JPS6338697B2 - - Google Patents

Info

Publication number
JPS6338697B2
JPS6338697B2 JP18097881A JP18097881A JPS6338697B2 JP S6338697 B2 JPS6338697 B2 JP S6338697B2 JP 18097881 A JP18097881 A JP 18097881A JP 18097881 A JP18097881 A JP 18097881A JP S6338697 B2 JPS6338697 B2 JP S6338697B2
Authority
JP
Japan
Prior art keywords
mark
vernier
pattern
image
distortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18097881A
Other languages
Japanese (ja)
Other versions
JPS5883853A (en
Inventor
Koichi Oono
Toshio Matsura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP56180978A priority Critical patent/JPS5883853A/en
Publication of JPS5883853A publication Critical patent/JPS5883853A/en
Publication of JPS6338697B2 publication Critical patent/JPS6338697B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/44Testing or measuring features, e.g. grid patterns, focus monitors, sawtooth scales or notched scales

Description

【発明の詳細な説明】 本発明は、IC投影露光装置などの投影光学系
の歪曲、倍率誤差等の光学特性、所謂デイストー
シヨンを検査する方法に関し、特に露光装置の投
影光学系の光学特性を、マスク上のマークを感光
基板上に焼き付けて検査する方法関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for inspecting optical characteristics such as distortion and magnification error, or so-called distortion, of a projection optical system of an IC projection exposure apparatus, and particularly to a method for inspecting optical characteristics of a projection optical system of an exposure apparatus. , relates to a method of inspecting marks on a mask by printing them onto a photosensitive substrate.

従来のこの種の検査用マスク基板(以下、単に
レテイクルという)について説明する。第1図a
は従来レテイクルの図であり、レテイクル1上に
は上下、左右の縁の中央部に、それぞれ、マーク
2,3,4,5が配置されている。各マーク2〜
5は、第1図bに示すような格子縞パターンを有
し、主尺としてのマーク2,5と、副尺としての
マーク3,4とでバーニアを構成する。主尺と副
尺のパターンを、例えばウエハ上に重ね合わせて
焼き付けることによりバーニアが形成され、その
ずれ量を測定することによつて投影光学系の光学
特性が検査される。
A conventional inspection mask substrate of this type (hereinafter simply referred to as a reticle) will be explained. Figure 1a
1 is a diagram of a conventional reticle. Marks 2, 3, 4, and 5 are arranged on the top, bottom, and left and right edges of the reticle 1, respectively. Each mark 2~
5 has a checkered pattern as shown in FIG. 1b, and constitutes a vernier with marks 2 and 5 as the main scale and marks 3 and 4 as the vernier scale. A vernier is formed by overlapping and printing the main scale and vernier patterns on a wafer, for example, and the optical characteristics of the projection optical system are inspected by measuring the amount of deviation.

この模様を第1図cを用いて説明する。尚、第
1図aにおいてレテイクル1上の上と下に配置さ
れたパターン2,3はy方向のずれ量、左と右に
配置されたパターン4,5はx方向のずれ量を測
定するものであり、今これらのパターン2と3,
4と5の間隔を例えば80mmとする。また、これら
のレテイクル1上のパターン2〜5を1/10縮小投
影露光装置でウエハ上に焼き付けて、1/10縮小投
影レンズ系の光学特性を測定するものとする。
This pattern will be explained using FIG. 1c. In addition, in Fig. 1a, patterns 2 and 3 placed above and below the reticle 1 measure the amount of deviation in the y direction, and patterns 4 and 5 placed on the left and right side measure the amount of deviation in the x direction. , now these patterns 2 and 3,
For example, let the interval between 4 and 5 be 80 mm. It is also assumed that the patterns 2 to 5 on the reticle 1 are printed onto a wafer using a 1/10 reduction projection exposure apparatus, and the optical characteristics of the 1/10 reduction projection lens system are measured.

