JPS6339374A - Transfer material for printer - Google Patents

Transfer material for printer

Info

Publication number
JPS6339374A
JPS6339374A JP61182772A JP18277286A JPS6339374A JP S6339374 A JPS6339374 A JP S6339374A JP 61182772 A JP61182772 A JP 61182772A JP 18277286 A JP18277286 A JP 18277286A JP S6339374 A JPS6339374 A JP S6339374A
Authority
JP
Japan
Prior art keywords
transfer
film
ink layer
biaxially oriented
polyester film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61182772A
Other languages
Japanese (ja)
Other versions
JPH0453716B2 (en
Inventor
Tomio Katayama
片山 富夫
Hideo Kato
秀雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP61182772A priority Critical patent/JPS6339374A/en
Publication of JPS6339374A publication Critical patent/JPS6339374A/en
Publication of JPH0453716B2 publication Critical patent/JPH0453716B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/10Duplicating or marking methods; Sheet materials for use therein by using carbon paper or the like

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Duplication Or Marking (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To obtain a transfer material having high durability to repeated use, high transfer property, dimensional stability and traveling performance by specifying the physical property of a biaxially oriented polyester film having a specific thickness and applying a material almost non-compatible to a transfer ink layer on a surface provided with the transfer ink layer of a specific thickness and a surface of the opposite layer. CONSTITUTION:A biaxially oriented polyester film having a thickness of 1-25mum with a transfer ink layer of a 3-35mum thickness provided on one side thereof constitutes a transfer material for printer, and the film has a Young's modulus of 450-800kg/mm<2> in the vertical direction and a coefficient of thermal contraction of at most 7% at 150 deg.C in the lateral direction. A projection distribution curve which represents a relationship between the number of projections (Y: pieces/mm<2>) and the height of projections (X: mum) which are measured by a three-dimension roughness gauge on the surface of the film, does not cross a line represented by log10Y = -1.8X+3.9 in a region of log10Y > 1.3. In addition, a curve represented by a maximum value of the projection curve and a curve of a part which exceeds the maximum value exist in a range which meets log10Y >= -3.6X+2.8. Further, a material which is almost non-compatible to the transfer ink layer is applied on a surface opposite to the surface provided with the transfer ink layer.

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はプリンター用転写材に関1−1更に詳1、<は
耐久性、転写性2寸法安定性、走行性に優t1だプリン
ター用転写材に関する。 従来技術 7.11ンター用転写材の基本的な構成は、基体と該基
体の片面に塗布したインク層かll:)なる。 従来、この基体と
INDUSTRIAL APPLICATION FIELD The present invention relates to a transfer material for a printer. Prior Art 7.11 The basic structure of an printer transfer material is a substrate and an ink layer coated on one side of the substrate. Conventionally, this base and

