JPS6338847A - Personification dwelling - Google Patents

Personification dwelling

Info

Publication number
JPS6338847A
JPS6338847A JP61181105A JP18110586A JPS6338847A JP S6338847 A JPS6338847 A JP S6338847A JP 61181105 A JP61181105 A JP 61181105A JP 18110586 A JP18110586 A JP 18110586A JP S6338847 A JPS6338847 A JP S6338847A
Authority
JP
Japan
Prior art keywords
air
duct
ventilation
roof
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61181105A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Oshita
大下 一義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61181105A priority Critical patent/JPS6338847A/en
Publication of JPS6338847A publication Critical patent/JPS6338847A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Abstract

PURPOSE:To eliminate the problem in aeration, dehumidifying, cooling, heating, snow melting and the damped condition in rainy season by a method wherein an under-floor space and a roof truss space of a building of which outer walls and roof are thermally insulated and under-floor part is wet-proofed are connected with wall clearances and partition clearances, upper aeration ports and lower aeration ports are arranged in an interior parts, and they are controlled by a controller. CONSTITUTION:In summer season, air is blown from a slit pipe 13 toward a ground under a floor by a ventilation fan 26 placed in an under-floor space 17, mixed with cold air in under-floor part, rises up through wall clearances 18 and partition clearances 19 and then discharges hot air in a roof truss space 16 to the outer air. An interior part 24 receives cold air through inner walls to release heat into the wall clearances 18 and the partition clearances 19. In the interior part 24, air at the under-floor part flows from lower aeration ports 30 and pushes out hot air from upper aeration ports 29. At night, a wall temperature switch and a roof temperature switch each shows a value less than 25 deg.C, air is forcedly fed from ducts 58-60 to each air layer under operation of ventilation fans 61-63, dumps heat from the roof and wall surfaces and then recovers cold air into a building.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は住宅等の室内および構造体内の熱交換冷気を
行うと共に除湿、e気冷房、放射冷房。
[Detailed Description of the Invention] [Industrial Field of Application] This invention performs heat exchange cold air inside the rooms and structures of houses, etc., and also performs dehumidification, e-air cooling, and radiant cooling.

集熱、@雪をし我が国特有の梅雨のしめしめを解消する
ことを目的とするものである。
The purpose of this project is to collect heat, catch snow, and relieve the burden of the rainy season, which is unique to our country.

[従来の技術] 今、省エネルギーあるいは快適性を求めて建でられる建
物は断熱化され、さらに気密化されてきている。そのな
かで冷暖房を行うのであるが、冷暖房いずれの場合も室
内空気よりも高温あるいは低温の空気を供給して環境を
コントロールしている。
[Prior Art] Nowadays, buildings built for energy saving or comfort are becoming more and more insulated and airtight. Air conditioning and heating are performed within this environment, and in both cases, the environment is controlled by supplying air that is either hotter or colder than indoor air.

この為、例えば冬の場合ストーブによって高温を供給す
れば高温空気は上部へと逃げてしまい床の−Lに住む我
々には窓等で冷やされた冷気か冷たさを運んてくるので
ある。その為必要以上のエネルギーを出して我//の適
温を作ることになり塗トるとむっとくる室温となり、さ
らに開放型のストーブであれば我々に必要な酸素をも消
費してしまい我々は行書物質を含む空気を呼吸すること
になるのである。
For this reason, for example, in winter, if high temperatures are supplied by a stove, the high-temperature air escapes to the upper part, and those of us who live on floor -L are brought in cold air cooled by windows, etc. As a result, we use more energy than necessary to create the right temperature for our body, and when we put it on, the room temperature becomes stuffy.Furthermore, if we use an open stove, we also consume the oxygen we need, which makes us feel uncomfortable. You will be breathing air that contains substances.

又、電気暖房であっても気密の良い建物であればやはり
酸素不足は起こるのである。
Furthermore, even with electric heating, oxygen deficiency can still occur if the building is airtight.

建物全体が気密化されると、室内の空気と外の空気がう
まく流通しなくなって、住む人がかなり意識的に窓を開
閉して換気を行わないと淀んだ空気のままになるのであ
る。これは室内の気密か関係することで小屋史換気口、
床下換気口か開放されている場合は室内の気密は保てて
も建物全体の気密とはなっていない、この為に気密と断
熱か一体化されていないのである。
When an entire building is made airtight, the air inside the room and the air outside don't circulate properly, and unless the residents consciously open and close the windows to ventilate the building, the air remains stagnant. This is related to the airtightness of the room, so the ventilation vent
If the underfloor ventilation openings are open, the interior may be kept airtight, but the entire building will not be airtight, which is why airtightness and insulation are not integrated.

つまり、断熱された壁と室内の間に空洞がありその空洞
を床下換気口からの冷気が立上り小屋裏換気口から抜け
る仕組となっているのである。
In other words, there is a cavity between the insulated wall and the room, through which cold air from the underfloor ventilation rises up and escapes through the attic ventilation.

このように室内は暖房をしても冷やされる気密室となり
、より多くの暖房手段を必要とすることとなり、石油ス
トーブ・ガスストーブ・石油ファンヒーター等々の出番
となり気密室の中で酸素を消費しやがて室内の酸欠を生
じ人が死に至る小牧か発生するのである。
In this way, the room becomes an airtight room that remains cool even when heated, and more means of heating are required, and kerosene stoves, gas stoves, oil fan heaters, etc. come into play, and they consume oxygen inside the airtight room. Eventually, this will lead to a lack of oxygen in the room and cause people to die.

「現代用語の基礎知識1という本の住生活用語のなかに
次の言葉が載せられている。
``The following words are included in the book ``Basic knowledge of modern terminology 1'', which lists terms for daily life.

r酸欠住宅Jガス器具か不良たったり、建物の給排気が
不七分だフたつして炭酸ガスや一酸化炭素が室内に充満
し、そのために死亡!1■故をおこす例か多くなってき
た。このような酸素不足の住宅を酸欠住宅という。’1
1 攻を起こさなくするには建物の設計段階で給排気を
よく考慮すると同時に、ガス測具そのものも不良燃焼を
起こさない工夫が必要で、両方が悪い場合は住む人が不
幸な結果となるので、慎重な配慮が必要である。とL!
Fかれている、又、同11)によれば「酸欠空気」地下
の王ill現場などで玉′l¥用の穴から酸素不足の空
気が突然大量に吹き出し作′X負か窒息死するIS攻か
東京、大阪などの大都市で続発、さらにビルの地下や古
井戸などでも同様の現象のあることが消防庁の凋ぺでわ
かり、死の空気として社会問題化した。
rOxygen-deficient housesJ Gas appliances are defective, or the building's air supply and exhaust are not working properly, causing carbon dioxide gas and carbon monoxide to fill the room, resulting in death! 1) There are more and more cases of accidents happening. This kind of oxygen-deficient housing is called an oxygen-deficient housing. '1
1. In order to prevent this from occurring, it is necessary to carefully consider the air supply and exhaust at the building design stage, and at the same time, it is necessary to devise measures to prevent poor combustion from occurring in the gas measuring instruments themselves. If both are bad, the residents will be unhappy. , requires careful consideration. And L!
Also, according to 11), a large amount of oxygen-deficient air suddenly blows out from a hole in an underground building site, etc., resulting in death by suffocation. IS attacks have occurred one after another in major cities such as Tokyo and Osaka, and the Fire and Disaster Management Agency has discovered that similar phenomena occur in the basements of buildings and in old wells, and the deadly atmosphere has become a social issue.