ウエハ載置台上のウエハに先ずパターン・チツ
プ6を焼き付け、ここでウエハ載置台に備えられ
た4/100μm程度以下の精度で測長可能なレーザ
ー干渉計測長器などの測定値に基づいて、ウエハ
載置台(ステージ)を駆動し、ウエハをx方向、
y方向にそれぞれ8mm正確に移動させる。そして
再びそれぞれレテイクル1上のパターン2,3,
4,5をウエハ上に焼き付けると、第1図cのよ
うにチツプ6の主尺パターン5の主バーニアとチ
ツプ7の副尺パターン4の副バーニアが重なつて
バーニア8を形成し、チツプ6の副尺パターン3
の副バーニアとチツプ9の主尺パターン2の主バ
ーニアが重なつてバーニア10を形成する。この
とき、もし投影レンズ系に歪曲、倍率誤差などが
全くない場合、各バーニア8,10の主バーニア
と副バーニアのずれ量は共にゼロとなる。しか
し、投影レンズ系に歪曲、倍率誤差などがある場
合は、バーニア8または10の格子縞(いわゆる
目盛)にずれを生じる。このずれ量を測定するこ
とによつて、投影レンズ系により作られる第1図
aのレテイクル上のパターン2〜5のバーニアの
存在する位置(すなわちパターン2〜5に対応す
るウエハ上のレテイクル像の位置)における投影
レンズ系の歪量や倍率誤差を測つている。
First, a pattern chip 6 is printed on the wafer on the wafer mounting table, and then the wafer is measured based on the measurement value of a laser interferometric measuring device equipped on the wafer mounting table that can measure the length with an accuracy of about 4/100 μm or less. Drive the mounting table (stage) and move the wafer in the x direction.
Move each part accurately by 8mm in the y direction. And again patterns 2, 3 on reticle 1,
4 and 5 are printed on the wafer, the main vernier of the main pattern 5 of the chip 6 and the sub vernier of the vernier pattern 4 of the chip 7 overlap to form a vernier 8, as shown in FIG. Vernier pattern 3
The secondary vernier and the main vernier of the main scale pattern 2 of the chip 9 overlap to form a vernier 10. At this time, if there is no distortion or magnification error in the projection lens system, the amount of deviation between the main vernier and the sub-vernier of each of the verniers 8 and 10 will both be zero. However, if the projection lens system has distortion, magnification error, etc., the lattice fringes (so-called scale) of the vernier 8 or 10 will shift. By measuring this amount of deviation, it is possible to determine the positions of the verniers of patterns 2 to 5 on the reticle of FIG. The amount of distortion and magnification error of the projection lens system at the position) is measured.

しかし、以上の従来のものにおいては、投影レ
ンズ系の歪曲、倍率誤差などの相対量しかわから
ないという欠点がある。このことを第2図を用い
て説明する。第2図は、投影レンズ系の歪曲、倍
率誤差などが理想的に零のとき、ウエハ上に投影
される領域11と、投影レンズ系による歪曲等に
よつて変形したウエハ上の投影像の領域12とを
表わし、更に本図において投影像の中心13は投
影光学系の光軸に一致している。この図示例にお
いて領域12のx方向の右側が左側よりも大きく
変形しているが、従来の方法では左右の変形量の
違いを検出できず、x方向の長さが領域11のそ
れよりも短かい(または長い)ことがわかるだけ
である。すなわち、上記の従来のものにおいて
は、例えば領域12のx方向左右側が共に内側に
変形している場合、レテイクル1上のパターン
4,5に対応した投影像中のパターンの距離l
は、本来の距離よりも短かくなつてしまう。この
ため、第1図cで示したバーニア8で投影像のx
方向のずれ量を測つても、それは単に領域12の
x方向が領域11のそれよりも短かいことがわか
るだけである。さらに、領域12の左右側が例え
ば右側が外側に、左側が内側に同程度に変形して
いると、バーニア8の格子縞のずれは相殺され
て、歪曲等がないものとして測定されてしまう。
従つて中心13からの絶対的な歪み量は求めるこ
とができない。
However, the conventional method described above has the disadvantage that only the relative amounts of distortion, magnification error, etc. of the projection lens system can be known. This will be explained using FIG. 2. Figure 2 shows the area 11 projected onto the wafer when distortion, magnification error, etc. of the projection lens system are ideally zero, and the area of the projected image on the wafer deformed due to distortion etc. due to the projection lens system. 12, and in this figure, the center 13 of the projected image coincides with the optical axis of the projection optical system. In this illustrated example, the right side of region 12 in the x direction is deformed more than the left side, but conventional methods cannot detect the difference in the amount of deformation on the left and right, and the length in the x direction is shorter than that of region 11. All you need to know is that it is long (or long). That is, in the above-mentioned conventional system, when both the left and right sides of the region 12 in the x direction are deformed inwardly, the distance l between the patterns in the projected image corresponding to the patterns 4 and 5 on the reticle 1 is
becomes shorter than the original distance. For this reason, the vernier 8 shown in FIG.
Even if the amount of directional deviation is measured, it only shows that the x direction of region 12 is shorter than that of region 11. Furthermore, if the left and right sides of the area 12 are deformed to the same extent, for example, the right side is outward and the left side is deformed to the same extent, the deviation of the lattice stripes of the vernier 8 is canceled out, and the measurement is performed as if there is no distortion or the like.
Therefore, the absolute amount of distortion from the center 13 cannot be determined.

