JPS6338689B2 - - Google Patents

Info

Publication number
JPS6338689B2
JPS6338689B2 JP56007046A JP704681A JPS6338689B2 JP S6338689 B2 JPS6338689 B2 JP S6338689B2 JP 56007046 A JP56007046 A JP 56007046A JP 704681 A JP704681 A JP 704681A JP S6338689 B2 JPS6338689 B2 JP S6338689B2
Authority
JP
Japan
Prior art keywords
signal
liquid crystal
electrode
electrodes
common
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56007046A
Other languages
Japanese (ja)
Other versions
JPS57120470A (en
Inventor
Harukazu Matsushita
Sadatsugu Miura
Kenji Aoki
Masaki Takei
Haruo Nakamura
Yoshuki Gomi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP56007046A priority Critical patent/JPS57120470A/en
Publication of JPS57120470A publication Critical patent/JPS57120470A/en
Publication of JPS6338689B2 publication Critical patent/JPS6338689B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/465Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using masks, e.g. light-switching masks

Landscapes

  • Liquid Crystal (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Projection-Type Copiers In General (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Facsimile Heads (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は液晶ライトバルブの構造に関する。[Detailed description of the invention] 〔Technical field〕 The present invention relates to the structure of a liquid crystal light valve.

〔従来技術〕[Prior art]

液晶ライトバルブを含めた光書込ユニツトの構
成を第1図に示す。光書込ユニツトはけい光ラン
プ等の光源川と液晶ライトバルブ及び結像レンズ
115から成り、液晶ライトバルブは、液晶パネ
ル、112と液晶駆動回路113を実装した基板
114から成る。光源から出た光は、液晶ライト
バルブにより変調される。この光信号116は結
像レンズ115により感光ドラム102上に結像
される。結像レンズには集束性光フアイバアレイ
を用いることによつて正立像が得られる。第2図
及び第3図に液晶パネルの構成を示す。液晶パネ
ルは、共通信号電極119及び120を備えるガ
ラス基板117と信号電極121及び122を備
えるガラス基板118及びスペーサー126の間
に液晶組成物125を封入しかつ、ガラス基板の
両側に、偏光板123及び124を備えて成る。
共通信号電極は、透明電極119と光学的に不透
明な金属電極120から成り、信号電極121及
び122は透明電極である。偏光板123と12
4は互いに偏光面が直交するように配置されてい
る。光は共通電極の透明部分119と信号電極と
で形成されるマイクロシヤツターの部分で変調さ
れる。液晶組成物として特願昭55−141085表1の
ネマチツク液晶に光学活性物質4−(2−methyl
−bulyl)−4′−cyanobiphenylsを3重量%添加し
て得られた長周期コレステリツク液晶を用いるこ
とによつて高速の液晶ライトバルブを得ることが
できる。この液晶の誘電位方性の周波数特性を第
4図に示す。誘電異方性がゼロである周波数を交
差周波数と呼びfcで表わす。fcより低い周波数を
fL、高い周波数をfHとする。このfLとfHの周波数
の信号を各信号電極に印加することによつて、液
晶ライトバルブは動作する。第5図bに印加信号
とa液晶ライトバルブを透過した光の応答を示
す。T2で示した時間fHの信号、T3の時間fL
信号が印加されている。T1を書き込み周期、T
2を開口時間、T3を非開口時間と呼ぶ。fHの信
号を印加することにより液晶ライトバルブは開
き、fLの信号により閉じる。上述した方法により
画期的に高速な液晶ライトバルブを得ることがで
きた。しかし高品印の印写を行なうために、マイ
クロシヤツターを1mmあたり10個程度の高密度に
配置する必要があり、A4版に印写するため幅20
cmに並らべなくてはならないためマイクロシヤツ
ターの数は2000個になる。このため上述した方法
では、信号電極の数は2000本さらに駆動回路及び
この実装端子も2000個及び2000本になり、製作上
歩留も低下し、さらにコストが高くなる欠点があ
つた。しかしこれに対しては1/2時分割ダイナミ
ツク駆動法を用いることによつて信号電極を半減
することができた。
FIG. 1 shows the configuration of the optical writing unit including the liquid crystal light valve. The optical writing unit consists of a light source such as a fluorescent lamp, a liquid crystal light valve, and an imaging lens 115, and the liquid crystal light valve consists of a substrate 114 on which a liquid crystal panel 112 and a liquid crystal driving circuit 113 are mounted. The light emitted from the light source is modulated by a liquid crystal light valve. This optical signal 116 is imaged onto the photosensitive drum 102 by an imaging lens 115. An erect image can be obtained by using a focusing optical fiber array as the imaging lens. FIGS. 2 and 3 show the structure of the liquid crystal panel. The liquid crystal panel includes a liquid crystal composition 125 sealed between a glass substrate 117 having common signal electrodes 119 and 120, a glass substrate 118 having signal electrodes 121 and 122, and a spacer 126, and polarizing plates 123 on both sides of the glass substrate. and 124.
The common signal electrode consists of a transparent electrode 119 and an optically opaque metal electrode 120, and the signal electrodes 121 and 122 are transparent electrodes. Polarizing plates 123 and 12
4 are arranged so that their polarization planes are orthogonal to each other. The light is modulated by the microshutter portion formed by the transparent portion 119 of the common electrode and the signal electrode. As a liquid crystal composition, an optically active substance 4-(2-methyl
A high-speed liquid crystal light valve can be obtained by using a long-period cholesteric liquid crystal obtained by adding 3% by weight of -bulyl)-4'-cyanobiphenyls. The frequency characteristics of the dielectric potential sotropy of this liquid crystal are shown in FIG. The frequency at which the dielectric anisotropy is zero is called the crossover frequency and is expressed by fc. frequency lower than fc
Let f L be the higher frequency, and let f H be the higher frequency. The liquid crystal light valve operates by applying signals of frequencies f L and f H to each signal electrode. FIG. 5b shows the response of the applied signal and the light transmitted through the liquid crystal light valve a. A signal at time f H indicated by T2 and a signal at time f L at T3 are applied. T1 is the write cycle, T
2 is called the opening time, and T3 is called the non-opening time. The liquid crystal light valve opens by applying the fH signal, and closes by the fL signal. By the method described above, we were able to obtain a revolutionary high-speed liquid crystal light valve. However, in order to print a high-quality seal, it is necessary to arrange microshutters at a high density of about 10 per 1mm, and in order to print on A4 size paper, the width of 20mm
The number of microshutters is 2000 because they have to be arranged in cm. Therefore, in the method described above, the number of signal electrodes is 2,000, and the number of drive circuits and their mounting terminals are also 2,000 and 2,000, which has the disadvantage of lowering manufacturing yield and increasing cost. However, by using the 1/2 time division dynamic drive method, we were able to reduce the number of signal electrodes by half.

