル15―クラりン―20mg 硫酞゚ステル 15mg æ°Ž ずする量 化孊銅め぀き液組成 CuSO4・5H2O 12 ロツシ゚ル塩 40 37ホルマリン 10ml NaOH 15 クラりン゚ヌテル15―クラりン―50mg 燐酞゚ステル 50mg æ°Ž ずする量 埗られた各基板䞊の銅め぀き皮膜はいずれも光
沢ある緻密なものであ぀た。 たた、各実斜䟋における各皮詊隓の結果は衚
に瀺すように、いずれも埌述の比范䟋におけるも
のに比し極めお優れたものであ぀た。 比范䟋  䞋蚘の化孊銅め぀き液組成比のものを甚
い、実斜䟋ず同様の基板に、実斜䟋における
ず同様の前凊理を斜しお、実斜䟋におけるず同
様の操䜜で化孊銅め぀き凊理を斜した。 化孊銅め぀き液組成比 CuSO4・5H2O 15 EDTA―2Na 35 37ホルマリン 10ml NaOH 12 αα′―ゞピリゞル 10mg ポリ゚チレングリコヌル ラりリル゚ヌテル
80mg æ°Ž ずする量 䞊蚘からわかるようにこの化孊銅め぀き液組成
比のものは環状ポリ゚ヌテルを添加されな
い埓来の化孊銅め぀き液である。これによ぀お埗
られた基板䞊の銅め぀き皮膜はその光沢および緻
密さにおいお䞊蚘の実斜䟋のものに比し劣るもの
であ぀た。たた、実斜䟋におけるず同様の芳
察、諞枬定の結果を衚に掲げたが、衚からわ
かるように実斜䟋の堎合は比范䟋のものに比
し、め぀き速床、皮膜の機械的性質等が顕著に優
れおいた。 比范䟋  䞋蚘の化孊銅め぀き液組成比のものを甚
い、実斜䟋ず同様の基板に、実斜䟋における
ず同様の前凊理を斜しお、実斜䟋におけるず同
様の操䜜で化孊銅め぀き凊理を斜した。 化孊銅め぀き液組成比 CuSO4・5H2O 12 EDTA―2Na 35 37ホルマリン 10ml NaOH 12 NaCN 0.1mg ポリビニルアルコヌル 50mg æ°Ž ずする量 この組成液比も比范䟋の堎合ず同様、
環状ポリ゚ヌテルを添加されない埓来の化孊銅め
぀き液である。これによ぀お埗られた基板䞊の銅
め぀き皮膜はその光沢および緻密さにおいお䞊蚘
の実斜䟋のものに比しお劣るものであ぀た。た
た、実斜䟋におけるず同様の芳察、諞枬定の結
果を衚に掲げたが、衚からわかるように実斜
䟋の堎合は比范䟋の堎合に比し、め぀き液の安
定性め぀き速床、皮膜の機械的性質等が顕著に優
れおいた。 䞊蚘の説明および実斜䟋および比范䟋の結果か
ら本発明化孊銅め぀き液は埓来の化孊銅め぀き液
に比しお著しい効果があるこずがわかる。
[Table] Examples 3, 4, 5, 6, 7 For Examples 3, 4, 5, 6, and 7, chemical copper plating solutions with the following compositions (), (), (), (), and (), respectively. The operations and tests were carried out in exactly the same manner as in Example 1, except that . Chemical copper plating solution composition () CuSC 4・5H 2 O 12g EDTA-2Na 35g 37% formalin 6ml NaOH 13g Crown ether (18-crown-6) 15mg Alkylaryl ether 50mg Water 1 amount Chemical copper plating solution composition () CuSO 4・5H 2 O 12g EDTA-2Na 35g 37% formalin 20ml NaOH 15g Crown ether (18-crown-6) 18mg Polyoxyethylene oxide 20mg Water 1 amount Chemical copper plating solution composition () CuSO 4・5H 2 O 12g Rothsiel salt 40g 37% formalin 10ml NaOH 15g Crown ether (12-crown-4) 15mg Polyoxyethylene polyoxy propylene block polymer 50mg Water 1 amount Chemical copper plating solution composition () CuSO 4・5H 2 O 12g Rothsiel's salt 40g 37% Formalin 10ml NaOH 15g Crown ether (15-crown-5) 20mg Sulfuric acid ester 15mg Water 1 amount Chemical copper plating solution composition () CuSO 4・5H 2 O 12g Rothsiel's salt 40g 37% Formalin 10ml NaOH 15g Crown ether (15-Crown-5) 50mg Phosphate ester 50mg Water 1 volume The resulting copper plating film on each substrate was glossy and dense. In addition, the results of various tests in each example are shown in Table 1.