本発明はこの欠点を解決して、投影光学系の光
学特性(デイストーシヨン)を正確に検査するた
めの方法を得ることを目的とするものである。
The object of the present invention is to overcome this drawback and provide a method for accurately testing the optical characteristics (distortion) of a projection optical system.

以下、第3図以降の図面を用いて本発明の実施
例を説明する。
Embodiments of the present invention will be described below using the drawings from FIG. 3 onwards.

第3図aに図示の第1実施例では、レテイクル
14の中央部、すなわちレテイクル14を露光装
置にセツトした際、投影レンズ系の光軸が通る部
分に主尺パターン15が設けられ、このパターン
15からy方向に例えば±40mm離れた位置に副尺
パターン16a,16b、そしてx方向に例えば
±40mm離れた位置に副尺パターン16c,16d
が配されている。
In the first embodiment shown in FIG. 3a, a main scale pattern 15 is provided in the central part of the reticle 14, that is, in the part through which the optical axis of the projection lens system passes when the reticle 14 is set in the exposure device. Vernier patterns 16a, 16b are located at positions, for example, ±40 mm away from 15 in the y direction, and vernier patterns 16c, 16d are located at positions, for example, ±40 mm away from the x direction.
are arranged.

本実施例を用いて、例えば1/10縮小投影レンズ
系の光学特性を検査するためには、第3図bに示
すように、先ず主尺パターン15の部分にレンズ
系の光軸が通るようにレテイクル14を露光装置
にセツトし、最初に点線のようにレテイクル14
の像をウエハ等のフオトレジストを塗布した転写
対象物(感光基板)に焼き付ける。
In order to inspect the optical characteristics of, for example, a 1/10 reduction projection lens system using this embodiment, first, as shown in FIG. First, set the reticle 14 on the exposure device, and first set the reticle 14 as shown in the dotted line.
The image is printed onto a transfer target (photosensitive substrate) such as a wafer coated with photoresist.

次に、レーザー干渉計測長器等の測定値に基づ
いて、ウエハステージをy方向に−4mm送りレテ
イクル14の像を焼き付けると、焼付像21がで
き、このとき最初に焼き付けた副尺パターン16
aの像である副バーニアと2回目に焼き付けた主
尺パターン15の像である主バーニアが重なつた
バーニアAが形成される。
Next, the wafer stage is moved -4 mm in the y direction and the image of the reticle 14 is printed based on the measurement value of a laser interferometer, etc., and a printed image 21 is created.
A vernier A is formed in which the sub-vernier, which is the image of a, and the main vernier, which is the image of the main scale pattern 15 printed for the second time, overlap.

次いで1回目の焼き付け位置からウエハステー
ジをx方向に−4mm送りレテイクル14の像を焼
き付けると、今度は焼付像22ができそれにより
1回目の焼付けによる副尺パターン16cの副バ
ーニアと3回目の焼付けによる主尺パターン15
の主バーニアが重なつたバーニアBが形成され
る。
Next, the wafer stage is moved -4 mm in the x direction from the first printing position and the image of the reticle 14 is printed. This time, a printed image 22 is created, which combines the secondary vernier of the vernier pattern 16c from the first printing and the third printing. Main scale pattern 15 by
Vernier B is formed by overlapping the main verniers.

以下同様な操作で焼付像23,24を転写し、
主尺パターン15による主バーニアと副尺パター
ン16bによる副バーニアの重なつたバーニア
C、および主尺パターン15による主バーニアと
副尺パターン16dによる副バーニアの重なつた
バーニアDを形成する。
Thereafter, the printed images 23 and 24 are transferred in the same manner,
A vernier C is formed in which a main vernier according to the main scale pattern 15 and a sub-vernier according to the vernier pattern 16b overlap, and a vernier D is formed in which a main vernier according to the main scale pattern 15 and a sub-vernier according to the vernier pattern 16d overlap.