【、て、二軸配向ポリエステルフィル
ムが耐薬品性1強朋1弾性率、耐熱性。 結晶に1:、高融点等の優れた性質を有する点から広(
用いられている。 ところで、プリンター用転写材は、繰り返し使用きれろ
使い方が強まり、かつこの繰返(−使用の回航も年々増
大の傾向にあり、従来の二軸配向ポリニスケルフィルム
では、例えばドツトインパクト方式による転写時におけ
る印字部の打たれ残りによるフィルムσ)変形や伸びが
生じたり、また感熱転写方式では熱による変形等が生じ
る等問題があった。更にまた、ポリエステルフィルムに
塗布1.たインク層が反対面(走行面)に転写してリボ
ンの走行面を汚【2、これか走行系のガイドポスト等の
接触部に徐々にインクを蓄積させる等走行トラブルがあ
った。 発明の目的 本発明の目的は、上述の問題を解消f2、繰返し使用に
適する向十久性、転写性2寸法安定性。 走行性に優れたプリンター用転写材を提供することにあ
る。 発明の効果・構成 本発明の目的は、本発明によねば、厚さ1〜25μm 
の二軸配向ポリエステルフィルムの片面に厚さ3〜35
μm の転写インク層を設けたプリンター用転写材にお
いて、該二軸配向ポリエステルフィルムが下記イ)〜(
ハ)、イ) 縦方向のヤング率が450〜80()〜/
 mAであろ、 (ロ) 縦方向及び横方向の150℃での熱収縮率が7
係」ソ下でちる、 (ハ) フィルム表面の三次元粗さ計で測定(、た突起
数(Y:ケ/ Wa )と突起高さくX:μm )との
関係を表わす突起分布曲線が”goo Y > 1 、
3の領域において下記式(1+ log、o”l’=−1,8X+3.9 −・(IIで
表わされろ線と交差せず、更に該突起分布の最大値及び
該最大値を越えた部分の曲線が下記式(2) %式% を満足する範囲にある を満足するものであり、更に該転写インク層を設けた曲
と反肘の表面に該転写インク層となじみが殆んどない物
質を塗設(−たことを特徴とするブリ/ター用転写材に
よって達成されろ。 本発明におけるボリエスブ″ルとは芳香族ジカルボン酸
を主た7+酸成分と11、脂肪族グリコールを王たるグ
リコール成分とするポリエステルである。かかるポリエ
ステルは実質的に糾せであり、そ1−でフィルム形成性
特に溶融成形に、するフィルム形成性を有する。ガ香族
ジカルホン酸とは、例えばテレフタル酸、ナツタレンジ
/。 ルポン酸、イソフタル酸、ジフユノキシエタンジカルポ
ン酸、ジフェニルジカルホン酸、ジフェニルエーテルジ
カルポン酸+  97エ:−ルス/l−ホンジカルボン
酸、ジフェニルケトンジカルボン酸、アンスラセンジカ
ルボン酸等である。脂肪族グリコールとは、例えばエチ
レングリコール、トリメチレングリ′:ゴール、テトラ
メチレンダリコール、ペンタメチレングリコール、ヘキ
サメチレングリコール、デカメチレングリコールノ如?
t RIR数2〜10のポリメチレンダリコールあるい
はシクロヘキサンジメタツールの如き脂環族ジオール等
で)、ろ。 本発明において、ポリコアチルと1−では例えばアルキ
レンテレフタレート及び/又はアルキレンナフタレート
を主たる構成成分とするものが好ましく用いろ第1る0
、かかるホ11コースフルのうちでもI’llえはポリ
エチレンrレフタレート。 ポリエチンンー2.6−ナフタl/ −)はもちろんの
こと、剥身ば全ノカルホン酸Iy分の80セル係以ヒが
プレフタル酸及び/又は2,6−ナフタレンジカルボン
酸であり、全グリコール成分の80モル%以りがエチレ
ングリコールである共重合体が特に好ま1−い。その際
全酸成分の20モル%以]のジカルボン酸は一ヒ記芳香
族ジカルボン酸であることができ、また例えばアジピン
酸、セパチン酸の如き脂肪族ジカルボン酸;シクロヘキ
サン−1,4−ジカルボン酸の如キ脂肪族ジカルボン酸
等であることができろ3、また、全クリフール成分Q)
200モル条以下、二手レンゲリコール)七I外の上記
グリコールであることができ、あるいは例えばノ・イド
−キノン、レゾルシノール。2,2−ビス(4−ヒドロ
キシフェニル)プロパンの如き芳香族ジオール:1.4
−ジヒドロギシメチルベンゼンの如キ芳香族を含む月k
j肪族ジオール;ポリエチレングリコール。 ポリプロピレングリコール、ポリテトラメチレングリコ
ールの如ぎポリアルキレングリコール(ポリオキシアル
キレングリコール)等であることもできる。 また、本発明で用いらねるポリエステル1((は、例え
ばヒトジキシ安、@香酸の如き芳香族オギシ酸:ω−ヒ
ドロキシカプロン酸の如き脂肪族オキシ酸等のオキシカ
ルボン酸に由来する成分を、ジカルボン酸成分およびオ
キシカルホン酸成分の総量に対し20モル%以下で含有
するものも包含される。さらに本発明におけるポリエス
テルには実質的に線状である範囲の裾、例えば全酸成分
に討【−2モル条以下のLで、3官能以上のポリカルボ
ン酸又はポリヒトルキシ化合物。 例えばトリメリット酸、ペンタエリスリトールを共重合
1−だものも包含される。 上記ポリエステルは、それ自体公知であり、且つそれ自
体公知σり方法で製造することができろ。 上記ポリエステルとしては、O−りR117フエノール
中の溶液と]7て35℃で410定(、て求めた固有粘
度が約0.4〜約0.90)ものが好まf、い。 また、上述のホリエスヴルは必要に応じて、安定剤2着
色剤、岐化防止剤寺のt1\加剤を含有イろものであっ
てもよい。 本発明における二軸配向ポリエステルフィルムは、子連
のホリコーステルから製造される二軸配向フィルムであ
る。こV)フィルムは縦方向のヤング率450〜5oo
K4/Hj、好ましくは500〜750に7/ILJの
特性を有1−ろものである。なお、フィルムの縦方向は
インキ転写リボンの長平方向と一致する。この縦方向σ
ノヤング率か、r5oKy/−未満であると、フィルム
が伸びやすく、弾性回復1−にくいため、転写リボンと
(、て用いて印字すると、印字部は印字圧力による塑性
変形が生じ、必袂以七に太く印字される等印字の鮮明性
が悪(、又該変形のため転写リボンの巻取りの取扱い性
が劣る等で好ま(、<ない。また、縦方向のヤング率が
5ooKp/+Jを越えると、剛性が強いため、印字の
圧力のために]・fルムか裂けJPすくなり、好ま(−
<ない。 又、本発明におけるポリエステルフィルムの厚さは1〜
25μm が汎用的であり、好fl’(は2−10 a
m 、更に好ま1.(は3〜8 )it(+  である
。フィルムの厚さがt述Q)範囲よりも薄いと強度が不
足(、で、転写リボンと1.たときり適性に欠け、更に
は児工適性の面からも劣ったものとなり、一方上述の範
囲よりも厚いと、特に感熱転写方式では熱伝達に時間が
かが911コ録速度を速めて1.かも鮮明な転写画質を
1:4るには適さな(なるので好ましくない。 本発明におけろ二軸配向ポリエステルフィルムは、上述
の縦方向ヤング率及び厚さを有するが、更に転写インク
層を設ける表面がE次元粗さ計で測定]、た突起数(Y
:ケ/−)と突起高さくX;μm )との関係を表わす
突起分布面−b”oi+o Y> 1.30領斌におい
て、下記式(11で表わされる線と交差せず、更に該突
起分布の房大飴及び該最大値を越えた部分の曲縁が下記
式(2)を満足する範囲にある表t++r特性をネオる
1゜1g、、 Y= −、1,8x +3.9  ・・
・・・・・・・(1)10g1゜Y≧−3,6X +2
.8   ・・・・・・・・(2)フィルム表面粗さが
式logIo−−3,6X + 2.8で表わされる直
線を下まわるか或は最大値を越えた部分で交差する(特
に突起高さが大きい部分が交差j、て下側に下る如と)
す起分布を呈する場合には、インク層を塗工した後にp
−ルに巻いたときフィルムの反対面(走行面)に該イン
クが転写し千す(なり、リボンの走行面を汚(−1これ
がリボンの走行系のガイドボヌト等の接触部に徐々にイ
ンクを蓄積させ、リボンの走行を阻害(1,極端な場合
にはリボンが動かなくなる等σ)トラブルを生じ、そv
)飴、フィルへの滑り性が悪(なる結果、加工時にフィ
ルムにしわが入ったりするので、好ま1.(ない。また
、フィルムの表面粗さがL記式(Uと交差する突起分布
を呈する程粗れている場合には、印字の鮮明さが悪(な
り、又サーマルヘッドの摩耗の原因となり、実用り問題
となるので好ましくない。 L述のフ・イルム表面は、更に、多重干渉反射式顕微4
! (T/  単色光)で測定した突起数(ケ/−)と
突起高さくh:μm )が 1.5≧h ) 1.0  ・・・・・・ 10ケ/J
以下1.0≧h ) 0.75・・・・・・ 1〜30
ケ/−〇、75≧h > o、s・・・・・・ 15〜
120ケ/mJO,5≧h ) 0.25・・・・・・
 80ケ/IIIj以りを満足することが好ましい。こ
の表面特性を満足することは、インク層のフィルム反対
面への転写を防止する点から、また印字の鮮明性の面か
ら、特に好ま1−い。 又、フィルム表面の最大突起高さは3μm71 以下、
更に1.5μm以下であることが望マ1−1い。 本発明における二軸配向ポリエステルフィルムの上述の
表面粗さは、フィルム中に不活性無機、有機微粒子等を
添加することによって形成f ルノカ好ま1.い。この
不活性微粒イな用いる場合は、平均粒径が0.01〜1
0μmO,)粒子を0.01〜5重量%、更には平均粒
径が0.03〜4μm の粒子を0.01〜1.5重f
t%添加させるのが好ましい。この際、添加する不活性
無機。 有機の微粒子は単成分でもよ(、二成分ないしはそれ以
−ヒを同時に用いてもよい。 上述の不活性微粒子と〔、ては、本発明においては、好
ましくは■二酸化ケイ素(水和物、ケイ礫土、ケイ砂1
石英等を含む);■アルミナ;■S I Ot分を30
重被チ以上含有するケイ酸塩(例えば非晶質或は結晶質
の粘土鉱物、アルミノシリケート(焼成物や水和物を含
む)、温石綿、ジルコン、フライアッシュ等)、0Mg
 + Zn +Zr及びTiの酸化物;■C8及びBa
  の硫酸塩;■Li、  Na  及びCa  のリ
ン酸塩(1水素塩’P2水素塩を含む);■Lir N
a  及びKの安息香酸塩;■Ca 、 Ba r Z
n  及びMn  のテレフタル酸塩;0Mg r C
a + Ha r Zn + Cd * Pb + S
r 、 Mn 、 Fe 、 C。 及びNi  のチタン酸塩;[相]Ba  及びpb 
 のりpム酸塩;0炭素(例えばカーボンブランク、ゲ
ラフィト等);0ガラス(例えばガラス粉、ガラスピー
ズ等);Oca  及びMg  の炭酸塩;0ホタル石
;及び@ZnSが例示される。更に好ま1、(は、無水
ケイ酸、含水ケイ酸、酸化アルミニウム、ケイ酸アルミ
ニウム(焼成物、水利物等を含む)、燐酸1リチウム、
燐酸3リチウム。 燐酸ナトリウム、燐酸バリウム、酸化チタン。 安息香酸リチウム、これらの化合物の複塩(水和物を含
む)、ガラス粉、粘土(カオリン、ベントナイト、1十
等を含む)、タルク、ケイ藻土、災酸カルシウム等が例
示される。 こわらの不活性微粒子を含有するポリエステルは、通常
ポリエステルを形成するための反応時、例えばエステル
交換法による場合のエステル交換反応中あるいは重縮合
反応中の任意の時期又は直接型合法による場合の任意σ
ン時期に。 不活性微粒子(好ましくはグリコール中のスラリーと1
.で)を反応系中に添加することにより製造することが
できる。好ましくは、重縮合反応の初期例えば固有粘度
が約0.3に至るまでの間に、不活性微粒子を反応系中
に添加するのが好ましい。 更に、本発明における二軸配向ポリエステルフィルムは
、150℃で30分熱処理したときの縦及び横方向の熱
収縮率が7%以下であることが好f l <、更に好ま
1.<は4条以下、特に好+l <は2条以下で夛)る
。この熱収縮率が7係より大きい場合は弛緩処理時の巾
収縮が太きく tcるだけでな(プリンター用転写材に
加工する段階即ち、塗布、乾燥等の工程で収縮を起すこ
とによる厚腑の悪化1歩留の低下等をもたら−「ので好
ま(、<ない。またこの熱収縮率がθ%未満Q)ときは
、弛緩を2つのロール間の速度差で行う方式の場合には
加熱ロール上で1.わが発生[7、またベースフィルム
をロール形状のままプリンター用転写材に加工する迄の
間装置することによってp−ル表面の縦方向に(−わが
発生し、更にはプリンター用転写材加工工程中での中間
製品ロール表面に1−わが発生するりで好ましくない。 これらの(、わはフィルムの横方面の熱膨張が熱収縮よ
り大きいときに発生するものと推定される。 更に、使用時の問題点とL ”(は、熱収縮率が上述の
範囲を外れると特に感熱プリンター用の転写リボンに用
いたときにリボンの変形が激しく、印字の鮮明性が劣る
とともに該変形のため転写リボンの巻取り取扱い性が劣
るようになり、またドツトインパクト方式においても熱
収縮率が7−を越える程のものは、印字部の変形が生じ
やすくなり、好ま1−<ない。 本発明で用いろ二軸配向ポリエステルフィルムは、その
製造法によって特に制限を受けないが、通常所定割合の
微粒子を含肩するポリエステルを溶融し、スリット状の
ダイかうシート状に押出11、キャスティングドラムで
冷却固化1゜て未延伸シートとな1−1続いて該未延伸
シートを二軸方向に延伸1て製品(フィルム)となし、
更に加熱処理(ヒートセット)、横方向の熱収縮率の調
節処理、次いで縦弛緩処理することによって製造される
。 その際、本発明の要件を好適に満足するには、例えば延
伸温度は一段目延伸温度(例えば縦方向延伸温度:T、
)を(Tg−10)〜(Tg+45)℃の範囲(但し、
 Tg:ポリエステルのガラス転移温度)とL、二段目
延伸温度(例えば横方向延伸温度:T2)な(T、+1
5)〜(T、+40)℃の範囲と1−1延伸倍率は一段
目延伸では2.5〜6.0倍、特に3.5〜5.5倍と
し、二段目延伸では2.5〜4.0倍、特に2.8〜3
.7倍とするのが好′+1、い。更に得られる二軸延伸
フィルムは好ましくは150〜245℃、更に好ましく
は170〜240℃の範囲の温度で1〜200秒程度熱
固定する。更に、通常テンターにおける熱処理条件を調
節I−で横方向の熱収縮率を調整j7、その後縦弛緩処
理を行う。 横方向の熱収縮率の調節は、通常縦弛緩処理前に行う。 通常テンターに於ける熱処理時に調節される。例えば横
方向の熱収縮率が不足(5でいる場合にはと記熱処理時
にフィルムを幅方向に延き伸ばすと良(、また熱収縮率
が大きすぎる場合には上記熱処理時にフィルムを幅方向
に弛緩させると良い。更に具体的には熱処理温度160
℃のときには全幅に対1−9〜13%弛緩させるとよく
、170℃のときには5〜11チ弛緩させるとよく、1
80℃のときには1〜8チ弛緩させろとよ(,200℃
のときには()〜5チ緊張もしくは弛緩させるとよ舎、
205℃のときには3〜−2チ延き仰げ(7乃至弛緩さ
l?るとよく、また220℃のときには1〜−6チ延き
伸ばし乃至弛緩させろとよい。 縦方向に弛緩する方法とC1ては、例えば空気力による
浮遊処理力式で加熱低張力下、非接触状態で弛緩する方
式;夫々ニップルールを有する加熱ロールと冷却ロール
間で速度差を与えることによって弛緩する方式又は、テ
ンター内でフィルムな把持【、たクリップの進行速度を
逐次狭めることによって縦方向に弛緩する方法等がある
が、縦方向に弛緩できろ方式であればいずれの方式も用
いることができる。 縦方向に弛緩する時の温度は(Tg+ 20 ) ℃以
上(熱処理温度−30)℃、Iソ、下、好ましくは(T
g+ 30 ) ℃以上(熱処理温度−40)℃以下で
ある。(Tg+ 20 ) ”C,より低い温度では。 Tg  近傍に於ける熱収縮率を充分下げろことができ
ず、また(熱処理温度−30)℃より高い温度では縦方
向の弛緩量は多(なるも横方向の収縮も犬キくなり、横
方向の熱収縮率を満足させろことができ1:c くなる
だけでなく、横方向の機械特性を低下させ、更には厚み
斑を悪化させ、また弛緩を2つのロール間の速度差で行
う方式の場合には、加熱p−ルヒでの巾収縮によりフィ
ルム面上横方向にスクラッチを発生させる為好中1、(
ない。縦方向の弛緩量は熱処理温度によっても賢ろが、
弛緩時のフイルムリ1そ力が1OKy / tri以七
8oKy/−以下、好ま1−(は20〜/d以上60に
り/ ad以下になるように、例えば弛Hな2つのロー
ル間の速度差で行う方式の場合には、加PAI:I−ル
にχ・1(5冷却ロールの速度を調節するのが好作1.
い。フィルム張力が1oK77−未満の場合はフィルム
がたるみ、1.わが発生するし、張力が80 x、 7
.4より大きくなる場合は熱+1’7縮率を量分下げろ
ことができない。 上述の弛緩処理によって、当該弛緩処理の温度」−1」
二における縦方向の熱収縮率は塗工物の巻きじ止りに影
響を及ぼさfr くなる。従東の縦弛緩によると縦方向
の弛緩だけでなく横方向にも収縮を起f1、従って横方
向の熱収縮率が小さくなりすぎろ。横方向の熱収縮率が
小さすぎろとフィルムルール表面に1.わが発生したり
、フリンター転写材加工段階でのコーティング時1.わ
が入り、塗り斑の原因となる。 か((−て得られる二軸配向ポリエステルフィル人は、
通常、表裏面とも同じ表面特性を埴1−る。この場合、
転写インク層を設けろ面は表面でも裏面でも良い。 本発明において転写インク層は、バインダー成分2着色
成分に加えて、必要に応l−で柔軟剤。 可撓剤2分散剤、平滑剤などを適宜添加1.で構成され
る。 インク成分と1.では例えば力?レナウバワックス、パ
ラフィンワックス、n−脂肪酸アルキルエフチル等の如
きワックス類、塩ビ系ポリマー。 塩ビー酢ビ共重合系ポリマー等の如きバインダー成分2
着色剤、その他成分が用いられイ〕。 着色剤と1−では、通常カーボンブランクな主体と1−
1そσ)他各種の染料、あるいは有機、無機の顔料が用
いられろ。曲の例と(−ては、着色剤ト1−でニゲルシ
ン、メチルバイオレット、アルツノリゾルー等を用い、
水、ヒマシ油、グリセリン、アルコール、ワセリン、オ
レイン酸、パラフィン等を3〜4種適量組合せるものが
あげられる。場合によっては転写インクには昇華型のも
のも含んでよい。 転写インク層の形成は、通常の方法、例えば溶剤を添加
1−だ状態でダラビュア、リバース。 スリットタイ方式などの溶液塗工方法、あるいけホット
メルト塗工などを用いて行うことができろ。その際、二
軸配向ポリエステルフィルムは、必要に応じてコpす放
電及理やバインダーの下びきコートなどの前処理を行っ
てもよい。 インク層の厚さは3〜35μm である。インク層が厚
すぎると、転写材をp−ル状に巻いたとき該インク層の
転写(転写材裏面への転写)が起るので好ま1−<ない
。 本発明において、基体の転写インク層を設はた反対面(
走行面)に塗設する該転写インク層となじみがない物質
後述する“インキ転写性”のテストでインクの付着が全
く認められない物であり、該物質としては、例えばシリ
コーン。 フッ素含有高分子化合物、ポリオレフィン、ポリカーボ
ネート、ポリ塩化ビニル、メラニン架橋物及びシリコー
ン、フッ素ポリマー等を含有【−た各種高分子化合物等
が挙げられる3、更に具体的には、シリコーンと【−て
は離型用シリコーンと一般に言われるトリメチルクロロ
シラン。 ジメチルクρpシラン、メチルジクロルシラン。 メチルトリクp++iシラン、ジフェニルクロロシラン
、フェニルトリクルルシラン、メチルビニルジクp+z
シラン等の成分を含んだ重合物や、更にこれらの構造体
にベンゾイルパーオキサイド、ジクロルパーオキサイド
等の過酸化物や白金触媒等を用いて加硫1.たシリコー
ン系ゴムあるいは樹脂勢のいわゆるシリコーン系化合物
が好ま]−い。また、フッ素含有高分子化合物と1−て
は、ポリテトラフルオルエチレン、テトラフルオρエチ
レン −ヘキザフルキロプロピレン共重合体、ポリビニ
リデンフルライド、ポリクロロトリフルオロエチレン等
や、これらを有機溶剤に可溶な変性を行った高分子化合
物が好ま(、い。更にまたポリオレフィンとしては、高
分子磁ボリエづレン、高分子址ポリプロピレン等が好ま
1−(、ポリカーボネートとしては高男子1のポリカー
ボネート樹脂が好ま(−い。 かかる物質は、通常有機溶媒に溶解させ、溶液に1.て
塗設才ろ。この溶液には、更にアニオン型界面活性剤、
カチオン型界面活性剤、ノニオン型界面活性剤等の界面
活性剤を必要量添加イろことができる。かかる界面活性
剤と【2てはポリエステルフィルムの濡れを促進するも
のが好f +、 < 、例えば、ポリオキシエチレンア
ルキルフェニルエーテル、ポリオキシエチレン−脂肪酸
エステル、ソルビタン脂肪酸エステル、グリセリン脂肪
酸エステル、脂肪酸金属石けん。 γルキル硫酸塩、アルキルスルホン酸塩、アルキルスル
ホコハク酸塩、第4級アンモニウムクロライド、アルキ
ルアミン−塩酸塩等を挙げ4)ことができる。更にまた
、本発明σつ効果を消失させない範囲において例えば帯
II!防l(−剤、紫久綜吸収剤、ts料、潤滑剤、ブ
μツキンダ防止剤。 有機フィラー、無機フィラー等の能の添加剤を混合する
ことができる。 上記溶液は固形分濃度が通常30重Ml %以下であり
、好ま(5〈は10重m: %以下であるものである。 これらの物質は基体に設けた転写インク層を反射面(走
行面)に付着1−に<(L2、インク転写材(リボン)
の走行性を良好に保持(2、少くとも走行性を損うもの
ではないことは言うまでもない。更にまた、こねらの物
質を塗布1゜たものが、逆にインク層の表面に転写1.
てプリント時インクが被印字物に印字さ才1難くなる等
一種の離型剤と1、ての働きを生じろことのないような
注意が必要であり、使用物質の選定と塗工乾燥等での処
置をこれに適t7たもU)と−fろことは言うまでもな
い。 これらの物質を塗布する際、二軸配向ポリエステルフィ
ルムは、必要に応じてコロナ放電処理や、バインダーの
下ひきコートなどの前処理を行ってもよい。 塗布方法と1−ては、公知の任意の塗工法が適用できる
。例えばロールコート法、グラビアコート法・ p−ル
プラッシュ法、スプレーコート。 エアーナイフコート、含授法及びカーテンコート法など
を単独又は組み合せて適用するとよい。 塗布量は、フィルム1−あたり0.05〜20?、更に
は0.1〜101が好ましい。 二軸配向ポリエステルフィルムの各々の面に、転写イン
ク層と上述の溶液とを塗設する手1畦と1−では、転写
インク層と反射面(走行面)への上述の溶液とのいずれ
を先に塗工l、ても基本的には問題はな(、更に例えば
反く1間(走行面)に上述の溶液を塗=「f−だ後乾燥
し1、引き続いて転写インク層を塗工(−で乾燥j、た
後ロール状に巻き取ってもよ(、又これらの工程を別々
に、即ち例えは、転写・インク層を二軸配向ポリエステ
ルの片田1に塗工し乾燥させた後、一旦ロール状に巻き
とり、その後上述のロールを巻きもど1、て基体(フィ
ルム)の反射面(走行面)に1′述の溶液を塗工【−乾
燥(7た後、p−ル秋に巻き取ることもできろ。 本発明におけろ二軸配向ポリエステルフィルムは、転写
インク層を設け7jい側の表面の摩擦係数が0.5以下
、更には0.45以下、特に0.35〜0.45であり
、かつ該摩擦係数の連続50回往復走行テスト後の値が
初期イ1^に比(、て150チ未満、更には120チ未
満であることが好ま1、い。この表面は走行面を形成す
るから、摩擦係数が大きすぎるとリボンの走行性が低下
に、はなはだしいときにはリボン切れを起L、またイン
クの転写を引き起1−よ5 Q(なり、好ま1.りない
。 本発明Q)プリンター相転り材は、繰り返1゜使用して
も転写斑を生じないインク層と、二軸配向ポリエステル
フィルムが本来有17てい4)優れた緒特性、すなわち
耐薬品性2強度2弾性率。 耐熱性、高融点等に加え、特にインクの転写l。 にくい走行表面を有1.て好適な走行性を保持1.。 またインパクト用に用いれば繰り返し使用1.でも、印
字による打たれ残りなどの塑性変形も殆んどなく、かつ
転写画質に優れた転写君として有用である。 実施例 以下、実施例を掲げて本発明を更に説明する。 なお、本発明におけろ種々の物性値および特性は以下の
如(して測定されたものであり、かつ定義される。 fl+  突起分布 小板研究所製三次元粗さ計(SE−30K)を用いて、
針径2μ川R1針圧30Q、測定長1謔、ザンプリング
ピツチ2βtn +カットオフ0.95■、縦方向拡大
倍率2万倍、横方向拡大倍率200倍、走査本数150
本の条件にてフィルム表面の突起のプロファイルを三次
光的(立体的)にイメージさせる。 そのプロファイルをフィルムの厚さ方向と直角方向の平
面でカット〔、た場合に、各突起のプロファイルの断面
積の合N1が、フィルムの測定領域の面積の70チとな
る平面を基準レベル(0レベル)とし、その基準レベル
の平面と平行に突起の高さ方向に距離Xだけ峠れた平面
でカットしたときにカットされる突起の数をyとする。 Xを順次増加又は減少させ、そのときのyの数を読みと
り、グラフにプーットすることにより、突起分布曲線を
描くことができろ。 (21ヤング率 フィルムを試料中10■、長さ15cmに切り、チャッ
ク間100■に(、て引張速度10W/分、チャート速
度500m/分にインストロンタイプの万能引張試駆装
置に℃引張り、得られる荷重−伸び曲線σ)立上り部の
接線よりヤング率を計算する。 (3)  表面突起数 フィルムの表面に400〜500尺乃至それ以下の厚み
にアルミニウムを均一に真空蒸着し、反対の非蒸着面(
フィルム面)にコルジオンを塗って貼付け、乾燥する。 T/  単色光予信干渉反射顕微鏡(例えば、Carl
 ZeissJENA 社製)を用いて100陪の倍率
でアルミニウム蒸着面の任意の100Jを観察1−1顕
微鏡視野中の突起物Q)突起高さに対応E、て生じろ干
渉縞を持つ突起数を各々カウントする。 (4)  熱収縮率 20mm巾に切り出にたフィルムサンプルに300mm