酸欠空気が噴出する原因は、次のように考えられている
。鉄分の多い地下の砂れき層から地下水かくみLげられ
て、空気が砂れき層をとおりやずくなり、空気に触れた
鉄分が急速に酸化、空気が酸素を食われて酸欠状態とな
り、穴の中などの表面に出てくる。斤通、酸素は大気中
に約21%含まれているか、空気中の酸素濃度が16〜
12%に減ると脈拍や呼吸数がふえ大脳機能が低下する
。10〜6%になると短時間で意識不明、6%以下では
死亡する。と書かれている。
The cause of oxygen-deficient air blowing out is thought to be as follows. Groundwater is excreted from the gravel layer underground, which has a high iron content, and air passes through the gravel layer, and the iron that comes in contact with the air is rapidly oxidized, and the air is deprived of oxygen, causing an oxygen deficiency. Appears on the inside and other surfaces. According to experts, the atmosphere contains about 21% oxygen, or the oxygen concentration in the air is 16~
When it decreases to 12%, the pulse and breathing rate increase and cerebral function declines. If it reaches 10-6%, you will become unconscious for a short time, and if it falls below 6%, you will die. it is written like this.

1  時々、新聞テレビで酸欠防止のため窓を開けて空
気を入れ換えましょうと報じている。窓を開けて空気を
入れ換えなけわば生活出来ない家に我々はいつも住んで
いるわけである。
1. Newspapers and TV sometimes report that people should open their windows to exchange air to prevent oxygen deficiency. We always live in houses where we cannot live without opening the windows to exchange air.

あって当然の空気は屋外にしかなく窓を開けて室内に取
り入れなければならない建物が毎年100万戸以上も建
設されているのである。
Every year, more than 1 million buildings are constructed where the only natural air available is outdoors, and the windows must be opened to bring it indoors.

時々窓を開けなければならない程、少ない換気寸では死
に至る1)「の不健康をつくり出すことと精神へのHg
をも無視することはできまい。
If the ventilation level is so low that you have to open the window from time to time, it can lead to death.
cannot be ignored either.

酸欠住宅の増加と家庭内暴力、校内暴力、社会の荒廃現
象が時を同じくしているのは明らかである。
It is clear that the increase in oxygen-deficient housing coincides with the phenomena of domestic violence, school violence, and social deterioration.

例えば6畳の部屋に4人の人が居るとすれば、6畳の部
屋の空気量は約23rn2ありそのうちの酸素量は約2
1%で4.82nr’。
For example, if there are 4 people in a 6 tatami room, the amount of air in the 6 tatami room is about 23rn2, of which the amount of oxygen is about 2.
4.82nr' at 1%.

人間の安静時の呼吸は1時間に大体4802の空気を必
要としそのうち酸素消費量は約17ILとなりこれを4
人分にすれば68で酸素比率は20.66%となり10
時間そのままでやつと18%の安全限界まで低下する程
度であるが、ストーブやガスコンロ、瞬間湯沸器、石油
ファンヒーター等の燃焼器具を使用すれば、自然換気回
数を0.3回/hとした場合、2000K cal /
 hの石油ストーブを燃やしつずけるということは、総
空気量で29.9m”が1時間にあったことになり、酸
素は6.26rn’あったことになる。しかし、燃焼す
るために1.961の酸素を1時間に消費するため、1
時間後には酸素濃度が18.7%(4,3rrr+)に
までドがってしまう、それにともなって−酸化炭素の発
生量も増大し、220ppmにまで達してしまうのであ
る。
Human breathing at rest requires approximately 4,802 liters of air per hour, of which oxygen consumption is approximately 17 IL, which is 4
The human equivalent is 68, and the oxygen ratio is 20.66%, which is 10.
However, if you use combustion appliances such as stoves, gas stoves, instant water heaters, and kerosene fan heaters, the natural ventilation frequency can be reduced to 0.3 times/h. In that case, 2000K cal /
If the kerosene stove of h was kept burning, the total amount of air would be 29.9 m'' in one hour, and the oxygen would be 6.26 rn'. However, in order to burn, 1 .961 of oxygen is consumed per hour, so 1
After some time, the oxygen concentration drops to 18.7% (4.3rrr+), and the amount of -carbon oxide generated also increases, reaching 220 ppm.

酸素でいえば安全限界の18%は80分後に、−酸化炭
素は45分後に安全限界のlooppmを超してしまう
のである。
For oxygen, the safe limit of 18% is reached after 80 minutes, and for carbon oxide, the safe limit of loopppm is exceeded after 45 minutes.

省エネルギーのために換気量を抑制することは人の健康
から言っても害を大きくすることが以上のことから言え
るのである。
From the above, it can be said that suppressing the amount of ventilation in order to save energy can be harmful to human health.

床下換気口、小屋裏換気口を冬は閉じて気密住宅とした
場合、湿度の増加によって、構成材である木材を腐食さ
せ耐久性の問題が発生する、これに対処するためには熱
交換々気を行う以外に方法はないのである。夏において
は小屋基、床下の両換気口が開放されていれば、風ある
いは温度差によって床下空間の冷気が床下換気口から流
れ出し建物の温度を上昇させることになる、したがって
床下空間の冷気か流出せず外気を導入するシステムが必
要となるのである。
If you close the underfloor ventilation and attic ventilation in winter to create an airtight house, the increased humidity will corrode the wood that makes up the structure, causing durability issues. There is no other way than to practice qi. In summer, if both the roof and underfloor ventilation openings are open, the cold air in the underfloor space will flow out from the underfloor ventilation openings due to wind or temperature differences, raising the temperature of the building. Therefore, the cold air in the underfloor space will flow out. Therefore, a system that introduces outside air is required.

人が住みやすい住宅とはどんなものであろうか、人が生
きて行くために最低必要な条件かを考えるとき住宅問題
の内では呼吸と循環である。
When we think about what kind of housing is comfortable for people to live in, and what are the minimum conditions necessary for people to live, we consider breathing and circulation when it comes to housing issues.

つまり、人は酸素を呼吸し心臓によって循環させ隅々ま
で酸素と栄養を運搬する機能を持っている、このような
人が住むためには人に近い機能を有する住宅が必要とな
る、それには、断熱されたシェルタ−の内に壁空洞を形
成し呼吸器に当たる肺の機能と循環力を与える心臓を持
った住宅を作る必要がある。このような住宅のことを生
態化イ↓宅あるいは住宅の生態化と呼んでいる。
In other words, humans have the ability to breathe oxygen, circulate it through the heart, and transport oxygen and nutrients to every corner.In order for these people to live, they need a house that has functions similar to those of humans. It is necessary to create a house with a wall cavity inside an insulated shelter, and a heart that provides the lung function and circulatory force for the respiratory system. This type of housing is called an ecological house or an ecological house.

医学用語を用いる場合メディカルハウスとかメディカル
住宅と呼んでいる。
When using medical terminology, it is called a medical house or medical residence.