こうして形成されたバーニアA〜Dを顕微鏡等
で観察する。このとき、投影レンズ系の光軸の通
る主尺パターン15の像である主バーニアは焼付
像の中心にあるため、一般に歪曲、倍率誤差など
を測る際の基準となる。そのため投影レンズ系の
光軸を基準として、各バーニアA〜Dの格子縞の
ずれ量を読み取るだけでx、y方向の絶対的な歪
曲などが求まる。即ち、従来例では投影像の両縁
の相互の相対的な位置しか測定できなかつたが
(換言すれば歪曲があつても絶対的な量として測
定できなかつた)、本実施例では、光軸を通るよ
うに基準となる主尺パターン15を設けたので、
各バーニアの目盛を直読するだけで光軸を基準と
した投影レンズ系の絶対的な歪量、倍率誤差等が
測定できる。尚、バーニアの目盛としての格子縞
およびその読み方について詳しくは後述する。
Verniers A to D thus formed are observed using a microscope or the like. At this time, the main vernier, which is the image of the main scale pattern 15 through which the optical axis of the projection lens system passes, is located at the center of the printed image, and therefore generally serves as a reference for measuring distortion, magnification error, etc. Therefore, absolute distortion in the x and y directions can be determined by simply reading the amount of deviation of the lattice fringes of each vernier A to D with the optical axis of the projection lens system as a reference. That is, in the conventional example, only the relative positions of both edges of the projected image could be measured (in other words, even if there was distortion, it could not be measured as an absolute amount), but in this example, the optical axis Since the main scale pattern 15 serving as a reference was provided so as to pass through the
The absolute amount of distortion, magnification error, etc. of the projection lens system relative to the optical axis can be measured simply by directly reading the scale of each vernier. Note that the checkered stripes as the scale of the vernier and how to read them will be described in detail later.

次に、第4図に第2実施例を示す。本実施例で
は副尺パターン16a〜16dがレテイクル14
の4隅に設けられていて、各副尺パターン16a
〜16dは主尺パターン15から例えば等距離に
ある。1回目の焼付像が点線で示され、以下1回
目の焼き付け位置からウエハステージをx方向に
4mm、y方向に−4mm送つて焼付像25、x方向
に−4mm、y方向に−4mm送つて焼付像26、x
方向に−4mm、y方向に4mm送つて焼付像27、
x方向に4mm、y方向に4mm送つて焼付像28が
形成されている。そして、主尺パターン15によ
る主バーニアと副尺パターン16aによる副バー
ニア、副尺パターン16bによる副バーニア、副
尺パターン16cによる副バーニア、副尺パター
ン16cによる副バーニア、副尺パターン16d
による副バーニアとでそれぞれバーニアA,B,
C,Dを形成している。
Next, FIG. 4 shows a second embodiment. In this embodiment, the vernier patterns 16a to 16d are the reticle 14.
are provided at the four corners of each vernier pattern 16a.
16d are, for example, equidistant from the main scale pattern 15. The first printing image is shown by a dotted line, and from the first printing position, move the wafer stage 4 mm in the x direction and -4 mm in the y direction to obtain a printed image 25, and move it -4 mm in the x direction and -4 mm in the y direction. Printed image 26, x
Printed image 27 by moving -4 mm in the direction and 4 mm in the y direction,
A printed image 28 is formed by moving 4 mm in the x direction and 4 mm in the y direction. A main vernier based on the main scale pattern 15, a sub-vernier based on the vernier pattern 16a, a sub-vernier based on the vernier pattern 16b, a sub-vernier based on the vernier pattern 16c, a sub-vernier based on the vernier pattern 16c, and a sub-vernier based on the vernier pattern 16d.
Vernier A, B, and secondary vernier by
C and D are formed.

第1実施例では投影像の中心から4mmの上下左
右の位置での歪曲などを測定したが、第2実施例
では投影像の4隅での歪曲などを測定しうる。即
ち、第1及び第2実施例によれば副尺パターンは
主尺パターンに対する配置が予めわかつている限
り、レテイクルの任意の位置に配置でき、それに
より投影像のどの位置においても絶対的な歪曲、
倍率誤差なども測定しうる。
In the first embodiment, distortions and the like were measured at positions 4 mm above, below, left and right from the center of the projected image, but in the second embodiment, distortions and the like at the four corners of the projected image can be measured. That is, according to the first and second embodiments, the vernier pattern can be placed at any position on the reticle as long as the placement with respect to the main pattern is known in advance, and thereby there is no absolute distortion at any position of the projected image. ,
Magnification errors can also be measured.

ところで第3図、第4図で主、副尺パターンは
逆T字形をしているが、これはx方向とy方向に
伸びる2つの格子縞パターンを互いに直交させて
設けてあるからである。第5図にこの主尺パター
ンの一例を拡大して示し、第6図にこの副尺パタ
ーンの一例を拡大して示す。
By the way, the main and vernier patterns in FIGS. 3 and 4 have an inverted T-shape, but this is because two plaid patterns extending in the x direction and the y direction are provided orthogonally to each other. FIG. 5 shows an enlarged example of this main scale pattern, and FIG. 6 shows an enlarged example of this vernier pattern.