間長の位置に標点を印1−ておき、70℃又は150℃
に加熱された循環型熱風機に無荷重で吊(、て1時間又
は30分間保持1−5その後取出j、て放冷後1記標点
間の長さを読みとって、原反との差の原反に対する割合
を−で表示する。 (5)  インキ転写性 厚さ10μm のフィルムの片面に転写インク組成物を
層の厚こ18μm となるようにグラピュア方式で塗工
「2、得られる転写シート状物で10gm巾×20cr
n長のフィルムサンプルを覆い、直径5crRでl K
fの硬質りμム処理p〜ルで20回繰返し押圧した後肢
サンプルノ転写インク層に接触f、た面を、エチルアル
コールで湿らせた綿棒でyzぞり、その綿棒へのインク
の付着容度(汚れ容度)を目視絆価にて5段階で判定′
fろ。 〈5段階判定〉 ◎・・・インクの付着は全く認めl−1h t、cい○
・・・インクの付着は殆んど認められないΔ・・・イン
クの付着はいく公認められる×・・・インクの付着けか
なりの桿度閣められる ××・・・インクの付着かをすげしく認められる(6)
  走行性 図1に示2−た装置を用いて下舵のように測定する11
図1中、1はp−ドセル、2は表面粗さ約0.5μm 
のプラスチック製の固定棒(外径5tIIIII〆)、
3は荷重(100f)。 5.5はサンプル固定具、4はサンプル(リボン)をそ
れぞれ示す。 温り120℃、湿度60%RHの環境で118園のサン
プル(転写インク層を18μtn  の厚さに塗工した
もの)の転写インクの塗工面の反対面(走行面)を、2
0固定棒に90° で接触させて毎秒30+mの速さで
10p−ドセルを水平に30備の長さを往復移動さぜ石
ことに」゛り摩擦係数を読みとる。 走行性の良否は、測定開始直後にイnられる摩擦係数に
対する連続50回往復走行時の摩擦係数との比較で3段
階で判定する。 〈3段階判定〉 0・・・初期の摩擦係数にi4 fる、50回繰返(−
往復走行時σ)摩擦係数が120%未満であり、摩擦係
数が繰返I、走行によりあまり増大1.ない △・・・初期の摩擦係数に対する、50回繰返し往復走
行時の摩擦係数が1201以上150チ未満であり、摩
擦係数の増加が繰返1.走行により若干認められる ×・・・初期の摩擦係数に71する、50回繰返1、往
復走行時の摩擦係数が150%以上であり摩擦係数の増
加が繰返1.走行により顕著に認められろ (7)  印字鮮明性 転写インク層を18μm の厚さに塗工(、た転写リボ
ンのインク塗工面の反対側!電動式タイプライタ−IB
M82Cを用いて、アルファヘラ) (1) r Q 
Jの文字を通常のタイプライタ−用紙に繰返1−1o回
打ち、印字されたrQJの鮮明性、印字σ−ン太さ、濃
淡の変化の度合を目視にて3段階で判定する)。 〈3段階判定〉 ○・・・繰返し10回打っても印字は太くならず、濃淡
斑もな(、鮮明である △・・・繰返1回数が増すに従って印字はヤヤ太目にな
っており、がっa淡斑はへ・ヤ目立つが、まずまず鮮明
さは保持される X・・・繰返(−回数が増すに従って印字はがなり太目
になっており、かつ部分的に濃淡の斑が強(見られ、鮮
明さに欠けてくる(8)  フィルム変形朋 前記(7)に示f、た方法で同一ケ所を連続10回打っ
てフィルムの打ち跡を目視にて3段階で判定する。 く3段階判定〉 ○・・・打め跡は殆んど認められない △・・・打ち跡はやや認められろ ×・・・打ち跡ははっきり認められる 実施例1−3 エチレングリコール(以下EGと略称する)90重針部
に炭酸カルシウム(平均粒径1.5μm)10重量部を
添加(−た後、混合攪拌を行なってスラリーを得た。 次に、ジメチルテレフタレー)100重量部とEG70
重量部を酢酸マンガン4水和物0.035重量部を触媒
と1、て常法通りエステル交換をせ1.めた後上記で得
られた炭酸カルシウム(!1度0.4重量%討ポリマー
)を攪拌下添加1−た。続いてリン酸トリメチル0.0
3重址部及び三酸化アンチモン0.03重量部を添加1
.た後高温真空下で常法通り重縮合反応を行い、固有粘
度0.620のポリエチ1/ンテレフタンートベレット
を得た。 更にこのポリエチレンテレフタレート(以下PETと略
称)ベレットを170’C,3時間乾燥後押出機ホッパ
ーに供給し、溶融温度280〜300℃で溶融(1、こ
σ)溶融ポリマーを1■のスリット状ダイを通【、て表
面石]−げ0,3 S程度2表面温度20℃の回転冷却
ドラム上に成形押出(2、厚み約110μm の未延伸
フィルムを得た。 このように1、て得らFIだ未延伸フィルムを75℃に
て予熱1.てがら更に低速、高速rノールの間で15鰭
上方より90o℃Q)表面温度のT Rヒーター1本に
てjtllMm、該に、A達0)p−ル表面速度により
1.7倍延伸l1、続いて一旦急冷してから再度り記温
度条件に加熱1.て1.45倍に延伸1 、更釦この急
冷−加熱延伸を繰亙(、(再延伸の合計倍率3,6倍)
で縦方向に+ffi (I +−タ。この縦方向延伸フ
ィルムを、次に、熱風中110℃の温度で横方向に3.
9倍に延伸]1、次いで230℃で15秒間熱処理を施
して7.5μm の厚さの二軸配向フィルムを得た。な
お、この時の蝋伸速変け20 m / 5+であった。 次いで、この−軸配向フィルムを加熱−一ルで120℃
に加熱後、冷却ロールとQ)間で、熱処理温度に応じた
1jV、縮に相当する張力を掛けながら弛緩処f甲して
、70℃で1時間処理したととの縦り向の熱収縮率が約
0,06係り)フィルムを イ4  を二 。 得らフまたフイノt、ムの特性は次の通りである。 ヤ7グ*(M方向) (Ky/yJ>      53
0熱収縮率(チ) 70℃・1時間(縦方向)      0.0615 
(1℃−30分(横方向)     0.20突起高さ
と空起数 (μm)(個/j) 1.5≧h )  1.0            6
1.0≧h 〉0.75         230.7
5≧h ) 0.5         7 50.5≧
h)0.25       240最大突起高さくμm
 )     1.6なお、この二軸配向フィルムの三
次元粕さ計による突起分布曲線は図−2(曲線A)K示
す。 上記特性の二軸配向ポリエステルフィルムの片面に、表
−IK示【7た組成からなるインク層圧なじみの殆んど
ない物質(表−■では、付着防止層組成物と称する)を
グラピュア方式で塗T11、その後直ちに乾燥1.てp
−ル状に巻きとった。 その後、下記組成からなるインクを層の厚さ18μm 
となるようにグラピュア方式で塗工I7た。得られた転
写材を8鰭巾のリボンにしてdf価I〜だ。その結果を
表−■に示す。 このように1−で得られた転写材σ)緒t1:能はいず
れも良好レベルにあった。 転ファインク組成物: 囚タイプ カーホンブラック       18重量部パラフィン
・ワックス(m、p、  〜4o℃)カルナウバ°ワッ
クス     15 1エチレン−アクリル酸共重合体
(9o/1o)15   l ステアリン酸          2Il′l]タイプ バラニドルアこリンレッド   15重量部パラフィン
・ワックス(m、p、  〜4o℃)50    l カルナウバ・ワックス     19 1エチレン−酢
ビ共重合体(85/15 )】51 架橋ポリエチレンビーズ(Hz径o、5μ)z ロタイブ カーボンブラック       20重量部ワセリン 
          30重量部グリセリン     
    30  N固型pジン・ワックス     i
o  を水                    
      10    N比較例1〜3 実施例1〜実施例3における二軸配向ポリエステルフィ
ルム製造条件のうち、縦の再延伸の合計倍率を3.3倍
とLlかつ横の延伸倍率を3.8倍とl−だ他は上記同
じ条件で実施1.て厚さ7.6μm の二軸配向フィル
ムを得た。 この二軸配向ポリエステルフィルムの物性は次の通りで
ある。 ヤング率(縦方向) (Kr/aJ)     410
熱収縮率(チ) 70℃・1時間(縦方向)      0.09150
℃・30分(横方向”)     0.45突起高さと
突起数 (μm>  C個/−) 1.5≧h > 1.Q              
31.0≧h)0.75           140
.75≧h ) 0.5           560
.5≧h)0.25          250最大突
起高さくμtn)1.2 なお、この二軸配向フィルムの突起分布曲線は図−2の
曲線−人に近似するものであった。 上記物性の二軸配向ポリエステルフィルムの両面に実施
例1〜3で用いたと同様の組合せの転写インク層組成物
と付着防止層組成物とを塗工1.た。 このように[−て得られた転写材の諸性能は表−1に示
す如く、フィルム変形度が不満足であった。 −41〜 −4゛ 比較例4 添加剤とにて炭酸カルシウム(平均粒径1.5μm )
を対ポリマー当り0.4重t%添加させて得た厚さ15
0μm の未延伸フィルムを、比較例1の条件のうち、
赤外線ヒーターと1−で表面温度750℃の赤外線ヒー
ターを用い、低速。 高速p−ルの表面速度比で縦方向に3.0倍に延伸ぞ5
、次いで95℃の熱風中で3.7倍の延伸倍率で横方向
に延伸1−1更に再度縦方向に表面温度1000℃の赤
外線ヒーターで加熱して延伸倍率1.8倍で延伸11、
その後220℃で熱固定して厚さ7,5μm の二軸配
向ポリエステルフィルムを得た。 この二軸配向ポリエステルフィルムの物性は次の通りで
ある。 ヤング率([方向>CKy/xJ>     870熱
収縮率(%) 70℃・1時間(縦方向)      0.12150
℃・30分(横方向)1,9 突起高さと突起数 =43− (11ml  (個/11〕) 1.5≧h )  1.0             
 41.0≧h)0.75           27
0.75≧h)0.5           900.
5≧h  ) 0.2 5         2 7 
0鰻大突起高さくμm)       1.4なお、こ
の二軸配向ポリエステルフィルムの突起分布曲線は図−
2の曲線−Aに近似するものであった。 上記物性の二軸配向ポリエステルフィルムの片面に実施
例−1に用いたのと同一構成の組成物を塗Tし、得られ
た転写材を8m巾のリボンにして評価した。 このように1.で得られた転写材の諸性能は表−■に示
す如くであり、プリンターで印字1.たとき印字圧力で
フィルムが縦方向に裂けて1.まい、鮮明な印字ができ
なかった。 比較例5 炭酸カルシウム(平均粒径1.5μm )の代り=44
− にカオリン(平均粒径0,5μm )を対ポリマー0.
5重量%添加した以外は実施例2と同様に製膜(7て7
.5μm の二軸配向フィルムを得た。 得られたフィルムの特性は次の通りである1、ヤング率
(縦方向) (Kr/mu)     540熱収縮率
(チ) 70℃・1時間(*方向”)      0.0615
0℃・30分(横方向’)     0.21突起高さ
と突起数 (μm)  (個/−) 1.5≧h)1.0  ’      01.0≧h 
) 0.75      00.75≧h ) 0.5
      70.5≧h)0゜25    320 最大突起高さ        0.8 なお、この二軸配向フィルムの突起分布曲線は図−2の
曲線Bに示す。 上記特性の二軸配向ポリエステルフィルムに実施例−2
の転写インク層組成物及び付着防止層組成物を各々塗工
1.た。 こりようにL℃得られた転写材の諸性能は表−璽に示す
如(であり、インク転写性は十分でな(、走行性は不満
足であった。
[The biaxially oriented polyester film has chemical resistance of 1 strength, elastic modulus of 1 strength, and heat resistance. 1: For crystals, it has excellent properties such as high melting point.
It is used. By the way, transfer materials for printers are increasingly being used repeatedly, and the number of repeated uses is also increasing year by year. There were problems such as deformation and elongation of the film (σ) due to unprinted parts of the printed area during printing, and deformation due to heat in the thermal transfer method. Furthermore, coating on polyester film 1. The ink layer was transferred to the opposite surface (running surface), staining the running surface of the ribbon.[2]There were running problems such as gradual accumulation of ink on contact parts such as guide posts of the running system. OBJECTS OF THE INVENTION The objects of the present invention are to solve the above-mentioned problems, to provide f2, durability suitable for repeated use, and two-dimensional stability in transferability. The purpose of the present invention is to provide a transfer material for printers that has excellent running properties. Effects/Constitution of the Invention The object of the present invention is that according to the present invention, the thickness is 1 to 25 μm.
biaxially oriented polyester film with a thickness of 3 to 35 mm on one side
In the transfer material for printers provided with a transfer ink layer of μm, the biaxially oriented polyester film is
C), B) Longitudinal Young's modulus is 450-80()-/
mA, (b) The heat shrinkage rate at 150℃ in the vertical and horizontal directions is 7.
(c) The protrusion distribution curve, which represents the relationship between the number of protrusions (Y: Ke/Wa) and the protrusion height X: μm, measured using a three-dimensional roughness meter on the film surface. goo Y > 1,
In the area of 3, the following formula (1 + log, o"l' = -1,8X + 3.9 - . The curve satisfies the following formula (2) % formula %, and furthermore, the surface of the curved and anti-elbow on which the transfer ink layer is provided is a material that is hardly compatible with the transfer ink layer. This is achieved by a transfer material for yellowtail/tar which is characterized by coating (-). In the present invention, the polyester is a 7+ acid component mainly consisting of aromatic dicarboxylic acids and 11+ acids, and a glycol mainly consisting of aliphatic glycols. Aromatic dicarfonic acids include, for example, terephthalic acid, natuta dicarfonic acid, etc. /. Luponic acid, isophthalic acid, difuunoxyethanedicarboxylic acid, diphenyldicarphonic acid, diphenyl etherdicarboxylic acid + 97E:-Rus/l-hondicarboxylic acid, diphenylketonedicarboxylic acid, anthracenedicarboxylic acid, etc. Examples of aliphatic glycols include ethylene glycol, trimethylene glycol, tetramethylene dalycol, pentamethylene glycol, hexamethylene glycol, and decamethylene glycol.
t With an alicyclic diol such as polymethylene dalycol or cyclohexane dimetatool having an RIR number of 2 to 10), filter. In the present invention, for polycoacyl and 1-, for example, those containing alkylene terephthalate and/or alkylene naphthalate as main constituents are preferably used.
Of these 11 courses, the most important one is polyethylene r-phthalate. Of course, 80 cells of the total nocarphonic acid Iy of the peeled meat are prephthalic acid and/or 2,6-naphthalene dicarboxylic acid, and 80 of the total glycol component Particularly preferred are copolymers in which more than a mole percent of ethylene glycol is present. In this case, the dicarboxylic acid of not less than 20 mol % of the total acid component can be an aromatic dicarboxylic acid as described above, and also an aliphatic dicarboxylic acid such as adipic acid or cepatic acid; It can be an aliphatic dicarboxylic acid such as 3, and the total crifur component Q)
200 molar or less, it can be any of the above-mentioned glycols other than 200 molar glycols, or, for example, iodo-quinones, resorcinols. Aromatic diol such as 2,2-bis(4-hydroxyphenyl)propane: 1.4
- Months containing aromatics such as dihydroxymethylbenzene
j Aliphatic diol; polyethylene glycol. Polyalkylene glycols (polyoxyalkylene glycols) such as polypropylene glycol and polytetramethylene glycol can also be used. In addition, the polyester 1 used in the present invention (() is a component derived from an oxycarboxylic acid such as an aromatic oxyacid such as hydroxybenzoic acid, @franic acid, or an aliphatic oxyacid such as ω-hydroxycaproic acid. Those containing 20 mol% or less of the total amount of the dicarboxylic acid component and the oxycarboxylic acid component are also included.Furthermore, the polyester in the present invention has a substantially linear tail, for example, a curved line in the total acid component. A trifunctional or higher functional polycarboxylic acid or polyhydroxy compound with an L of 2 moles or less. For example, a 1-copolymer of trimellitic acid and pentaerythritol is also included. The above polyester is known per se, and The polyester can be produced by a method known per se. .90) Preferably, the above-mentioned material may contain, if necessary, a stabilizer, a coloring agent, and an anti-bronching agent.The present invention The biaxially oriented polyester film in V) is a biaxially oriented film produced from a polyester film.
K4/Hj, preferably 7/ILJ in the range of 500 to 750. Note that the longitudinal direction of the film coincides with the longitudinal direction of the ink transfer ribbon. This vertical direction σ
If the No. Young's modulus is less than r5oKy/-, the film will easily stretch and elastic recovery will be difficult, so when printing with a transfer ribbon, the printing area will undergo plastic deformation due to the printing pressure, which will inevitably result in The clarity of the print is poor, such as thick printing (and the handling of the transfer ribbon is poor due to the deformation, etc.), and the Young's modulus in the longitudinal direction exceeds 5ooKp/+J Because of its strong rigidity, it is less likely to tear due to printing pressure, which is preferable (-