住宅全体に熱交換された乾燥空気を分配することで酸素
と温度、湿度をバランス良く配分していかにも生きもの
の様な働きをするため以上のように様々な言葉で表現さ
れている。
By distributing the heat-exchanged dry air throughout the house, it distributes oxygen, temperature, and humidity in a well-balanced manner, acting like a living thing, which is why it is expressed in various words as mentioned above.

断熱された建物では外界から熱を取ることも捨てること
もできず、したがって積雪地において融雪もできない又
、日本特有の梅雨の時期に温度は高く湿度も高いと言う
不快感も通常の冷房あるいはドライシステムを用いても
外気温が十分に七っていないため室内の気温が低下し相
対湿度が上昇して底冷えした状態になるのである。
Insulated buildings cannot take in or throw away heat from the outside world, and therefore cannot melt snow in snowy areas. Also, the discomfort of high temperature and high humidity during the rainy season, which is unique to Japan, can be avoided by using regular air conditioning or dry air. Even when the system is used, the outside temperature is not sufficiently lowered, so the indoor temperature drops, the relative humidity rises, and the room becomes chilly.

[発明が解決しようとする問題点] そこで本発明は前記従来技術の欠点を除くため換気、除
湿、冷暖房、融雪、および梅雨のしめじめの解消を目的
とするものである。
[Problems to be Solved by the Invention] Therefore, the present invention aims at solving the problems of ventilation, dehumidification, air conditioning, snow melting, and dampness during the rainy season in order to eliminate the drawbacks of the prior art.

[問題を解決するための手段] 外壁・屋根が断熱・床下が防湿された建物において、小
屋裏換気口・床下換気口共に開閉式とし床下換気口には
床下空間(17)側に逆止弁(93)が上部から懸垂し
ていて床下換気口(14)の1箇所からダクト(11)
気流制御装置(1)の通気口(2)に接続されダクト(
11)の中間に換気扇(26)がある、気流制御装置(
1)の内部には通気口(7)に蝶板(8)で懸垂する逆
止フF(6)のある傾斜した仕切り板(9)があり側面
には通気口(:I) (4) (5)が設けられ通気口
(4) (5)には多分枝管(31)があり、さらにス
リット(28)のあるスリットバイブ(13)が分枝さ
れ通気口(3) にはダクト(10)が接続され小屋史
学間(16)へと延び床下空間(17)にはダクI−(
71)が分枝し中間に換気扇(61)か設けられ多分枝
管(57)に接続されざらにダクト(58)か空気層(
70)のF部の適正ブP (66)に接続され、この空
気層(70)は断熱外壁(20)と外壁(90)の間に
形成され−F部のみ小屋裏空間(16)に開放している
、ダクト(10)は小屋裏空間(16)でダクト(53
) (54)に分枝されダクト(53)には中間に換気
扇(62)i部に多分枝管(55)さらにダクト(59
)が空気層(68)の下部の逆止フF(64)に接続さ
れ空気層(68)は断熱屋根(22)と屋根(99)の
間に形成され上部のみ小屋裏空間(16)に開放されて
いる、ダクト(54)は中間に換気扇(63)端部の多
分枝管(56)からダクト(60)か空気層(69)の
下部にある逆止弁(65)に接続されこの空気層(69
)は断熱屋根(23)と屋根(100)の間に形成され
上部のみ小屋裏空間(16)に開放している、ダクト(
54)からはダクト(89)が分枝し中間に逆止弁(6
7)のある逆11ユ弁箱体(72)と換気扇(25)が
あり端部にスリット(27)のあるスリットバイブ(1
2)が小屋裏空間(16)の上部で水平に延びていて建
物は床下空間(17)と小屋裏空間(16)が壁空洞(
18)間仕切り至洞(19)で連通され室内(24)ニ
はF部通気[’+ (29) ”l’一部通気0 (3
0)がありコント・ローラーによって制御される擬人化
住宅。
[Means to solve the problem] In a building where the outer walls and roof are insulated and the underfloor is moisture-proof, both the attic ventilation opening and the underfloor ventilation are openable, and the underfloor ventilation opening is equipped with a check valve on the underfloor space (17) side. (93) is suspended from the top, and a duct (11) is connected from one place of the underfloor ventilation opening (14).
The duct (
11) with a ventilation fan (26) in between.
Inside 1) there is a slanted partition plate (9) with a non-return flap F (6) suspended by a butterfly plate (8) from the vent (7), and on the side there is a vent (:I) (4) (5) is provided, and the vent (4) (5) has a multi-branch pipe (31), and further a slit vibe (13) with a slit (28) is branched, and the vent (3) has a duct ( 10) is connected and extends to the hut history room (16), and the underfloor space (17) is connected to the duct I-(
71) is branched, a ventilation fan (61) is provided in the middle, and connected to a multi-branch pipe (57), which is roughly connected to a duct (58) or an air layer (
This air layer (70) is formed between the insulating outer wall (20) and the outer wall (90), and only the F section is open to the attic space (16). The duct (10) is connected to the duct (53) in the attic space (16).
) (54), the duct (53) has a ventilation fan (62) in the middle, a multi-branch pipe (55) and a duct (59) in the i section.
) is connected to the backstop F (64) at the bottom of the air layer (68), and the air layer (68) is formed between the insulation roof (22) and the roof (99), and only the upper part is connected to the attic space (16). When open, the duct (54) is intermediately connected from the multi-branch pipe (56) at the end of the ventilation fan (63) to the check valve (65) at the bottom of the duct (60) or the air layer (69). Air layer (69
) is a duct (
A duct (89) branches from 54) and a check valve (6
A slit vibe (1) with a reverse 11-valve box (72) and a ventilation fan (25) with a slit (27) at the end.
2) extends horizontally above the attic space (16), and the building has a wall cavity (
18) The room is connected through the partition (19) and the room (24) is connected to the F part ventilation ['+ (29) "l" Partial ventilation 0 (3
0) is an anthropomorphic house controlled by a controller.

[作用] 外部分のパーツの働きを説明する。[Effect] Explain the functions of external parts.

小屋′、A換気口(15)の開閉の仕組を第53〜58
図、第61図によって説明する。
The mechanism for opening and closing the A ventilation opening (15) in the hut' is 53rd to 58th.
This will be explained with reference to FIG.

スライドするシャッター(94) (95)が減速モー
ター (97)によって支点(96) (97)の移動
外スライドして開閉を行う、当然のことであるが電気的
にコントロールされ通常のスイッチ操作で行える。
The sliding shutters (94) and (95) are opened and closed by sliding the fulcrums (96 and 97) out of the movement of the fulcrums (96 and 97) by the deceleration motor (97).Of course, this is electrically controlled and can be done by normal switch operation. .

床下換気口を第47〜52図で説明する。The underfloor ventilation opening will be explained with reference to FIGS. 47 to 52.

スライドするシャッター(9I)を把手(92)で移動
させて開閉を行う。逆止弁(93)は床下の空気を外に
漏らさない働きをするものである。
The sliding shutter (9I) is moved by the handle (92) to open and close. The check valve (93) functions to prevent the air under the floor from leaking outside.

気流制御装置(1)は第38〜46図で説明する。The airflow control device (1) will be explained with reference to FIGS. 38-46.