第5図において、格子縞パターン120aはレ
テイクル14上にx方向に一定ピツチで設けら
れ、格子縞パターン120bはパターン120a
と同様にy方向に沿つて設けられる。各格子縞パ
ターン120a,120bには、パターンの中央
を0とし正と負の方向に2,4,6,8と目安と
なる数字が打たれている。格子縞パターン50
a,50bは格子縞パターン120a,120b
の補助として設けられたもので、荒いバーニアと
して働く。
In FIG. 5, a checkered pattern 120a is provided on the reticle 14 at a constant pitch in the x direction, and a checkered pattern 120b is provided in the pattern 120a.
Similarly, it is provided along the y direction. Each checkered pattern 120a, 120b is marked with numbers such as 2, 4, 6, and 8 in the positive and negative directions, with 0 at the center of the pattern. plaid pattern 50
a, 50b are plaid patterns 120a, 120b
It was installed as an auxiliary tool, and acts as a rough vernier.

第6図の副尺パターンにおいて、これは主尺パ
ターンの格子縞パターン120a,120bのピ
ツチよりもわずかに大きい(または小さい)ピツ
チで設けられた格子縞パターン130a,130
bを有し、パターン130a,130bの各格子
はそれぞれ格子縞パターン120a,120bの
格子間にはさまるように形状決めされている。荒
いバーニアとして働く格子縞パターン51a,5
1bについても同様に、主尺パターンの格子縞パ
ターン50a,50bのピツチよりもわずかに大
きい(または小さい)ピツチで設けられ、パター
ン51a,51bの各格子はそれぞれパターン5
0a,50bの格子間にはさまるように形状決め
されている。
In the vernier pattern of FIG. 6, this is a checkered pattern 130a, 130 provided at a slightly larger (or smaller) pitch than the pitch of the checkered pattern 120a, 120b of the main pattern.
b, and each lattice of the patterns 130a, 130b is shaped so as to be sandwiched between the lattices of the plaid patterns 120a, 120b, respectively. Checkered pattern 51a, 5 that acts as a rough vernier
1b is similarly provided with a pitch slightly larger (or smaller) than the pitch of the checkered patterns 50a, 50b of the main scale pattern, and each grid of the patterns 51a, 51b is provided with a pitch of the pattern 5, respectively.
It is shaped so as to be sandwiched between the grids 0a and 50b.

主バーニアと副バーニアを重ねて焼き付けたと
き、格子縞パターン120aの0の所に対応する
主バーニアの部分にパターン130aの中央部の
格子x0に対応する主バーニアの格子像がはさま
れ、格子縞パターン120bの0の所に対応する
主バーニアの部分にパターン130bの中央部の
格子y0に対応する副バーニアの格子像がはさまれ
ると、このとき焼付像はその重ね合わせた位置に
おいてx、y方向との歪曲、倍率誤差が零とな
る。
When the main vernier and the sub-vernier are printed one on top of the other, the lattice image of the main vernier corresponding to the lattice x 0 in the center of the pattern 130a is sandwiched between the part of the main vernier corresponding to 0 of the checkered pattern 120a, and the checkered pattern When the lattice image of the sub-vernier corresponding to the lattice y 0 at the center of the pattern 130b is sandwiched between the main vernier portion corresponding to 0 of the pattern 120b, the printed image will be x, Distortion and magnification error in the y direction become zero.

第7図は第5図と第6図の格子縞パターン12
0a,130aの格子の一例の更に詳しい拡大図
であり、第7図aはパターン120aの方の格子
を、第7図bはパターン130aの方の格子を示
す。
Figure 7 shows the plaid pattern 12 of Figures 5 and 6.
FIG. 7A is a more detailed enlarged view of an example of the gratings 0a and 130a, with FIG. 7a showing the grating of pattern 120a and FIG. 7b showing the grating of pattern 130a.

第7図aに示す如く、主尺パターン側の格子縞
パターン120aの各格子には段階部100とテ
ーパ部101が中心軸lに対して対称に設けら
れ、格子間のピツチPMは例えば10.0μmに定めら
れている。また第7図bに示す如く、副尺パター
ンの方の各格子は幅を主尺パターンの格子間間隔
dと等しくし、ピツチPsを例えば10.1μmとして
いる。主尺パターンのこれら格子の段階部とテー
パ部は、バーニアを読み取り易くするためのもの
で、従つて主尺パターン、副尺パターンのいずれ
かの側の格子に設ければよい。
As shown in FIG. 7a, each lattice of the checkered pattern 120a on the main scale pattern side is provided with a stepped portion 100 and a tapered portion 101 symmetrically with respect to the central axis l, and the pitch P M between the lattices is, for example, 10.0 μm. It is stipulated in Further, as shown in FIG. 7b, each grid in the vernier pattern has a width equal to the inter-grid spacing d of the main pattern, and a pitch Ps of, for example, 10.1 μm. The stepped portions and tapered portions of these gratings in the main pattern are for making the vernier easier to read, and therefore may be provided in the grating on either side of the main pattern or the vernier pattern.