<No. Moreover, the thickness of the polyester film in the present invention is 1 to
25 μm is commonly used, and the preferred fl' (is 2-10 a
m, more preferred 1. (3 to 8) it (+) If the film thickness is thinner than the above range, the strength will be insufficient (,), and if the transfer ribbon and 1. On the other hand, if it is thicker than the above-mentioned range, it will take time for heat transfer, especially in the case of thermal transfer methods.It may be possible to increase the recording speed and achieve a clear transfer image quality of 1:4. In the present invention, the biaxially oriented polyester film has the above-mentioned Young's modulus and thickness in the longitudinal direction, but the surface on which the transfer ink layer is provided also has a surface roughness measured with an E-dimensional roughness meter], number of protrusions (Y
:ke/-) and the protrusion height The curved edge of the distribution and the curved edge of the part exceeding the maximum value is within the range that satisfies the following formula (2).・
・・・・・・・・・(1) 10g1゜Y≧-3,6X +2
.. 8 ・・・・・・・・・(2) The film surface roughness falls below the straight line expressed by the formula logIo−3,6 (as if the parts with larger heights intersect and go down to the bottom)
If the ink layer exhibits a distribution of
- When the film is wound around a ribbon, the ink is transferred to the opposite side (running surface) of the ribbon, and the running surface of the ribbon becomes dirty. Accumulates and impedes the running of the ribbon (1, in extreme cases, the ribbon stops moving, etc.), causing trouble and
) The slipperiness to candy and fill is poor (as a result, the film may wrinkle during processing, so it is preferable 1. (no). Also, the surface roughness of the film is expressed by the L formula (a protrusion distribution that intersects with U). If it is too rough, it is not preferable because the sharpness of the print will be poor (and it will cause wear of the thermal head, which will cause problems in practical use. formula microscope 4
! (T/monochromatic light) number of protrusions (ke/-) and protrusion height h: μm) is 1.5≧h) 1.0...10 ke/J
Below 1.0≧h) 0.75...1~30
Ke/-〇, 75≧h > o, s...15~
120 pieces/mJO, 5≧h) 0.25...
It is preferable to satisfy 80 pieces/IIIj or more. Satisfying this surface property is particularly preferable from the viewpoint of preventing the ink layer from being transferred to the opposite side of the film and from the viewpoint of print clarity. In addition, the maximum protrusion height on the film surface is 3 μm or less,
Furthermore, it is desirable that the thickness be 1.5 μm or less. The above-mentioned surface roughness of the biaxially oriented polyester film in the present invention can be achieved by adding inert inorganic or organic fine particles to the film. stomach. When using this inert fine particle, the average particle size is 0.01 to 1.
0 μmO,) particles in an amount of 0.01 to 5% by weight, and further particles with an average particle size of 0.03 to 4 μm in an amount of 0.01 to 1.5% by weight.
It is preferable to add t%. At this time, an inert inorganic substance is added. The organic fine particles may be a single component (or two or more components may be used at the same time.In the present invention, preferably silicon dioxide (hydrate, Silica gravel soil, silica sand 1
(including quartz, etc.); ■Alumina; ■SI Ot 30
Silicates containing more than 100% oxide (e.g. amorphous or crystalline clay minerals, aluminosilicates (including calcined products and hydrates), warm asbestos, zircon, fly ash, etc.), 0 Mg
+ Zn + Zr and Ti oxide; ■C8 and Ba
sulfates; ■ phosphates of Li, Na and Ca (including monohydrogen salts and P dihydrogen salts); ■ Lir N
Benzoate of a and K; ■Ca, Bar Z
Terephthalate of n and Mn; 0 Mg r C
a + Har Zn + Cd * Pb + S
r, Mn, Fe, C. and Ni titanate; [phase] Ba and pb
Examples include porium salt; 0 carbon (eg, carbon blank, gelaphyte, etc.); 0 glass (eg, glass powder, glass peas, etc.); Oca and Mg carbonates; 0 fluorite; and @ZnS. More preferred 1, (means anhydrous silicic acid, hydrated silicic acid, aluminum oxide, aluminum silicate (including calcined products, aquariums, etc.), monolithium phosphate,
Trilithium phosphate. Sodium phosphate, barium phosphate, titanium oxide. Examples include lithium benzoate, double salts of these compounds (including hydrates), glass powder, clay (including kaolin, bentonite, 10, etc.), talc, diatomaceous earth, calcium chloride, and the like. The polyester containing inert fine particles of stiff particles is usually prepared at any time during the reaction to form the polyester, for example, during the transesterification reaction when using the transesterification method, or during the polycondensation reaction when using the direct method. σ
during the period. Inert microparticles (preferably slurry in glycol and 1
.. ) into the reaction system. Preferably, inert fine particles are added to the reaction system at the beginning of the polycondensation reaction, for example, until the intrinsic viscosity reaches about 0.3. Furthermore, it is preferable that the biaxially oriented polyester film in the present invention has a heat shrinkage rate of 7% or less in the longitudinal and lateral directions when heat treated at 150° C. for 30 minutes, more preferably 1. < is 4 or less articles, especially +l < is 2 or less articles). If this thermal shrinkage rate is higher than 7 coefficients, the width shrinkage during relaxation treatment will be large (TC) (due to shrinkage occurring during the process of processing into a transfer material for printers, i.e. coating, drying, etc.) If the thermal shrinkage rate is less than θ%, then in the case of a method in which relaxation is performed by the speed difference between two rolls, 1. Formation of cracks on the heating roll [7] Furthermore, by using a device to process the base film in roll form until it is processed into a transfer material for printers, - cracks may occur in the vertical direction of the surface of the roll, and It is undesirable that warps are generated on the surface of the intermediate product roll during the process of processing the transfer material. In addition, there are problems when using the ribbon, especially when it is used as a transfer ribbon for a thermal printer, if the heat shrinkage rate is outside the range mentioned above, the ribbon will be severely deformed, the clarity of printing will be poor, and the ribbon will be damaged. Due to the deformation, the winding and handling of the transfer ribbon becomes poor, and even in the dot impact method, if the heat shrinkage rate exceeds 7-, the printed portion is likely to be deformed, so it is preferable that it is 1-<0. The biaxially oriented polyester film used in the present invention is not particularly limited by its production method, but usually polyester containing a predetermined proportion of fine particles is melted, extruded into a sheet shape through a slit-like die, and then cast using a casting drum. Cool and solidify by 1° to obtain an unstretched sheet 1-1 Then, the unstretched sheet is biaxially stretched 1 to form a product (film),
Furthermore, it is manufactured by heat treatment (heat setting), treatment to adjust the heat shrinkage rate in the transverse direction, and then longitudinal relaxation treatment. At that time, in order to suitably satisfy the requirements of the present invention, the stretching temperature must be set to, for example, the first stage stretching temperature (e.g. longitudinal stretching temperature: T,
) in the range of (Tg-10) to (Tg+45)℃ (however,
Tg: glass transition temperature of polyester) and L, second-stage stretching temperature (for example, transverse stretching temperature: T2) (T, +1
5) The range of ~(T, +40)°C and the 1-1 stretching ratio are 2.5 to 6.0 times, especially 3.5 to 5.5 times, in the first stage stretching, and 2.5 times in the second stage stretching. ~4.0 times, especially 2.8-3
.. It is better to make it 7 times +1. Further, the obtained biaxially stretched film is preferably heat set at a temperature in the range of 150 to 245°C, more preferably 170 to 240°C for about 1 to 200 seconds. Furthermore, the heat treatment conditions in a normal tenter are adjusted by I- to adjust the heat shrinkage rate in the lateral direction, and then longitudinal relaxation treatment is performed. Adjustment of the heat shrinkage rate in the transverse direction is usually performed before the longitudinal relaxation treatment. It is usually adjusted during heat treatment in a tenter. For example, if the heat shrinkage rate in the transverse direction is insufficient (5), it is recommended to stretch the film in the width direction during the heat treatment. It is better to relax it.More specifically, the heat treatment temperature is 160℃.
When the temperature is 1-9 to 13% of the total width, it is recommended to relax 5 to 11 inches when the temperature is 170 degrees Celsius.
When the temperature is 80℃, relax 1 to 8 inches (200℃)
When () ~ 5chi tense or relax,
When the temperature is 205°C, it is recommended to stretch it by 3 to -2 inches (7 to 100 degrees of relaxation), and at 220°C, it is recommended to stretch or relax it by 1 to -6 inches. Method of relaxing in the longitudinal direction and C1 For example, there is a floating treatment method using air force, which loosens the material under heating under low tension in a non-contact state; a method which loosens by applying a speed difference between a heating roll and a cooling roll, each having a nip rule, or a method in which the relaxation is performed in a tenter. There are methods of loosening the clip in the vertical direction by sequentially narrowing the advancing speed of the clip, but any method can be used as long as it can be relaxed in the vertical direction. Relaxing in the vertical direction The temperature at which the treatment is carried out is (Tg + 20) °C or above (heat treatment temperature -30) °C, below Iso, preferably (Tg
g+30)°C or higher (heat treatment temperature -40)°C or lower. At temperatures lower than (Tg + 20) C, it is not possible to sufficiently reduce the thermal shrinkage in the vicinity of Tg, and at temperatures higher than (heat treatment temperature -30) C, the amount of longitudinal relaxation is large. The shrinkage in the lateral direction is also poor, and the heat shrinkage rate in the lateral direction is not only 1:c, but it also reduces the mechanical properties in the lateral direction, worsens the thickness unevenness, and causes loosening. In the case of a method in which the process is performed using a speed difference between two rolls, scratches are generated in the lateral direction on the film surface due to width shrinkage in the heated p-ruhi.
do not have. The amount of relaxation in the longitudinal direction depends on the heat treatment temperature, but
For example, the speed difference between two relaxed rolls should be adjusted so that the film's warping force when relaxed is 1OKy/tri or more and 78oKy/- or less, preferably 1-(is 20~/d or more and 60/ad or less). In the case of the method in which the cooling roll is applied, it is preferable to adjust the speed of the cooling roll by adding PAI: χ・1 (5).