蝶板(8)に懸重する逆止弁(6)は夏の換気冷房を行
う時(第42図に示す)風圧で逆止弁(6)か通気口(
7)を閉鎖して空気は第45図に示すように通気口(4
) (5)へと圧送され通気口(3)には流れない小屋
裏空間(16)にある換気扇のどれかと床下空間(I7
)の換気扇(61)が働いた場合は通気口(4) (5
)から吸引して通気口(7)を通りダクト(!0)から
小屋裏空間(16)へと空気は移動し逆止弁(6)は懸
垂したまま働かないのである。逆止弁箱体(72)の内
にある逆止弁(67)は一方向のみに空気を流すもので
ある。逆止弁(64)〜(66)は一方向にのみ空気を
流すものである。
The check valve (6) suspended on the butterfly plate (8) closes either the check valve (6) or the vent (
7) and the air flows through the vent (4) as shown in Figure 45.
) (5) and does not flow to the vent (3), any of the ventilation fans in the attic space (16) and the underfloor space (I7
) If the ventilation fan (61) of the ventilator (4) (5
), air moves through the vent (7) from the duct (!0) to the attic space (16), and the check valve (6) remains suspended and does not work. The check valve (67) inside the check valve box (72) allows air to flow in only one direction. The check valves (64) to (66) allow air to flow in only one direction.

[実施例] 以下、図面に基ずいて本発明の実施例を特許請求の範囲
第1項から説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be described from claim 1 based on the drawings.

夏の場合を第1図と第2図によって説明する。The summer case will be explained with reference to FIGS. 1 and 2.

床下換気口(14)と小屋裏換気口(15)は開放され
ている。そして床下空間(17)にある換気扇(26)
を回せばその圧力によって気流制御装置(1)内の逆+
h弁(6)が通気口(7)に張り付き空気は多分枝管(
31)へと流れさらにスリット(28)のあるスリット
バイブ(13)へと流れスリット(28)から床下地面
へと吹き出さね床下空間(17)の圧力か高まり床下換
気口(14)の逆止弁(93)が閉じて空気は床下地面
付近の冷気と混合され壁空洞(18)間仕切り空洞(1
9)を立上り小屋裏空間(16)へと流れ小屋裏空間(
16)内の熱気を小屋裏換気口(15)から外部に放出
するのである。室内(24)は内壁を介して冷たさを受
取り熱を壁空洞(18)間仕切り空洞(I9)へと出す
のである。又、室内(24)では床下の空気がF部通気
「】(30)から流入し上部通気口(29)から熱気を
小屋裏空間(16)へと押し出すく第6図の回路図)の
である。
The underfloor ventilation opening (14) and the attic ventilation opening (15) are open. And the ventilation fan (26) in the underfloor space (17)
By turning , the pressure inside the airflow control device (1)
The h-valve (6) sticks to the vent (7) and the air flows through the multi-branch pipe (
31) and then flows to the slit vibe (13) with the slit (28) and blows out from the slit (28) to the subfloor surface.The pressure in the underfloor space (17) increases and the underfloor ventilation port (14) is checked. The valve (93) closes and the air is mixed with the cold air near the subfloor surface and flows into the wall cavity (18) and the partition cavity (1).
9) rises and flows into the attic space (16).
16) The hot air inside is released to the outside through the attic ventilation opening (15). The room (24) receives cold through its inner walls and releases heat to the wall cavity (18) and partition cavity (I9). In addition, in the room (24), air under the floor flows in from the F section vent (30) and pushes hot air out from the upper vent (29) into the attic space (16) (see circuit diagram in Figure 6). .

(第5図の回路図を参照) 夜になると壁温度スイッチ(82)屋根温度スイッチ(
83)が25℃以下となりリレースイッチ(80) (
81)のマグネットが解除されて切り替えが行なわれ換
気扇(61)〜(63)が回り逆IL弁(64)〜(6
6)が開き床下空間(17)の空気をスリットバイブ(
+a1分技管(31)気流i制御装置(1)ノ通気口(
7)ダクト(10)がらそれぞれの換気扇を通り多分枝
管(55)〜(57)へと流れダクト(58)〜(60
)から各空気層に圧送し冷えた屋根、壁面から熱を捨て
冷気を建物内に回収する放射冷房を行なうのである。夜
間においては放射冷却によって屋根面は外気温マイナス
3℃に下がり実験によれば屋根面積1ば/hに40にc
alの熱を捨てる能力があることが確認されている。
(Refer to the circuit diagram in Figure 5) At night, the wall temperature switch (82) and roof temperature switch (
83) becomes below 25℃ and the relay switch (80) (
The magnet of 81) is released and switching is performed, and the ventilation fans (61) to (63) rotate and the reverse IL valves (64) to (6
6) opens and directs the air from the underfloor space (17) through the slit vibe (
+a1 technical pipe (31) Airflow i control device (1) vent (
7) Flow from the duct (10) through each ventilation fan to the multi-branch pipes (55) to (57) ducts (58) to (60)
), the air is pumped through each layer, the cooled roof and walls dissipate the heat, and the cooled air is recovered into the building, resulting in radiant cooling. At night, the outside temperature of the roof surface drops to -3℃ due to radiation cooling, and experiments show that the roof area decreases to 40℃ per 1ba/h.
It has been confirmed that it has the ability to dissipate heat from al.

例えば100 m″の面積で夜間10時間訂効とすれば
4万にcalの冷房を行なったことになる、これは通常
のクーラーを13時間運転したことに等しく大きな冷房
効果が得られる。
For example, if an area of 100 m'' is operated for 10 hours at night, 40,000 cal of air conditioning will be provided, which is equivalent to operating a normal cooler for 13 hours, providing a large cooling effect.

夜間に建物全体を冷やせば、冷気は床下換気口(14)
から外に向かって流れ出ようするが作用のところで述べ
たように逆止弁(93)の働きで流出は阻止され冷気は
建物内に残ることになるのである。
If you cool the entire building at night, the cold air will flow through the underfloor ventilation vents (14)
However, as mentioned in the operation section, the check valve (93) prevents the cold air from flowing out and the cold air remains inside the building.

積雪地においてはこの放射冷房のシステムを各換気口を
閉じて壁面を冬の働き、つまり3路スイツチ(74)を
切り替えて利用すれば雪を屋根から落すことができる、
この方法は正確には融雪ではなく落雪法とも呼ぶべきで
スキーで滑るのと同じ原理で屋根面と雪の間を溶かし雪
を滑らせて落すので少ないエネルギーで屋根から雪を落
すことができるのである。
In snowy areas, you can use this radiant cooling system by closing each ventilation hole and using the 3-way switch (74) to remove snow from the roof.
To be precise, this method should be called the snow removal method rather than snow melting.It uses the same principle as skiing to melt the gap between the roof surface and the snow and slide the snow off, making it possible to remove snow from the roof with less energy. be.

冬の昼間は第7.8.12図で説明する。Daytime in winter is explained in Figure 7.8.12.

コントローラー(49)の回路は第12図に示す。The circuit of the controller (49) is shown in FIG.