まず電極の構成を第6図に示す。401と40
2はそれぞれ共通信号電極、403〜405は信
号電極、410,412はマイクロシヤツターで
ある。次に各種信号波形を第7図に示す。共通電
極信号420はくり返し周期がTfでTaとTbがそ
れぞれの半周期である。1/2時分割において、共
通電極信号420は1周期の前半421は後半が
それぞれ選択されている。420の信号波形をC
1、421をC2と名づける。選択信号は交差周
波数fcよりも高い周波数を持つ高周波fHとfcより
も低い周波数の低周波fLで構成され、それぞれの
時間はThとTcである。非選択時は低周波fLのみ
である。
First, the structure of the electrode is shown in FIG. 401 and 40
2 are common signal electrodes, 403 to 405 are signal electrodes, and 410 and 412 are microshutters. Next, various signal waveforms are shown in FIG. The common electrode signal 420 has a repetition period Tf, and Ta and Tb each have a half period. In 1/2 time division, the first half 421 and the second half of one cycle of the common electrode signal 420 are selected, respectively. 420 signal waveform C
1,421 is named C2. The selection signal is composed of a high frequency f H having a frequency higher than the crossover frequency fc and a low frequency f L having a lower frequency than fc, and the respective times are Th and Tc. When not selected, only the low frequency f L is available.