stomach. If the film tension is less than 1oK77-, the film will sag; 1. I am generated and the tension is 80 x 7
.. If it becomes larger than 4, it is not possible to lower the shrinkage ratio by the amount of heat + 1'7. By the above-mentioned relaxation treatment, the temperature of the relaxation treatment "-1"
The thermal shrinkage rate in the longitudinal direction in step 2 affects the rolling resistance of the coated material. According to Juto's longitudinal relaxation, not only relaxation occurs in the longitudinal direction, but also contraction occurs in the lateral direction f1, so the thermal contraction rate in the lateral direction becomes too small. If the heat shrinkage rate in the lateral direction is too small, apply 1. to the surface of the film rule. 1. When coating occurs during processing of flinter transfer material. This can cause wrinkles and uneven coating. The biaxially oriented polyester film obtained by (-) is
Usually, both the front and back sides have the same surface characteristics. in this case,
The surface on which the transfer ink layer is provided may be the front or back surface. In the present invention, the transfer ink layer contains a binder component, two coloring components, and, if necessary, a softener. Flexibility agent 2 Addition of dispersant, smoothing agent, etc. as appropriate 1. Consists of. Ink components and 1. For example, power? Waxes such as Renauva wax, paraffin wax, n-fatty acid alkylethyl, and vinyl chloride polymers. Binder component 2 such as vinyl chloride vinyl acetate copolymer polymer, etc.
Coloring agents and other ingredients are used]. When coloring agent and 1-, usually carbon blank main body and 1-
1) Various other dyes or organic or inorganic pigments may be used. Examples of songs (-) using colorants such as Nigelcin, Methyl Violet, and Alpine Rhizol,
Examples include combinations of three to four types of water, castor oil, glycerin, alcohol, vaseline, oleic acid, paraffin, etc. in appropriate amounts. In some cases, the transfer ink may also include a sublimation type. The transfer ink layer is formed by the usual method, for example, by adding a solvent, using a dura viewer, and reversing. This can be done using solution coating methods such as the slit tie method, hot melt coating, etc. At this time, the biaxially oriented polyester film may be subjected to pretreatment such as coating, discharging, and subbing coating with a binder, if necessary. The thickness of the ink layer is 3 to 35 μm. If the ink layer is too thick, the ink layer will be transferred (transferred to the back side of the transfer material) when the transfer material is rolled into a roll shape, so it is preferable that the ink layer is too thick. In the present invention, the opposite side of the substrate on which the transfer ink layer is provided (
Substances that are not compatible with the transfer ink layer applied to the running surface) A substance that does not show any ink adhesion in the "ink transferability" test described below. Examples of such substances include silicone. Examples include fluorine-containing polymer compounds, polyolefins, polycarbonates, polyvinyl chloride, melanin crosslinked products, and various polymer compounds containing silicones, fluoropolymers, etc. 3. More specifically, silicone and Trimethylchlorosilane is commonly referred to as mold release silicone. Dimethylchlorosilane, methyldichlorosilane. Methyltric p++i silane, diphenylchlorosilane, phenyltriculursilane, methylvinyldic p+z
Vulcanization is performed using a polymer containing components such as silane, or a peroxide such as benzoyl peroxide or dichloroperoxide, or a platinum catalyst for these structures. Silicone rubber or resin-based so-called silicone compounds are preferred. Examples of fluorine-containing polymer compounds include polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, polyvinylidene fluoride, polychlorotrifluoroethylene, etc. Polymer compounds that have undergone soluble modification are preferred (, 1).Furthermore, as the polyolefin, polymer magnetic polyethylene, polymer-based polypropylene, etc. are preferred (1-(), and as the polycarbonate, polycarbonate resin of Takadanshi 1 is preferred). Preferably, such a substance is usually dissolved in an organic solvent and applied to the solution.This solution further contains an anionic surfactant,
Surfactants such as cationic surfactants and nonionic surfactants can be added in the required amount. Such surfactants and [2] Preferably those that promote wetting of polyester films, for example, polyoxyethylene alkylphenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, glycerin fatty acid ester, fatty acid metal. Soap. Examples include γ-alkyl sulfate, alkyl sulfonate, alkyl sulfosuccinate, quaternary ammonium chloride, alkylamine hydrochloride, etc. 4). Furthermore, as long as the effects of the present invention are not lost, for example, Band II! Anti-litter agent, absorbent agent, TS agent, lubricant, anti-button agent. Functional additives such as organic fillers and inorganic fillers can be mixed. The above solution usually has a solid content concentration. It is less than 30% by weight (Ml), preferably less than 10% by weight (5〈 is less than 10% by weight). L2, ink transfer material (ribbon)
It goes without saying that it does not impair the running properties of the ink layer (2).Furthermore, the material that has been coated with the knead material for 1° is conversely transferred to the surface of the ink layer (1.
When printing, care must be taken to ensure that the ink does not act as a type of release agent, such as making it difficult to print on the object being printed, so care must be taken when selecting the material to be used and applying and drying. It goes without saying that the treatments t7, U) and -f are suitable for this purpose. When applying these substances, the biaxially oriented polyester film may be subjected to pretreatment such as corona discharge treatment and a subbing coat with a binder, if necessary. As for the coating method, any known coating method can be applied. For example, roll coating method, gravure coating method/p-le plush method, spray coating. It is preferable to apply air knife coating, impregnating method, curtain coating method, etc. alone or in combination. The coating amount is 0.05 to 20% per film. , and more preferably 0.1 to 101. When applying the transfer ink layer and the above-mentioned solution to each surface of the biaxially oriented polyester film, in ridge 1 and 1-, which of the transfer ink layer and the above-mentioned solution is applied to the reflective surface (running surface) is applied. Basically, there is no problem even if you apply the coating first (for example, if you apply the above solution to the running surface), dry it, then apply the transfer ink layer. Alternatively, these steps may be performed separately, i.e., by applying the transfer and ink layers to biaxially oriented polyester Katada 1 and drying. After that, it is wound up into a roll, and then the above-mentioned roll is unrolled and the reflective surface (running surface) of the substrate (film) is coated with the solution described in step 1. In the present invention, the biaxially oriented polyester film has a friction coefficient of 0.5 or less, more preferably 0.45 or less, particularly 0. 35 to 0.45, and the value of the friction coefficient after 50 consecutive reciprocating tests is preferably less than 150 inches, more preferably less than 120 inches, compared to the initial value. Since this surface forms a running surface, if the coefficient of friction is too large, the running performance of the ribbon will deteriorate, and if it is too large, it will cause ribbon breakage and ink transfer. Q) Printer phase change material of the present invention inherently has an ink layer that does not cause transfer unevenness even after 1° repeated use, and a biaxially oriented polyester film. Chemical resistance, 2 strength, 2 elastic modulus. In addition to heat resistance, high melting point, etc., it is especially effective against ink transfer. 1. Has a difficult running surface. 1. Maintains suitable running properties. Also, if used for impact applications, it can be used repeatedly. However, there is almost no plastic deformation such as unprinted marks due to printing, and it is useful as a transfer image with excellent transfer image quality.Examples The present invention will be further explained with reference to Examples below.The present invention Various physical property values and characteristics were measured and defined as follows: using a three-dimensional roughness meter (SE-30K) manufactured by Fl + Protrusion Distribution Plate Research Institute,
Needle diameter: 2μ River R1: Needle force: 30Q, measurement length: 1cm, sampling pitch: 2βtn + cutoff: 0.95■, vertical magnification: 20,000x, horizontal magnification: 200x, number of scans: 150
The profile of the protrusions on the film surface is imaged in a tertiary optical (stereoscopic) manner under the conditions specified. If the profile is cut on a plane perpendicular to the thickness direction of the film, the plane where the sum N1 of the cross-sectional area of the profile of each protrusion is 70 inches of the area of the measurement area of the film is set at the reference level (0 level), and let y be the number of protrusions that are cut when cutting with a plane parallel to the plane of the reference level and extending a distance X in the height direction of the protrusions. You can draw a protrusion distribution curve by sequentially increasing or decreasing X, reading the number of y at that time, and plotting it on a graph. (A 21 Young's modulus film was cut into 15 cm pieces with a sample size of 10 mm, and stretched at 100 mm between chucks using an Instron type universal tensile testing device at a pulling speed of 10 W/min and a chart speed of 500 m/min. Calculate the Young's modulus from the tangent to the rising part of the obtained load-elongation curve σ). (3) Vacuum-deposit aluminum uniformly on the surface of the film with a thickness of 400 to 500 feet or less, and then Vapor deposition surface (
Apply Cordione to the film surface), paste it, and let it dry. T/ monochromatic light predictive interference reflection microscope (e.g. Carl
1-1 Protrusions in the microscope field of view Q) Corresponding to the protrusion height E, and the number of protrusions with interference fringes produced by observing an arbitrary 100 J of the aluminum vapor-deposited surface at a magnification of 100 x 1-1. Count. (4) Cut out a film sample with a heat shrinkage rate of 20 mm to a width of 300 mm.
Mark the gauge point at the distance and heat at 70°C or 150°C.
Hang it with no load on a circulating hot air blower heated to (5) Ink transfer property: Coat the transfer ink composition on one side of a 10 μm thick film using the Grapure method so that the layer thickness is 18 μm. 10gm width x 20cr in sheet form
Cover a film sample of n length and l K with a diameter of 5crR.