回路は壁温度スイッチ(82)屋根温度スイッチ(83
)が15℃以上で接続され換気扇(81) (62)が
回り空気は逆止弁(64) (66)が開き空気層(6
8) (70)に圧送して太陽熱を吸収し建物内に蓄熱
する、そして夜になると第11図に示すように各温度ス
イッチ(82)(83)が切れ換気扇(611(62)
は停止し屋根壁は断熱化するのである、このような壁屋
根のことを可変断熱屋根又は壁という。夜の場合は第9
 、IO,11図に示す。
The circuit includes a wall temperature switch (82) and a roof temperature switch (83).
) is connected at 15°C or above, the ventilation fans (81) (62) turn and the check valves (64) (66) open and the air layer (6
8) (70) absorbs solar heat and stores it in the building, and at night, as shown in Figure 11, each temperature switch (82) (83) is turned off and the ventilation fan (611 (62)
The roof stops and the roof walls become insulated. Such wall roofs are called variable insulation roofs or walls. 9th at night
, IO, is shown in Figure 11.

換気11a (25)が回り床下の空気を前述したよう
にダクト(10)から逆止弁(67)を開きスリットパ
イプ(12)のスリット(27)から吹き出し暖気と混
合し常に床下の冷気を消去し、加えて室内(24)の床
に漂う窓等からの冷気を下部通気口(30)から引き抜
くことも大きな役割である。コントローラー(49)の
パイロットランプの表示は回路図に示す場所のパイロッ
トランプの点灯で確認できる。
The ventilation 11a (25) rotates, and as mentioned above, the check valve (67) is opened from the duct (10) and the air under the floor is blown out from the slit (27) of the slit pipe (12), mixing with warm air and constantly eliminating the cold air under the floor. In addition, it also plays a major role in drawing out the cold air floating on the floor of the room (24) from the windows and the like through the lower vent (30). The display of the pilot lamp of the controller (49) can be confirmed by lighting the pilot lamp at the location shown in the circuit diagram.

春秋はスイッチ(79)を切り回路を停止させる。Shunju turns off the switch (79) to stop the circuit.

次に特許請求の範囲第2項の説明をする。Next, the second claim will be explained.

特許請求の範囲第1項に記載する擬人化住宅の小屋裏空
間(16)に熱交換器(34)を設け熱交換器(34)
からは断熱ダクト(38) (39)がそれぞれ接続さ
れ外気に開放していて中間に換気扇(:12) (33
)が取付けられた擬人化住宅。
A heat exchanger (34) is provided in the attic space (16) of the anthropomorphic house described in claim 1.
Insulated ducts (38) (39) are connected to the ducts, which are open to the outside air, and ventilation fans (:12) (33) are installed in the middle.
) is attached to the anthropomorphic house.

冬の場合は第13図の回路となる、つまり換気扇(32
) (33)は回っているが抵抗によって出力が30%
に制御されていて換気量は40/ r+f −h熱交換
率90%である、この状態で熱交換器(34)内では断
熱ダクト(38)からの外気とダクト(103)からの
内気がアルミバイブ(88)の内外で対向して流れ熱交
換が行われ通気口(37)から暖かい乾燥空気か小屋裏
空間(16)に吹き出され、湿った冷たい空気が断熱ダ
クト(39)から外部に放出される。
In winter, the circuit shown in Figure 13 will be used, that is, the ventilation fan (32
) (33) is rotating, but the output is 30% due to the resistance.
The ventilation rate is 40/r+f-h and the heat exchange rate is 90%. In this state, inside the heat exchanger (34), the outside air from the insulated duct (38) and the inside air from the duct (103) are Heat exchange occurs between the inside and outside of the vibrator (88), warm dry air is blown out from the vent (37) into the attic space (16), and moist, cold air is released to the outside from the insulation duct (39). be done.

この時、アルミバイブ(88)内で(外気温4℃湿度8
5%建物内の温度20℃湿度80%の時)結露水が38
0cc/h発生し1日では約92の水がダクト(103
)からドレン(35)へと流れ建物外へ排出される。
At this time, inside the aluminum vibrator (88) (outside temperature 4℃ humidity 8℃)
5% When the temperature inside the building is 20℃ and the humidity is 80%) Condensation water is 38
Approximately 92 cc/h of water is generated in one day (103 cc/h).
) flows into the drain (35) and is discharged outside the building.

このようにして建物内の湿度を排出し高温で乾燥した空
気を特許請求の範囲第1項で説明した冬の循環空気に乗
せて建物全体に流し木材を乾燥させ耐火性を維持すると
共に酸素を供給するのである。この働きはコントローラ
ー(49)のパイロットランプ(42)〜(44)が点
灯して知らせる。
In this way, the humidity inside the building is discharged, and the hot and dry air is carried over the entire building with the winter circulating air described in claim 1, drying the wood, maintaining fire resistance, and adding oxygen. supply it. This operation is notified by lighting the pilot lamps (42) to (44) of the controller (49).

梅雨期にはスイッチ板(50)のスイッチ(46)を接
続すればリレースイッチ(40)マグネットが(動き切
り替えが行われ別口路から換気扇(32) (3:l)
に通電され換気扇(32) (33)は100%の能力
で回転する、これによって換気量は100〜120 r
n”/hにアップされ、熱交換率が50%に低下する、
このことによって熱を捨てながら熱を回収して温度と湿
度を下げしめじめを解消するのである。このときはパイ
ロットランプ(42)〜(44) (48)が点灯して
知らせる。
During the rainy season, if the switch (46) on the switch board (50) is connected, the relay switch (40) magnet will switch (movement switching will be performed and the ventilation fan (32) (3:l) will be switched from a separate outlet.
The ventilation fans (32) and (33) rotate at 100% capacity, resulting in a ventilation volume of 100 to 120 r.
n”/h, and the heat exchange rate decreases to 50%.
This allows heat to be dissipated and recovered, lowering temperature and humidity and eliminating dampness. At this time, the pilot lamps (42) to (44) and (48) are lit to notify you.

換気が行われているのであるから当然酸素は大量に供給
されている。
Since ventilation is being performed, a large amount of oxygen is naturally being supplied.

夏は床下換気口(14)小屋裏換気口(15)を開放し
コントローラー(49)のスイッチ板(50)は3路ス
イツチ(47)を切り替え換気扇(26)を回す、この
ときパイロットランプ(41)が点灯して知らせる。
In summer, the underfloor ventilation opening (14) and the attic ventilation opening (15) are opened, and the switch board (50) of the controller (49) switches the 3-way switch (47) to turn the ventilation fan (26). At this time, the pilot lamp (41) ) lights up to notify you.