As shown in , all of the samples were extremely superior to those in the comparative examples described below. Comparative Example 1 Using the following chemical copper plating solution composition (ratio), the same pretreatment as in Example 1 was performed on the same substrate as in Example 1, and the same operation as in Example 1 was carried out. Chemical copper plating treatment was applied. Chemical copper plating solution composition (ratio) CuSO 4・5H 2 O 15g EDTA-2Na 35g 37% formalin 10ml NaOH 12g α,α′-dipyridyl 10mg Polyethylene glycol lauryl ether
80 mg water Amount equal to 1 As can be seen from the above, this chemical copper plating solution composition (ratio) is a conventional chemical copper plating solution to which no cyclic polyether is added. The copper plating film thus obtained on the substrate was inferior to that of the above-mentioned examples in terms of gloss and density. In addition, the results of the same observations and measurements as in Example 1 are listed in Table 1, and as can be seen from Table 1, the plating speed and coating mechanical Its physical properties, etc., were significantly superior. Comparative Example 2 Using the following chemical copper plating solution composition (ratio), the same substrate as in Example 1 was subjected to the same pretreatment as in Example 1, and the same operation as in Example 1 was carried out. Chemical copper plating treatment was applied. Chemical copper plating solution composition (ratio) CuSO 4・5H 2 O 12g EDTA-2Na 35g 37% formalin 10ml NaOH 12g NaCN 0.1mg Polyvinyl alcohol 50mg Water 1 amount This composition solution (ratio) is also the same as in Comparative Example 1. Similarly,
This is a conventional chemical copper plating solution without added cyclic polyether. The copper plating film thus obtained on the substrate was inferior to that of the above example in terms of gloss and density. In addition, the results of the same observations and measurements as in Example 1 are listed in Table 1, and as can be seen from Table 1, the stability of the plating solution in Example 2 was higher than that in Comparative Example 2. The adhesion speed and mechanical properties of the film were significantly superior. From the above explanation and the results of Examples and Comparative Examples, it can be seen that the chemical copper plating solution of the present invention has a remarkable effect compared to the conventional chemical copper plating solution.