A cotton swab moistened with ethyl alcohol was rubbed on the side of the hind limb sample that had been pressed repeatedly 20 times with the hard rubber treatment p~l with a cotton swab moistened with ethyl alcohol. The degree of dirt (contamination volume) is judged in 5 stages by visual bond value.
Fro. <5-level judgment> ◎...No ink adhesion was observed l-1ht, c○
...The adhesion of the ink is almost not observed.Δ...The adhesion of the ink is officially recognized. Greatly recognized (6)
Drivability Measured like a lower rudder using the device shown in Figure 1.
In Figure 1, 1 is a p-docel, and 2 is a surface roughness of approximately 0.5 μm.
plastic fixing rod (outer diameter 5tIII),
3 is the load (100f). 5.5 represents a sample fixture, and 4 represents a sample (ribbon). In an environment with a temperature of 120°C and a humidity of 60% RH, the surface opposite to the transfer ink coated surface (running surface) of the 118 sample (transfer ink layer coated to a thickness of 18 μtn) was
The coefficient of friction is read by touching the 0 fixed rod at 90° and moving the 10p cell horizontally back and forth over a length of 30 meters at a speed of 30+ m/s. The quality of running performance is determined in three stages by comparing the friction coefficient obtained during 50 consecutive reciprocating runs with the friction coefficient input immediately after the start of measurement. <Three-step judgment> 0... Repeat 50 times (-
During reciprocating running σ) The friction coefficient is less than 120%, and the friction coefficient does not increase much due to repeated running.1. No △...The friction coefficient after 50 repeated reciprocating runs is 1201 or more and less than 150 inches with respect to the initial friction coefficient, and the increase in the friction coefficient is 1. Slightly observed due to running ×: The initial friction coefficient is 71, repeated 50 times 1. The friction coefficient during reciprocating running is 150% or more, and the increase in the friction coefficient is repeated 1. (7) Print clarity Transfer ink layer coated to a thickness of 18 μm (on the opposite side of the ink-coated surface of the transfer ribbon! Electric typewriter-IB
Using M82C, Alpha Hera) (1) r Q
The letter J was repeatedly typed 1-10 times on a regular typewriter paper, and the sharpness of the printed rQJ, the thickness of the print, and the degree of change in shading were visually judged in three stages. <Three-stage judgment> ○...Printing does not become thicker even after 10 repetitions, and there are no shading spots (clear) △...Printing becomes thicker as the number of repetitions increases, The light spots are noticeable, but the clarity is maintained. (8) Film deformation: Hit the same spot 10 times in a row using the method described in (7) above, and visually judge the marks on the film in 3 stages. 3-stage judgment> ○... Almost no scratches are observed △... Some scratches are visible ×... Bruises are clearly visible Example 1-3 Ethylene glycol (hereinafter referred to as EG) After adding 10 parts by weight of calcium carbonate (average particle size 1.5 μm) to the 90-heavy needle (abbreviated as abbreviation), mixing and stirring were performed to obtain a slurry.Next, 100 parts by weight of dimethyl terephthalate and EG70 were added.
Part by weight was transesterified using 0.035 part by weight of manganese acetate tetrahydrate as a catalyst in a conventional manner.1. After this, the calcium carbonate obtained above (0.4% by weight of polymer) was added under stirring. followed by trimethyl phosphate 0.0
Added 3 parts and 0.03 parts by weight of antimony trioxide 1
.. After that, a polycondensation reaction was carried out in a conventional manner under high temperature vacuum to obtain a polyethylene 1/n terephthane pellet having an intrinsic viscosity of 0.620. Furthermore, this polyethylene terephthalate (hereinafter abbreviated as PET) pellet was dried at 170'C for 3 hours and then supplied to an extruder hopper, and the molten polymer (1, σ) was passed through a 1-inch slit die at a melting temperature of 280 to 300°C. The film was molded and extruded on a rotating cooling drum with a surface temperature of 20° C. (2. An unstretched film with a thickness of about 110 μm was obtained. In this way, 1. Preheat the unstretched FI film at 75°C, and then heat it to 90°C from above the 15 fins at low speed and high speed. 1.) Stretched 1.7 times at a surface speed of P-L, followed by rapid cooling and then heating again under the temperature conditions described above. Stretched to 1.45 times 1, then repeated this quenching and heating stretching (total re-stretching ratio 3.6 times)
This longitudinally stretched film was then stretched in the transverse direction at a temperature of 110°C in hot air for 3.
Stretched 9 times] 1 and then heat-treated at 230° C. for 15 seconds to obtain a biaxially oriented film with a thickness of 7.5 μm. Note that the wax stretching speed at this time was 20 m/5+. Next, this -axis oriented film was heated at 120°C.
After heating, the material was subjected to a relaxation treatment between a cooling roll and Q) while applying a tension of 1 jV corresponding to the heat treatment temperature, which corresponds to the shrinkage, and then treated at 70°C for 1 hour. The ratio is about 0.06) A4 A2 A film. The properties of the obtained film are as follows. Ya7g* (M direction) (Ky/yJ> 53
0 Heat shrinkage rate (chi) 70℃・1 hour (vertical direction) 0.0615
(1°C - 30 minutes (lateral direction) 0.20 protrusion height and number of free rises (μm) (pcs/j) 1.5≧h ) 1.0 6
1.0≧h 〉0.75 230.7
5≧h ) 0.5 7 50.5≧
h) 0.25 240 maximum protrusion height μm
) 1.6 The protrusion distribution curve of this biaxially oriented film measured by a three-dimensional grit meter is shown in Figure 2 (curve A)K. On one side of the biaxially oriented polyester film having the above properties, a substance with almost no ink layer pressure compatibility (referred to as an anti-adhesion layer composition in Table 1) having the composition shown in Table IK [7] was applied using the Grapure method. Coat T11, then dry immediately 1. Tep
- Rolled up into a loop. After that, ink consisting of the following composition was applied to a layer thickness of 18 μm.
Coating I7 was done using the Grapure method so that The resulting transfer material was made into a ribbon with a width of 8 fins and had a df value of I~. The results are shown in Table-■. As described above, the performance of the transfer material σ) obtained in Example 1-1 was all at a good level. Container composition: Carbon type carphone black 18 parts by weight Paraffin wax (m, p, ~4oC) Carnauba wax 15 1 Ethylene-acrylic acid copolymer (9o/1o) 15 l Stearic acid 2Il'l] Type Baranidol Akorin Red 15 parts by weight Paraffin wax (m, p, ~4oC) 50 l Carnauba wax 19 1 Ethylene-vinyl acetate copolymer (85/15)] 51 Cross-linked polyethylene beads (Hz diameter o, 5μ)z Rotaib carbon black 20 parts by weight Vaseline
30 parts by weight glycerin
30N solid p gin wax i
o to water
10 N Comparative Examples 1 to 3 Among the biaxially oriented polyester film manufacturing conditions in Examples 1 to 3, the total longitudinal re-stretching ratio was 3.3 times Ll, and the horizontal stretching ratio was 3.8 times. 1. Performed under the same conditions as above except for 1. A biaxially oriented film with a thickness of 7.6 μm was obtained. The physical properties of this biaxially oriented polyester film are as follows. Young's modulus (longitudinal direction) (Kr/aJ) 410
Heat shrinkage rate (chi) 70℃・1 hour (vertical direction) 0.09150
°C・30 minutes (lateral direction) 0.45 Protrusion height and number of protrusions (μm>C pieces/-) 1.5≧h>1.Q
31.0≧h) 0.75 140
.. 75≧h) 0.5 560
.. 5≧h) 0.25 250 Maximum protrusion height μtn) 1.2 The protrusion distribution curve of this biaxially oriented film was similar to the curve in Figure 2 - Human. 1. Coating a transfer ink layer composition and an anti-adhesion layer composition in the same combination as used in Examples 1 to 3 on both sides of a biaxially oriented polyester film having the above-mentioned physical properties. Ta. As shown in Table 1, the performance of the transfer material thus obtained was unsatisfactory in terms of film deformation. -41 to -4゛Comparative Example 4 Calcium carbonate with additive (average particle size 1.5 μm)
Thickness 15 obtained by adding 0.4 weight t% of
A 0 μm unstretched film was prepared under the conditions of Comparative Example 1.
An infrared heater with a surface temperature of 750°C is used at low speed. Stretch 3.0 times in the vertical direction with the surface speed ratio of high-speed P-ru.
, then stretched in the transverse direction at a stretching ratio of 3.7 times in hot air at 95°C 1-1, and then heated again in the longitudinal direction with an infrared heater with a surface temperature of 1000°C and stretched at a stretching ratio of 1.8 times 11;
Thereafter, it was heat-set at 220°C to obtain a biaxially oriented polyester film with a thickness of 7.5 μm. The physical properties of this biaxially oriented polyester film are as follows. Young's modulus ([direction>CKy/xJ>870 Heat shrinkage rate (%) 70℃・1 hour (longitudinal direction) 0.12150
°C / 30 minutes (lateral direction) 1.9 Protrusion height and number of protrusions = 43- (11ml (pcs/11)) 1.5≧h ) 1.0
41.0≧h)0.75 27
0.75≧h)0.5 900.
5≧h ) 0.2 5 2 7
0 eel large protrusion height μm) 1.4 The protrusion distribution curve of this biaxially oriented polyester film is shown in Figure-
It was similar to curve A of No. 2. A composition having the same composition as that used in Example 1 was coated on one side of a biaxially oriented polyester film having the above physical properties, and the resulting transfer material was made into an 8 m wide ribbon and evaluated. In this way 1. The various performances of the transfer material obtained in 1. 1. When printing, the printing pressure caused the film to tear in the vertical direction. Unfortunately, clear printing was not possible. Comparative Example 5 Instead of calcium carbonate (average particle size 1.5 μm) = 44
- Add kaolin (average particle size 0.5 μm) to polymer 0.5 μm.
Film formation was carried out in the same manner as in Example 2 except that 5% by weight was added (7% by weight).
.. A biaxially oriented film of 5 μm was obtained. The properties of the obtained film are as follows: 1. Young's modulus (longitudinal direction) (Kr/mu) 540 Heat shrinkage rate (chi) 70°C/1 hour (*direction) 0.0615
0℃・30 minutes (lateral direction') 0.21 Protrusion height and number of protrusions (μm) (pcs/-) 1.5≧h) 1.0 ' 01.0≧h
) 0.75 00.75≧h ) 0.5
70.5≧h) 0°25 320 Maximum protrusion height 0.8 The protrusion distribution curve of this biaxially oriented film is shown in curve B in Figure 2. Example-2 for biaxially oriented polyester film with the above characteristics
1. Coating the transfer ink layer composition and anti-adhesion layer composition respectively. Ta. The various performances of the transfer material obtained at L° C. were as shown in the table, and the ink transferability was insufficient (and the runability was unsatisfactory).