又、第17〜20図の回路で示すように湿度センサー 
(52)と酸素濃度センサー(51)を加えれば冬の場
合通常は湿度センサー(52)の(動きで湿度55%以
下になるまで連続して換気扇(:12) (33)は働
き55%以下になれば換気扇(32) (3:l)は停
止[二する。しかし、室内(24)の酸素濃度が19%
以下になると第15図に示すように酸素濃度センサー(
51)か働きリレースイッチ(40)のマグネットか働
き湿度の回路が切わ酸素を急速に供給するため換気扇(
32) (:]3)は100%の回転で外気を熱交換を
しなから供給する安全回路を組入れ自動化することかで
きる。酸素濃度が19%以にになれば自動的に湿度回路
に(V帰する。酸素回路の働きはパイロットランプ(4
8)か点灯して知らせる。また、停電のときなどにおい
ては外に風が有れば熱交換々気は常に行なわれるのであ
る。
Also, as shown in the circuits of Figures 17 to 20, a humidity sensor
(52) and the oxygen concentration sensor (51), in winter, the ventilation fan (:12) (33) works continuously until the humidity falls below 55% due to the movement of the humidity sensor (52) (33). When this happens, the ventilation fan (32) (3:l) will stop [2].However, the oxygen concentration in the room (24) will be 19%.
When the oxygen concentration sensor (
51) The magnet of the relay switch (40) turns off the humidity circuit and the ventilation fan (
32) (:]3) can be automated by incorporating a safety circuit that supplies outside air without heat exchange at 100% rotation. When the oxygen concentration reaches 19% or more, it automatically returns to the humidity circuit (V).The operation of the oxygen circuit is as follows:
8) Lights up to notify you. Also, in the event of a power outage, if there is wind outside, heat exchange will always take place.

春秋にはスイッチ(45)を切り回路を停止する。In spring and autumn, the switch (45) is turned off to stop the circuit.