第8図は、第7図a,bの格子縞パターンを1/
10に縮小して重ね焼きしたときの様子を示し、副
バーニアの或る格子S1が主バーニアの格子間に完
全に挾み込まれている。この判定は格子S1に接す
る上下の階段部とテーパ部を見ることにより容易
に行われる。この格子S1に着目すれば、格子S1
1つ上方の格子S2、2つ上方の格子S3の各位置
E1,E2,E3において、ずれが例えばそれぞれ0、
+0.1μm、+0.2μmと判定でき、0.1μm以上の精度
で重なり重合(ずれ量)を測定できる。
Figure 8 shows the checkered pattern of Figures 7a and b by 1/1.
This shows the state when the image is enlarged to 10 and overprinted, and a certain grating S 1 of the sub-vernier is completely inserted between the gratings of the main vernier. This determination can be easily made by looking at the upper and lower staircase portions and tapered portions that are in contact with the grid S1 . If we focus on this lattice S 1 , the lattice S 1 ,
Each position of the lattice S 2 above, the lattice S 3 above 2
For E 1 , E 2 , and E 3 , the deviation is, for example, 0,
It is possible to determine +0.1 μm and +0.2 μm, and it is possible to measure overlapping polymerization (shift amount) with an accuracy of 0.1 μm or more.

実際には第5図、第6図の主、副バーニアを重
ね焼きしたとき、格子縞パターン120a,12
0bの像の中のどこが位置E1になつているかを
数字でもとめる。例えば、格子縞パターン120
aの正側の6の像のところで格子縞パターン13
0aの1つの格子像が安全にはさみ込まれている
とするなら、x方向の歪み量は+0.6μmと求ま
る。このとき同時に格子縞パターン120bの負
側の2の像のところで格子縞パターン130bの
1つの格子像が完全にはさみ込まれているなら、
y方向の歪み量は−0.2μmと求まる。
Actually, when the main and sub verniers shown in FIGS. 5 and 6 are overprinted, checkered patterns 120a, 12
Find out numerically where position E 1 is in the image of 0b. For example, checkered pattern 120
Plaid pattern 13 at image 6 on the positive side of a
Assuming that one lattice image of 0a is safely inserted, the amount of distortion in the x direction can be found to be +0.6 μm. At this time, if one lattice image of the lattice pattern 130b is completely sandwiched between the two images on the negative side of the lattice pattern 120b, then
The amount of distortion in the y direction is found to be -0.2 μm.

以上により、ウエハ上の主と副バーニアを重ね
合わせた位置における投影レンズの歪み量はx方
向で+0.6μm、y方向で−0.2μmの成分をもつベ
クトル量として測定される。
As described above, the amount of distortion of the projection lens at the position where the main and sub vernier overlap on the wafer is measured as a vector quantity having components of +0.6 μm in the x direction and −0.2 μm in the y direction.

ところで以上において主バーニアと副バーニア
等における主と副の用い方は全く相対的なもの
で、いずれを主あるいは副と名付けてもよい。
By the way, in the above description, the usage of "main" and "sub" in terms of the main vernier, sub-vernier, etc. is completely relative, and either one may be named "main" or "sub".

また、上記実施例ではバーニアを用いてずれ量
を測定したが、バーニアではなく、例えば長さ等
が異なる2種類の矩形パターン等を用意してお
き、その一方の種類の矩形パターンをレテイクル
の中心に、他の種類の矩形パターンをレテイクル
上の測定したい位置とに配置してこれらをウエハ
上に重ね焼き付けしてずれ量を測定してもよい。
In addition, although the amount of deviation was measured using a vernier in the above embodiment, instead of using a vernier, for example, two types of rectangular patterns with different lengths etc. are prepared, and one type of rectangular pattern is set at the center of the reticle. Alternatively, other types of rectangular patterns may be placed on the reticle at the desired measurement positions and then printed over the wafer to measure the amount of deviation.