【図面の簡単な説明】[Brief explanation of drawings]

図−1は転写リボンの走行性の測定装置の模式図である
。 図−2は三次元粗さ針で求めたフィルム表面の突起高さ
くY:μm )と突起の数(X:ケ/、j)の関係を示
す図である。 圓−f
FIG. 1 is a schematic diagram of a device for measuring the runnability of a transfer ribbon. FIG. 2 is a diagram showing the relationship between the height of protrusions on the film surface (Y: μm) determined using a three-dimensional roughness needle and the number of protrusions (X: ke/, j). En-f

Claims (1)

【特許請求の範囲】 1、厚さ1〜25μmの二軸配向ポリエステルフィルム
の片面に厚さ3〜35μmの転写インク層を設けたプリ
ンター用転写材において、該二軸配向ポリエステルフィ
ルムが下記(イ)〜(ハ)、 (イ)縦方向のヤング率が450〜800kg/mm^
2である、 (ロ)縦方向及び横方向の150℃での熱収縮率が7%
以下である、 (ハ)フィルム表面の三次元粗さ計で測定した突起数(
Y:ケ/mm^2)と突起高さ(X:μm)との関係を
表わす突起分布曲線がlog_1_0Y>1.3の領域
において下記式(1) log_1_0Y=−1.8X+3.9・・・・・・・
・・(1) で表わされる線と交差せず、更に該突起分布の最大値及
び該最大値を越えた部分の曲線が下記式(2) log_1_0Y≧−3.6X+2.8・・・・・・・
・・(2) を満足する範囲にある を満足するものであり、更に該転写インク層を設けた面
と反対の表面に該転写インク層となじみが殆んどない物
質を塗設したことを特徴とするプリンター用転写材。 2、二軸配向ポリエステルフィルム表面の多重干渉反射
式顕微鏡(Tl単色光)で測定した突起数(ケ/mm^
2)と突起高さ(h:μm)が 1.5≧h>1.0・・・・・・・・・10ケ/mm^
2以下 1.0≧h>0.75・・・・・・・・・1〜30ケ/
mm^2 0.75≧h>0.5・・・・・・・・・15〜120
ケ/mm^2 0.5≧h>0.25・・・・・・・・・80ケ/mm
^2以上 を満足することを特徴とする特許請求の範囲第1項記載
のプリンター用転写材。 3、ポリエステルフィルムの転写インク層となじみが殆
んどない物質を塗設した面は摩擦係数が0.5以下であ
り、かつ該摩擦係数の連続50回往復走行テスト後の値
が初期値に比し150%未満であることを特徴とする特
許請求の範囲第1項又は第2項記載のプリンター用転写
材。
[Claims] 1. In a transfer material for a printer in which a transfer ink layer with a thickness of 3 to 35 μm is provided on one side of a biaxially oriented polyester film with a thickness of 1 to 25 μm, the biaxially oriented polyester film is ) ~ (c), (a) Young's modulus in the longitudinal direction is 450 ~ 800 kg/mm^
2, (b) The heat shrinkage rate at 150°C in the vertical and horizontal directions is 7%.
(c) Number of protrusions measured with a three-dimensional roughness meter on the film surface (
In the area where the protrusion distribution curve representing the relationship between Y: ke/mm^2) and protrusion height (X: μm) is log_1_0Y>1.3, the following formula (1) log_1_0Y=-1.8X+3.9...・・・・・・
...(1) The maximum value of the protrusion distribution and the curve of the portion exceeding the maximum value that does not intersect the line represented by (1) are expressed by the following formula (2) log_1_0Y≧-3.6X+2.8...・・・
... (2) is satisfied, and furthermore, a material that is hardly compatible with the transfer ink layer is coated on the surface opposite to the surface on which the transfer ink layer is provided. Characteristic transfer material for printers. 2. Number of protrusions (ke/mm^) measured with a multiple interference reflection microscope (Tl monochromatic light) on the surface of a biaxially oriented polyester film
2) and protrusion height (h: μm) is 1.5≧h>1.0...10 pieces/mm^
2 or less 1.0≧h>0.75・・・・・・1~30 pieces/
mm^2 0.75≧h>0.5・・・・・・15~120
Ke/mm^2 0.5≧h>0.25・・・・・・80ke/mm
The transfer material for printers according to claim 1, which satisfies ^2 or more. 3. The surface coated with a material that is hardly compatible with the transfer ink layer of the polyester film has a coefficient of friction of 0.5 or less, and the value of the coefficient of friction after 50 consecutive reciprocating tests is the initial value. 3. The transfer material for a printer according to claim 1 or 2, wherein the transfer material is less than 150%.
JP61182772A 1986-08-05 1986-08-05 Transfer material for printer Granted JPS6339374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61182772A JPS6339374A (en) 1986-08-05 1986-08-05 Transfer material for printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61182772A JPS6339374A (en) 1986-08-05 1986-08-05 Transfer material for printer