[発明の効果コ 以上説明したようにこの発明はコントローラーによって
各季節あるいは昼夜によってあたかも生き物のように人
にとって都合の良い方向で働き、支は太陽熱の吸収と内
部排熱利用、夏は換気冷房と放射冷房、梅雨期には温度
を下げながら湿度を取り去り積雪地においては雪を落と
し又、気密による酸欠防+L、のため熱交換々気、除湿
による建物の耐久性向上と共に人の健L)tをも維持す
ることのできる擬人化住宅である。
[Effects of the invention] As explained above, this invention uses a controller to operate in a direction convenient for humans depending on the season or day and night, as if it were a living thing, and its main functions are absorption of solar heat, utilization of internal waste heat, and ventilation and cooling in the summer. Radiant cooling reduces temperature and removes humidity during the rainy season, removes snow in snowy areas, and prevents oxygen deficiency through airtightness, improves building durability and improves human health through heat exchange and dehumidification. It is an anthropomorphic house that can maintain even t.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は特許請求の範囲第1項夏の昼間の実施例断面図 第2、特許請求の範囲第1項夏の昼間の概念図第3図は
特許請求の範囲第1項夏の夜間の実施例断面図 第4図は特許請求の範囲第1項夏の夜間の概念図第5図
は特許請求の範囲第1項夏の夜間の回路図第6図は特許
請求の範囲第1項夏の昼間の回路図第7U!1は特許請
求の範囲第1項冬の昼間の実施例断面図 第8図は特許請求の範囲第1項の冬の昼間の概念図 第9図は特許請求の範囲第1項の冬の夜間の実施例断面
図 第10図は特許請求の範囲第1項の冬の夜間の概念図 第11図は特許請求の範囲第1項の冬の夜間の回路図 第12、特許請求の範囲第1項の冬の昼間の回路図 第13図は特許請求の範囲第2項冬の手動回路図第14
図は特許請求の範囲第2項梅雨期の回路図第15図は特
許請求の範囲第2項夏の回路図第16図はコントローラ
ーの斜視図 第17図は特許請求の範囲第2項冬の自動回路図第18
図は特許請求の範圏第2項梅雨!t1+自動回路図第1
9図は特許請求の範囲第2項夏の自動回路図第20図は
特許請求の範囲第2項酸素供給緊急回路図 第21図は特許請求の範囲第2項梅雨の夜間の実施例断
面[メ1 第22し1は特許請求の範囲第2 sH侮由の夜間の概
念第23図は特許請求の範囲第1項冬の融雪時の実施例
断面図 第24図は特許請求の範囲第1項冬の融雪時概念図第2
5図は特許請求の範囲第2項冬の夜間の概念図第26図
は特許請求の範囲第2項冬の昼間の概念図第27図は特
許請求の範囲第2項梅雨+1Jl夜間の回路図 第28図は特許請求の範囲第2項梅雨期昼間の回路図 第29図は特許請求の範囲第2項夏の夜間の回路図第3
0図は特許請求の範囲第2項夏の昼間の回路図第31図
は特許請求の範囲第2項冬の夜間の回路図第32、特許
請求の範囲第2項冬の昼間の回路図第15図シま逆+に
一弁(64)〜(66)の断面図第34図は逆+に〇 
(64)〜(66)ノ’15 側面図第35図は特許請
求の範囲第1.2項屋根の斜視図第36図は特許請求の
範囲第1.2頂壁の斜視図第37図は、熱交換:ヒ;の
斜視同 第38図シま気流制御装置の正背面図 第39図は気流1し制御装置の−L下面図第40図は気
流制御装置の左側面図 第41図は気流制御装置の右側面図 第42図は気流制御装置の夏の断面図 第43図は気流制御装置の冬の断面図 第44図は気流制御装置の冬の分解斜視図第45図は気
流制御装置の夏の分解斜視図第46図は気流制御装置の
斜視図 第47図は床下換気口閉鎖時の分解斜視図第48図は床
下換気口開放時の分解斜視図第49図は床下換気日立の
実施例背面斜視図第50図は床下換気日立の実施例正面
斜視図第51図は床下換気口答の実施例背面斜視図第5
2図は床下換気口答の実施例正面斜視図第53図は小屋
裏換気自閉3n時の平面図′:JrJ54図は小屋裏換
気口開放時の平面図第55図は小屋裏換気口の分解斜視
図 第56図は小屋裏換気口の閉鎖時ロッドの位置画筆57
図は小屋裏換気口の開放時ロッドの位置同第58図は小
屋裏換気口の開放時の斜視図第5+1図はスリットパイ
プの斜視図 第60図はスリットバイブの斜視図 第61図は小屋裏換気口閉鎖時の斜視図第62図は逆止
フf−(64)〜(66)の分解斜視図第63図は逆止
弁(64)〜(66)の斜視図第64図は逆止弁(64
)〜(66)の面ケースを取った正面図 第65図は逆止弁(64)〜(66)の背面画筆66図
は逆止弁(64)〜(66)の断面図第67図は逆止弁
(64)〜(66)の左側面図第68図は逆止弁(64
)〜(66)の正面図第69図は逆止弁(64)〜(6
6)の上下面図図中、(1)は気流制御装置(2)〜(
5)は通気口(6)は逆+L弁(7)は通気口(8)は
蝶板(9)は仕切板(10) (11)はダクト(+2
) (+3)はスリットバイブ(14)は床下換気口(
15)は小屋裏換気口(16)は小屋裏空間(17)は
床下空間(18)は壁空洞(19)は間仕切空洞(20
) (21)は断熱外壁(22) (23)は断熱屋根
(24)は室内(25) (26)は換気扇(27) 
(28)はスリット(29)は上部通気口(30)は下
部通気口(31)は多分枝管(32)(33)は換気扇
(34)は熱交換器(35) (36)はドレン(37
)は通気口(38) (39)は断熱ダクト(40)は
リレースイッチ(41)〜(44)はパイロットランプ
(45) (46)はスイッチ(47)は3路スイツチ
(48)はパイロットランプ(49)はコントローラー
(50)はスイッチ板(51)は酸素濃度センサー(5
2)は湿度センサー(53) (54)はタクト(55
)〜(57)は多分枝管(58)〜(60)はダクト(
61)〜(63)は換気扇(64)〜(67)は逆止弁
(68)〜(70)は空気層(71)はダクト(72)
は逆止弁箱体(73)〜(76)は3路スイツチ(77
)〜(79)はスイッチ(80)(81)はりレースイ
ッヂ(82)は壁温度スイッチ(83)は屋根温度スイ
ッチ(84)〜(86)はパイロットランプ(87)は
3路スイツチ(88)はアルミパイプ(89)はダクト
(90)は外壁(91)はシャッター(92)は把手(
93)は逆止弁(94) (95)はシャッター(96
) (97)は支点(98)は減速モーター(99) 
(Ion)は屋根(+01)は蝶板(102>は通気口
(103)はダクト、矢印は空気の流れである。
Fig. 1 is a sectional view of an embodiment of claim 1 during the daytime in summer. 2nd is a conceptual diagram of the daytime in summer in claim 1. Fig. 3 is a conceptual diagram of the daytime in summer in claim 1. Embodiment sectional view FIG. 4 is a conceptual diagram of claim 1 at night in summer FIG. 5 is a circuit diagram at night in summer in claim 1 FIG. 6 is a circuit diagram at night in summer in claim 1 Daytime circuit diagram No. 7U! 1 is a cross-sectional view of an embodiment of claim 1 during the winter daytime. FIG. 8 is a conceptual diagram of the winter daytime according to claim 1. FIG. 9 is a winter nighttime example according to claim 1. FIG. 10 is a conceptual diagram of a winter night in claim 1. FIG. 11 is a circuit diagram of a winter night in claim 1. The winter daytime circuit diagram in Figure 13 is the winter manual circuit diagram in Claim 2, Figure 14.
Figure 15 is a circuit diagram for the rainy season in claim 2. Figure 15 is a circuit diagram in summer in claim 2. Figure 16 is a perspective view of the controller. Figure 17 is a circuit diagram in claim 2 in winter. Automatic circuit diagram No. 18
The figure is the rainy season in the patent claim area 2! t1+ automatic circuit diagram 1st
Figure 9 is Claim 2 Automatic circuit diagram in summer Figure 20 is Claim 2 Oxygen supply emergency circuit diagram Figure 21 is Claim 2 Cross section of the embodiment at night during the rainy season [ Me1 No. 22 and 1 are Claim 2 Concept of nighttime use of sH Conceptual map of snow melting in winter 2nd
Figure 5 is a conceptual diagram of claim 2 at night in winter. Figure 26 is a conceptual diagram of claim 2 during the daytime in winter. Figure 27 is a circuit diagram of claim 2 during the rainy season + 1Jl night. Fig. 28 is a circuit diagram of claim 2 during the daytime during the rainy season. Fig. 29 is a circuit diagram of claim 2 during the summer night.
Figure 0 is claim 2. Summer daytime circuit diagram. Figure 31 is claim 2. Winter nighttime circuit diagram. 32. Claim 2. Winter daytime circuit diagram. Figure 15 is a cross-sectional view of one valve (64) to (66) on the opposite side. Figure 34 is on the opposite side.
(64) to (66) No'15 Side view Figure 35 is Claim 1.2 A perspective view of the roof Figure 36 is Claim 1.2 A perspective view of the top wall Figure 37 is Claim 1.2 A perspective view of the roof Figure 38 is a perspective view of heat exchange: H; Front and rear view of the airflow control device Figure 39 is a -L bottom view of the airflow control device Figure 40 is a left side view of the airflow control device Figure 41 is a Right side view of the airflow control device Fig. 42 is a cross-sectional view of the airflow control device in summer Fig. 43 is a cross-sectional view of the airflow control device in winter Fig. 44 is an exploded perspective view of the airflow control device in winter Fig. 45 is airflow control Figure 46 is an exploded perspective view of the equipment in summer. Figure 46 is a perspective view of the airflow control device. Figure 47 is an exploded perspective view of the underfloor ventilation opening when it is closed. Figure 48 is an exploded perspective view of the underfloor ventilation opening when it is open. Figure 49 is the underfloor ventilation Hitachi. Figure 50 is a front perspective view of an example of underfloor ventilation for Hitachi. Figure 51 is a rear perspective view of an example of underfloor ventilation.
Figure 2 is a front perspective view of an example of an underfloor ventilation opening; Figure 53 is a plan view when attic ventilation is self-closing. A perspective view of Fig. 56 shows the position of the rod when the attic ventilation opening is closed.
The figure shows the position of the rod when the attic ventilation opening is opened. Figure 58 is a perspective view when the attic ventilation opening is opened. Figure 5+1 is a perspective view of the slit pipe. Figure 60 is a perspective view of the slit vibe. Figure 61 is a perspective view of the attic ventilation opening. Figure 62 is an exploded perspective view of the check valves f-(64) to (66) when the back ventilation opening is closed. Figure 63 is a perspective view of the check valves (64) to (66). Stop valve (64
) to (66) with the face case removed. Figure 65 is a back view of the check valves (64) to (66). Figure 66 is a sectional view of the check valves (64) to (66). Figure 67 is a cross-sectional view of the check valves (64) to (66). FIG. 68 is a left side view of the check valves (64) to (66).
) to (66) is a front view of the check valves (64) to (6
In the top and bottom view of 6), (1) is the airflow control device (2) to (
5) is the ventilation port (6) is the reverse + L valve (7) is the ventilation port (8) is the butterfly plate (9) is the partition plate (10) (11) is the duct (+2
) (+3) is the slit vibe (14) is the ventilation hole under the floor (
15) is the attic ventilation opening (16), the attic space (17) is the underfloor space (18), the wall cavity (19) is the partition cavity (20)
) (21) is the insulated outer wall (22) (23) is the insulated roof (24) is the indoor room (25) (26) is the ventilation fan (27)
(28) is the slit (29) is the upper vent (30) is the lower vent (31) is the multi-branch pipe (32) (33) is the ventilation fan (34) is the heat exchanger (35) (36) is the drain ( 37
) is the vent (38), (39) is the insulation duct (40) is the relay switch (41) to (44) is the pilot lamp (45) (46) is the switch (47) is the 3-way switch (48) is the pilot lamp (49) is the controller (50), the switch plate (51) is the oxygen concentration sensor (5
2) is the humidity sensor (53) (54) is the tact (55
) to (57) are multi-branch pipes (58) to (60) are ducts (
61) to (63) are ventilation fans (64) to (67) are check valves (68) to (70) are air layers (71) are ducts (72)
The check valve boxes (73) to (76) are 3-way switches (77
) to (79) are the switches (80) (81), the beam switch (82) is the wall temperature switch (83), the roof temperature switch (84) to (86) is the pilot lamp (87), and the three-way switch (88) is The aluminum pipe (89), the duct (90), the outer wall (91), the shutter (92), the handle (
93) is the check valve (94) (95) is the shutter (96
) (97) is the fulcrum (98) is the deceleration motor (99)
(Ion) is the roof (+01), the butterfly plate (102>) is the vent (103), and the arrow is the air flow.