以上の如く本発明によれば、マスク基板上の複
数のマークのうち1つの投影光学系の光軸が通る
位置に設けたので、焼付像の任意の位置の絶対的
なずれ量が測定できて投影光学系の光学特性を正
確に測りうる。
As described above, according to the present invention, since one of the plurality of marks on the mask substrate is provided at a position through which the optical axis of the projection optical system passes, the absolute amount of deviation at any position of the printed image can be measured. The optical characteristics of the projection optical system can be accurately measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を説明するための図、第2図は
焼付像のずれから投影光学系の光学特性を測定す
ることを説明するための図、第3図は本発明の第
1実施例を説明するための図、第4図は第2実施
例を説明するための図、第5図は主尺パターンの
一例を示す拡大図、第6図は副尺パターンの一例
を示す拡大図、第7図は主尺および副尺パターン
の各格子の形状の一例を示す拡大図、第8図は第
7図に示す格子を重ね焼き付けしたときの様子を
示す図である。 〔主要部分の符号の説明〕、マスク基板……1
4、マーク……15,16a〜16d,50a,
50b,51a,51b,120a,120b,
130a,130b、段階部……100、テーパ
部……101。
FIG. 1 is a diagram for explaining a conventional example, FIG. 2 is a diagram for explaining measuring the optical characteristics of a projection optical system from the deviation of a printed image, and FIG. 3 is a diagram for explaining a first embodiment of the present invention. 4 is a diagram for explaining the second embodiment, FIG. 5 is an enlarged view showing an example of the main scale pattern, and FIG. 6 is an enlarged view showing an example of the vernier pattern. FIG. 7 is an enlarged view showing an example of the shape of each grid of the main scale pattern and the vernier pattern, and FIG. 8 is a diagram showing the state when the grids shown in FIG. 7 are overprinted. [Explanation of symbols of main parts], Mask substrate...1
4. Mark...15, 16a to 16d, 50a,
50b, 51a, 51b, 120a, 120b,
130a, 130b, step part...100, taper part...101.

Claims (1)

【特許請求の範囲】 1 マスク基板に形成されたパターンを感光基板
に投影露光するための投影光学系のデイストーシ
ヨンを検査する方法において、 ほぼ中央に第1マークを有し、該第1マークか
ら所定間隔だけ離れた複数の位置に第2マークを
有する基準マスクを、前記第1マークが前記投影
光学系の光軸とほぼ一致するように配置し; 所定の第1位置に前記感光基板を配置して前記
基準マスクのマーク像を前記感光基板に投影露光
する第1工程と; 前記第1マークの投影像と前記第2マークの投
影像との設計上の間隔だけ前記第1マークと第2
マークとを結ぶ方向にずれた第2位置に前記感光
基板を移動させる工程と; 前記第1工程で露光された前記感光基板に前記
基準マスクのマーク像を再度投影露光する第2工
程と; 該感光基板上に露光された前記第1マークの像
と前記第2マークの像との位置ずれ量を検出し、
前記第2マークの位置におけるデイストーシヨン
量を求める工程とを含むことを特徴とするデイス
トーシヨン検査方法。 2 前記第1マークと第2マークの夫々は、互い
に直交する方向に規則的に格子を配列した2つの
格子縞パターンとして形成されていることを特徴
とする特許請求の範囲第1項記載の方法。 3 前記第1マークと第2マークのいずれか一方
を構成する前記格子縞パターンの各格子に段階部
を設けたことを特徴とする特許請求の範囲第2項
記載の方法。 4 前記第1マークと第2マークのいずれか一方
を構成する前記格子縞パターンの各格子にテーパ
部を設けたことを特徴とする特許請求の範囲第2
項記載の方法。 5 前記第1マークの格子縞パターンのピツチと
前記第2マークの格子縞パターンのピツチとをわ
ずかに異ならせてバーニアの関係に定めておくこ
とを特徴とする特許請求の範囲第2項記載の方
法。
[Scope of Claims] 1. A method for inspecting distortion of a projection optical system for projecting and exposing a pattern formed on a mask substrate onto a photosensitive substrate, comprising: a first mark approximately in the center; a reference mask having second marks at a plurality of positions spaced apart from each other by a predetermined distance from the reference mask such that the first mark substantially coincides with the optical axis of the projection optical system; and placing the photosensitive substrate at a predetermined first position. a first step of projecting and exposing a mark image of the reference mask onto the photosensitive substrate; 2
a second step of projecting and exposing the mark image of the reference mask onto the photosensitive substrate exposed in the first step; detecting the amount of positional deviation between the image of the first mark and the image of the second mark exposed on the photosensitive substrate;
A distortion inspection method comprising the step of determining an amount of distortion at the position of the second mark. 2. The method according to claim 1, wherein each of the first mark and the second mark is formed as two checkered patterns in which grids are regularly arranged in directions perpendicular to each other. 3. The method according to claim 2, wherein each lattice of the lattice pattern constituting either the first mark or the second mark is provided with a stepped portion. 4. Claim 2, characterized in that each lattice of the checkered pattern constituting either the first mark or the second mark is provided with a tapered portion.
The method described in section. 5. The method according to claim 2, wherein the pitch of the checkered pattern of the first mark and the pitch of the checkered pattern of the second mark are slightly different and set in a vernier relationship.
JP56180978A 1981-11-13 1981-11-13 Mask substrate for check Granted JPS5883853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56180978A JPS5883853A (en) 1981-11-13 1981-11-13 Mask substrate for check