Publications (2)

Publication Number Publication Date
JPS6339374A true JPS6339374A (en) 1988-02-19
JPH0453716B2 JPH0453716B2 (en) 1992-08-27

Family

ID=16124149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61182772A Granted JPS6339374A (en) 1986-08-05 1986-08-05 Transfer material for printer

Country Status (1)

Country Link
JP (1) JPS6339374A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029687A (en) * 1988-06-28 1990-01-12 Diafoil Co Ltd Polyester film for thermal transfer
JPH0225396A (en) * 1988-07-14 1990-01-26 Diafoil Co Ltd Film for thermal transfer
JPH0238089A (en) * 1988-07-29 1990-02-07 Oji Paper Co Ltd Base sheet for thermal transfer image-receiving sheet
JPH0247094A (en) * 1988-08-10 1990-02-16 Diafoil Co Ltd Transfer material for printer
JPH0248994A (en) * 1988-08-11 1990-02-19 Diafoil Co Ltd Thermal transfer material for printer
JPH02219695A (en) * 1989-02-21 1990-09-03 Diafoil Co Ltd Polyester film for thermosensitive transfer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025786A (en) * 1983-07-22 1985-02-08 Oji Paper Co Ltd Heat transfer material
JPS60104395A (en) * 1983-11-11 1985-06-08 Konishiroku Photo Ind Co Ltd Thermal transfer recording medium
JPS60104392A (en) * 1983-11-10 1985-06-08 Konishiroku Photo Ind Co Ltd Thermal transfer recording medium
JPS60104393A (en) * 1983-11-11 1985-06-08 Konishiroku Photo Ind Co Ltd Thermal transfer recording medium
JPS60174694A (en) * 1984-02-20 1985-09-07 Toray Ind Inc Thermal transfer material
JPS60192628A (en) * 1984-03-14 1985-10-01 ダイアホイルヘキスト株式会社 Biaxial oriented polyester film
EP0158344A2 (en) * 1984-04-13 1985-10-16 Toray Industries, Inc. Ink transfer material for printer
JPS6133767A (en) * 1984-07-27 1986-02-17 Hitachi Ltd Circuit for discriminating oscillating direction of arc
JPS6188181A (en) * 1984-10-03 1986-05-06 Seiko Epson Corp Electronic time piece

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025786A (en) * 1983-07-22 1985-02-08 Oji Paper Co Ltd Heat transfer material
JPS60104392A (en) * 1983-11-10 1985-06-08 Konishiroku Photo Ind Co Ltd Thermal transfer recording medium
JPS60104395A (en) * 1983-11-11 1985-06-08 Konishiroku Photo Ind Co Ltd Thermal transfer recording medium
JPS60104393A (en) * 1983-11-11 1985-06-08 Konishiroku Photo Ind Co Ltd Thermal transfer recording medium
JPS60174694A (en) * 1984-02-20 1985-09-07 Toray Ind Inc Thermal transfer material
JPS60192628A (en) * 1984-03-14 1985-10-01 ダイアホイルヘキスト株式会社 Biaxial oriented polyester film
EP0158344A2 (en) * 1984-04-13 1985-10-16 Toray Industries, Inc. Ink transfer material for printer
JPS60217194A (en) * 1984-04-13 1985-10-30 Toray Ind Inc Transfer material for printer
JPS6133767A (en) * 1984-07-27 1986-02-17 Hitachi Ltd Circuit for discriminating oscillating direction of arc
JPS6188181A (en) * 1984-10-03 1986-05-06 Seiko Epson Corp Electronic time piece

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029687A (en) * 1988-06-28 1990-01-12 Diafoil Co Ltd Polyester film for thermal transfer
JPH0225396A (en) * 1988-07-14 1990-01-26 Diafoil Co Ltd Film for thermal transfer
JPH0238089A (en) * 1988-07-29 1990-02-07 Oji Paper Co Ltd Base sheet for thermal transfer image-receiving sheet
JPH0560799B2 (en) * 1988-07-29 1993-09-03 Oji Paper Co
JPH0247094A (en) * 1988-08-10 1990-02-16 Diafoil Co Ltd Transfer material for printer
JPH0248994A (en) * 1988-08-11 1990-02-19 Diafoil Co Ltd Thermal transfer material for printer
JPH02219695A (en) * 1989-02-21 1990-09-03 Diafoil Co Ltd Polyester film for thermosensitive transfer

Also Published As

Publication number Publication date
JPH0453716B2 (en) 1992-08-27

Similar Documents

Publication Publication Date Title
KR100636608B1 (en) Biaxially oriented polyester film for ribbon for use in thermal transfer recording, and laminated film comprising the same and method for manufacture thereof
WO2006132244A1 (en) Process for production of biaxially oriented polyester film
JPS62193889A (en) Transfer ribbon for printer
JPS6339374A (en) Transfer material for printer
US6537657B1 (en) Biaxially oriented polyester film for thermal transfer ribbon
EP1142727B1 (en) Laminated base film for thermal transfer recording medium
JP3443338B2 (en) Biaxially oriented polyethylene-2,6-naphthalate film
JPH08164558A (en) Polyester film
JPH0678021B2 (en) Transfer material for printer
JPH091947A (en) Thermal transfer biaxially oriented polyester film
JPS62233227A (en) Biaxially oriented polyester film
JPH0448358B2 (en)
JP2000108200A (en) Biaxially oriented polyester film
JPS62244691A (en) Transfer material for printer
JP4660906B2 (en) Biaxially stretched polyester film for molding
JPH0247093A (en) Transfer material for printer
JP2733974B2 (en) Thermal transfer material for printer
JP2990695B2 (en) Transfer material for printer
JP2001089650A (en) Film for heat-sensitive transfer ribbon
JPH06210799A (en) Transfer foil
JPH08230340A (en) Film for thermal transfer ribbon
JP2002036736A (en) Ribbon for thermal transfer
JP2002283450A (en) Biaxially oriented polyester film
JP2000103874A (en) Biaxially oriented polyester film
JPH02252583A (en) Polyester film for thermal transfer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term