Claims (1)

【特蚱請求の範囲】  氎溶性銅塩、䟡銅むオンの錯化剀、PH調敎
剀および銅むオンの還元剀を含むものにおいお、
環状ポリ゚ヌテルを添加されおなるこずを特城ず
する化孊銅め぀き液。  環状ポリ゚ヌテルは非むオン性界面掻性剀ず
混合しお添加されおなるものである特蚱請求の範
囲第項蚘茉の化孊銅め぀き液。  環状ポリ゚ヌテルは化孊匏C2H4Ooを基本
ずしおクラりン状に圢成された構造匏 ここに、は以䞊の敎数である、 で衚わされる化合物よりなる矀䞭から遞ばれた
皮以䞊を含むものである特蚱請求の範囲第項又
は第項蚘茉の化孊銅め぀き液。  還元剀はホルムアルデヒド、パラホルムアル
デヒド、グリオキザヌル、トリオクサンずそのホ
ルムアルデヒド瞮合物、ナトリりム、カリりム、
リチりムのアルカリ金属のボロハむドラむドずそ
の眮換誘導䜓、アミンボランずその眮換誘導䜓、
ナトリりム、カリりム、リチりムのアルカリ金属
の次亜燐酞塩ずその眮換誘導䜓よりなる矀䞭より
遞ばれた皮以䞊よりなるものである特蚱請求の
範囲第項たたは第項蚘茉の化孊銅め぀き液。
[Claims] 1. A product containing a water-soluble copper salt, a complexing agent for divalent copper ions, a PH adjuster, and a reducing agent for copper ions,
A chemical copper plating solution characterized by the addition of cyclic polyether. 2. The chemical copper plating solution according to claim 1, wherein the cyclic polyether is added in a mixture with a nonionic surfactant. 3 Cyclic polyether has a crown-shaped structural formula based on the chemical formula (C 2 H 4 O) o ; Here, n is an integer of 4 or more, and 1 selected from the group consisting of compounds represented by
The chemical copper plating solution according to claim 1 or 2, which contains at least one species. 4 Reducing agents include formaldehyde, paraformaldehyde, glyoxal, trioxane and its formaldehyde condensate, sodium, potassium,
Alkali metal borohydride of lithium and its substituted derivatives, amine borane and its substituted derivatives,
Chemical copper plating according to claim 1 or 2, which is made of one or more selected from the group consisting of hypophosphites of alkali metals such as sodium, potassium, and lithium, and substituted derivatives thereof. liquid.
JP9834080A 1980-07-18 1980-07-18 Chemical copper plating solution Granted JPS5726156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9834080A JPS5726156A (en) 1980-07-18 1980-07-18 Chemical copper plating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9834080A JPS5726156A (en) 1980-07-18 1980-07-18 Chemical copper plating solution

Publications (2)

Publication Number Publication Date
JPS5726156A JPS5726156A (en) 1982-02-12
JPS633951B2 true JPS633951B2 (en) 1988-01-26

Family

ID=14217165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9834080A Granted JPS5726156A (en) 1980-07-18 1980-07-18 Chemical copper plating solution

Country Status (1)

Country Link
JP (1) JPS5726156A (en)

Also Published As

Publication number Publication date
JPS5726156A (en) 1982-02-12

Similar Documents

Publication Publication Date Title
US4265943A (en) Method and composition for continuous electroless copper deposition using a hypophosphite reducing agent in the presence of cobalt or nickel ions
JP5671095B2 (en) Method for electrolessly depositing copper on a substrate
US3095309A (en) Electroless copper plating
KR102060983B1 (en) Electroless copper plating compositions
US20030113452A1 (en) Metallization of non-conductive surfaces with silver catalyst and electroless metal compositions
JP6138892B2 (en) Formaldehyde-free electroless metal plating composition and method
US4548644A (en) Electroless copper deposition solution
US20170152600A1 (en) Plating catalyst and method
EP0133800B1 (en) Electroless copper plating solution
US3853590A (en) Electroless plating solution and process
WO2005098088A1 (en) Electroless gold plating liquid
JP6099678B2 (en) Alkaline plating bath for electroless plating of cobalt alloy
JP3994279B2 (en) Electroless gold plating solution
US3326700A (en) Electroless copper plating
WO2006065221A1 (en) Stabilization amd performance of autocatalytic electroless processes.
US3754940A (en) Electroless plating solutions containing sulfamic acid and salts thereof
JPH01242781A (en) Electroless copper plating bath
JPS633951B2 (en)
TW201816183A (en) Electroless nickel plating bath which can inhibit the nickel leakage plating and the outside of pattern deposition
US3748166A (en) Electroless plating process employing solutions stabilized with sulfamic acid and salts thereof
US4355083A (en) Electrolessly metallized silver coated article
JPH02294487A (en) Tetraaza-ligand system as complex formation agent for nonelectrolytic deposition of cop- per
US11512394B2 (en) Electroless gold plating bath
US3383224A (en) Electroless copper deposition
JPS6259180B2 (en)