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56180978A JPS5883853A (en) 1981-11-13 1981-11-13 Mask substrate for check

Publications (2)

Publication Number Publication Date
JPS5883853A JPS5883853A (en) 1983-05-19
JPS6338697B2 true JPS6338697B2 (en) 1988-08-01

Family

ID=16092600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56180978A Granted JPS5883853A (en) 1981-11-13 1981-11-13 Mask substrate for check

Country Status (1)

Country Link
JP (1) JPS5883853A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176974A (en) * 1996-12-19 1998-06-30 Nikon Corp Method for measuring aberration of projecting optical system
US6947119B2 (en) 2002-07-30 2005-09-20 Canon Kabushiki Kaisha Distortion measurement method and exposure apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095435A (en) * 1983-10-28 1985-05-28 Nippon Kogaku Kk <Nikon> Mask for exposure
JP2611760B2 (en) * 1986-09-11 1997-05-21 キヤノン株式会社 Semiconductor exposure equipment
JPS63151948A (en) * 1986-12-15 1988-06-24 Nec Corp Exposing mask
US4742233A (en) * 1986-12-22 1988-05-03 American Telephone And Telgraph Company Method and apparatus for automated reading of vernier patterns
JPS63281439A (en) * 1987-05-13 1988-11-17 Fujitsu Ltd Checking method of displacement of baking
JPS647043A (en) * 1987-06-30 1989-01-11 Nec Corp Photomask
JP2666859B2 (en) * 1988-11-25 1997-10-22 日本電気株式会社 Semiconductor device with vernier pattern for alignment
JP6037876B2 (en) * 2013-02-12 2016-12-07 東芝情報システム株式会社 Semiconductor device, stacking displacement measuring apparatus, and stacking displacement measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176974A (en) * 1996-12-19 1998-06-30 Nikon Corp Method for measuring aberration of projecting optical system
US6947119B2 (en) 2002-07-30 2005-09-20 Canon Kabushiki Kaisha Distortion measurement method and exposure apparatus

Also Published As

Publication number Publication date
JPS5883853A (en) 1983-05-19

Similar Documents

Publication Publication Date Title
JP2539163B2 (en) Optical focus test mask and monitoring system and method
US6118517A (en) Mask pattern for alignment
JP4528464B2 (en) Alignment method, overlay inspection method, and photomask
JPH08250391A (en) Position detecting mark and position detecting method
KR20120092662A (en) Optical characteristic measurement method, exposure method and device manufacturing method
US6124922A (en) Exposure device and method for producing a mask for use in the device
GB2287328A (en) Method for fabricating a photomask
JPS6338697B2 (en)
JP2000133576A (en) Positional deviation measurement method and mark thereof
JPWO2005004211A1 (en) Focus test mask, focus measurement method, and exposure apparatus
US6344896B1 (en) Method and apparatus for measuring positional shift/distortion by aberration
JPH11102061A (en) Photomask pattern for projection exposure, photomask for projection exposure, focusing position detecting method, focusing position control method, and manufacture of semiconductor device
JP2009270988A (en) Calculating method for overlap misalignment and manufacturing method for semiconductor device
KR20000071810A (en) Method and apparatus for measuring positional shift/distortion by aberration
US20070002293A1 (en) Method measuring distortion using exposure equipment
JP3336357B2 (en) Alignment device and alignment method
JP2830784B2 (en) Position error measuring method and semiconductor device manufacturing method
JP3427113B2 (en) Stage accuracy evaluation method
JP2696962B2 (en) Line width measurement method and exposure apparatus inspection method using the method
JP3259190B2 (en) Distortion inspection method for projection optical system
JP2010147109A (en) Evaluation method, exposure device and device manufacturing method
JP2003178968A (en) Method of measuring aberration and projection exposure system
JPH04209518A (en) Measuring of dislocation
KR960002287B1 (en) Stepping pitch measuring method of alignment/exposure apparatus
JPH06120115A (en) Inspection method of exposure position precision