Claims (1)

【特許請求の範囲】 [1]外壁・屋根が断熱・床下が防湿された建物におい
て、小屋裏換気口・床下換気口共に開閉式とし床下換気
口には床下空間(17)側に逆止弁(93)が上部から
懸垂していて床下換気口(14)の1箇所からダクト(
11)気流制御装置(1)の通気口(2)に接続されダ
クト(11)の中間に換気扇(26)がある、気流制御
装置(1)の内部には通気口(7)に蝶板(8)で懸垂
する逆止弁(6)のある傾斜した仕切り板(9)があり
側面には通気口(3)(4)(5)が設けられ通気口(
4)(5)には多分枝管(31)があり、さらにスリッ
ト(28)のあるスリットパイプ(13)が分枝され通
気口(3)にはダクト(10)が接続され小屋裏空間(
16)へと延び床下空間(17)にはダクト(71)が
分枝し中間に換気扇(61)が設けられ多分枝管(57
)に接続されさらにダクト(58)が空気層(70)の
下部の逆止弁(66)に接続され、この空気層(70)
は断熱外壁(20)と外壁(90)の間に形成され上部
のみ小屋裏空間(16)に開放している、ダクト(10
)は小屋裏空間(16)でダクト(53)(54)に分
枝されダクト(53)には中間に換気扇(62)端部に
多分枝管(55)さらにダクト(59)が空気層(68
)の下部の逆止弁(64)に接続され空気層(68)は
断熱屋根(22)と屋根(99)の間に形成され上部の
み小屋裏空間(16)に開放されている、ダクト(54
)は中間に換気扇(63)端部の多分枝管(56)から
ダクト(60)が空気層(69)の下部にある逆止弁(
65)に接続されこの空気層(69)は断熱屋根(23
)と屋根(100)の間に形成され上部のみ小屋裏空間
(16)に開放している、ダクト(54)からはダクト
(89)が分枝し中間に逆止弁(67)のある逆止弁箱
体(72)と換気扇(25)があり端部にスリット(2
7)のあるスリットパイプ(12)が小屋裏空間(16
)の上部で水平に延びていて建物は床下空間(17)と
小屋裏空間(16)が壁空洞(18)間仕切り空洞(1
9)で連通され室内(24)には上部通気口(29)下
部通気口(30)がありコントローラーによって制御さ
れる擬人化住宅。 [2]小屋裏空間(16)に熱交換器(34)を設け熱
交換器(34)からは断熱ダクト(38)(39)がそ
れぞれ接続され外気に開放されていて中間に換気扇(3
2)(33)が取付けられた特許請求の範囲第1項に記
載する擬人化住宅。
[Claims] [1] In a building where the outer walls and roof are insulated and the underfloor is moisture-proof, both the attic ventilation opening and the underfloor ventilation are openable and the underfloor ventilation has a check valve on the underfloor space (17) side. (93) is suspended from the top, and a duct (
11) There is a ventilation fan (26) in the middle of the duct (11) that is connected to the vent (2) of the air flow control device (1). Inside the air flow control device (1), there is a butterfly plate ( There is a slanted partition plate (9) with a check valve (6) suspended at the side, and ventilation holes (3), (4), and (5) are provided on the side.
4) There is a multi-branch pipe (31) in (5), and a slit pipe (13) with a slit (28) is further branched, and a duct (10) is connected to the vent (3) to open the attic space (
16), a duct (71) branches into the underfloor space (17), a ventilation fan (61) is provided in the middle, and a multi-branch pipe (57)
), and the duct (58) is further connected to the check valve (66) at the bottom of the air layer (70), and the air layer (70)
The duct (10) is formed between the insulating outer wall (20) and the outer wall (90), and only the upper part is open to the attic space (16).
) branches into ducts (53) and (54) in the attic space (16), and the duct (53) has a ventilation fan (62) in the middle, a multi-branch pipe (55) at the end, and a duct (59) with an air layer ( 68
), the air layer (68) is formed between the insulation roof (22) and the roof (99), and only the upper part is open to the attic space (16). 54
) is a duct (60) from the multi-branch pipe (56) at the end of the ventilation fan (63) to the check valve (69) at the bottom of the air layer (69).
65) and this air layer (69) is connected to the insulating roof (23
) and the roof (100), and only the upper part is open to the attic space (16). A duct (89) branches from the duct (54) and has a check valve (67) in the middle. There is a stop valve box body (72) and a ventilation fan (25), and there is a slit (2
The slit pipe (12) with 7) is connected to the attic space (16).
), the building has an underfloor space (17) and an attic space (16), a wall cavity (18) and a partition cavity (1).
The anthropomorphic house is connected by a controller 9) and has an upper vent (29) and a lower vent (30) in the interior (24). [2] A heat exchanger (34) is provided in the attic space (16), and insulated ducts (38) and (39) are connected to the heat exchanger (34) and open to the outside air, and a ventilation fan (3) is installed in the middle.
2) An anthropomorphic house according to claim 1, to which (33) is attached.
JP61181105A 1986-07-31 1986-07-31 Personification dwelling Pending JPS6338847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61181105A JPS6338847A (en) 1986-07-31 1986-07-31 Personification dwelling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61181105A JPS6338847A (en) 1986-07-31 1986-07-31 Personification dwelling

Publications (1)

Publication Number Publication Date
JPS6338847A true JPS6338847A (en) 1988-02-19

Family

ID=16094931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61181105A Pending JPS6338847A (en) 1986-07-31 1986-07-31 Personification dwelling

Country Status (1)

Country Link
JP (1) JPS6338847A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270799A (en) * 2008-05-09 2009-11-19 Kokko:Kk Ventilation route switching device, heat exchange ventilation system of building and heat exchange ventilation method of building

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270799A (en) * 2008-05-09 2009-11-19 Kokko:Kk Ventilation route switching device, heat exchange ventilation system of building and heat exchange ventilation method of building

Similar Documents

Publication Publication Date Title
KR100617080B1 (en) air conditioning system and method for controlling the system
JP2013068340A (en) Air conditioning system and air conditioning method using the same
JP2006207126A (en) Indoor-environment control method for building equipped with ventilation and heat-insulation structure
JP4524348B1 (en) Energy saving ventilation system
JP3944181B2 (en) Building air conditioning system
JPS6338847A (en) Personification dwelling
JPS62294833A (en) Anthropomorphic house
JPH0735419A (en) Building, utilizing solar heat
JPS6349646A (en) Personified house
JP2002098354A (en) Indoor ventilating housing
JP4295541B2 (en) Ventilation system
JPH0293228A (en) Ventilating device for building
JPS646367B2 (en)
EP0150888A2 (en) Computer controlled air consitioning systems
JP2002013219A (en) Ventilating system for house
JP2000274733A (en) Air conditioning device for multiple dwelling house
JP2001254995A (en) Ventilation system
JP3727229B2 (en) Air circulation type air conditioning system
JPH0874344A (en) Cooling/heating system utilizing natural power for building, and cooling, heating and ventilation system utilizing elemental force for building
JP2005163369A (en) Ventilation device for dwelling house
JPS62164932A (en) Heat exchange building
JPH05340599A (en) Air conditioner for residence
JPS61276640A (en) Ventilated building
JPS62258938A (en) Medical house
JP2002070196A (en) Air conditioning dwelling house