一方信号電極側に加わる信号波形は、マイクロ
シヤツターを開く信号(FON)が422、閉じ
る信号(Foff)が423である。FON、Foff共
に共通電極信号C1又はC2の半分の周期(Ta
又はTb)である開信号FONはC1(又はC2)
の高周波部と同じ(Th)でかつ逆相の高周波部
とC1(又はC2)の低周波と逆相の低周波によ
つて構成される。閉信号FoffはC1(又はC2)
の低周波fLと逆相の低周波のみである。
On the other hand, the signal waveform applied to the signal electrode side is a signal 422 for opening the microshutter (FON) and a signal 423 for closing the microshutter (Foff). Both FON and Foff have half the period of the common electrode signal C1 or C2 (Ta
or Tb), the open signal FON is C1 (or C2)
It is composed of a high frequency part that is the same (Th) as the high frequency part of and has an opposite phase, and a low frequency part of C1 (or C2) and a low frequency part that has an opposite phase. Close signal Foff is C1 (or C2)
There are only low frequencies that are in opposite phase to the low frequency f L of .

今第6図の共通電極401に共通電極信号C1
402にC2をそれぞれ印加し、信号電極にデー
タに従つてFON又はFoffを加えた時に、マイク
ロシヤツター410に印加される電圧波形を第8
図a,b,c,dに示した。また第8図の印加波
形に対応するマイクロシヤツター光透過特性を第
9図a,b,c,dに示す。第9図の各々のグラ
フの横軸は時間であり、第8図のTh,Ta,Tfに
対応する。縦軸は偏光板2枚を平行に重ねた時の
光の透過率を100%とした時の、マイクロシヤツ
ターの透過率である。第9図の結果は、fh=
130KHz、fL=5KHz、印加電圧±30V、Tf=2m
sec、Ta=1msec、Th=0.7msecの条件で得ら
れた。430,431,432,433の各透過
特性はそれぞれ、424,425,426,42
7の信号電圧に対応している。
Now, the common electrode signal C1 is applied to the common electrode 401 in FIG.
When C2 is applied to each of the microshutters 402 and FON or Foff is applied to the signal electrode according to the data, the voltage waveform applied to the microshutter 410 is
Shown in Figures a, b, c, and d. Further, microshutter light transmission characteristics corresponding to the applied waveforms shown in FIG. 8 are shown in FIGS. 9a, b, c, and d. The horizontal axis of each graph in FIG. 9 is time, which corresponds to Th, Ta, and Tf in FIG. 8. The vertical axis is the transmittance of the microshutter when the light transmittance when two polarizing plates are stacked in parallel is 100%. The result in Figure 9 is fh=
130KHz, f L = 5KHz, applied voltage ±30V, Tf = 2m
sec, Ta=1 msec, and Th=0.7 msec. The transmission characteristics of 430, 431, 432, 433 are 424, 425, 426, 42, respectively.
7 signal voltages.

ここで、第6図に示す如き電極構造において、
共通電極側は、窓410,411を除き、不透明
金属で形成されているために、例え信号電極40
3〜406が透明であつたとしても、光遮へいは
されている。しかしながら、同図に示す多桁共通
電極構造の場合は、共通電極間401,402の
間にはすき間がある為に液晶層への電圧印加の有
無に無関係に光もれが生ずる問題点があつた。
Here, in the electrode structure as shown in FIG.
The common electrode side, except for the windows 410 and 411, is made of opaque metal, so even if the signal electrode 40
Even if 3 to 406 are transparent, they are still shielded from light. However, in the case of the multi-digit common electrode structure shown in the figure, since there is a gap between the common electrodes 401 and 402, there is a problem that light leakage occurs regardless of whether or not a voltage is applied to the liquid crystal layer. Ta.

〔目的〕〔the purpose〕

本発明は、上記問題点を克服したものであり、
信号電極上の一部に不透明層を設けることによつ
て共通電極間の光もれを防止することのできる液
晶ライトバルブを提供する事を目的とする。
The present invention overcomes the above problems, and
An object of the present invention is to provide a liquid crystal light valve that can prevent light leakage between common electrodes by providing an opaque layer on a portion of the signal electrode.

〔実施例〕〔Example〕

第10図a,b,cは本実施例の信号電極、共
通電極及びその組み合せを示している。aは第2
のガラスに形成された信号電極500で斜線部以
外は透明電極であり斜線部501は金属膜で光を
しや断する。電極端子はインターデイジタルに図
面の上下方向にのびており、片側の電極間ピツチ
P1は400μmで片側500本ある。これにより電極
端子の高密度実装をする上で信頼性が向上した。
中心線503付近の隣り合つた電極間の間隔50
2は10μmである。bは第1のガラスに形成され
た共通信号電極である。中心線507に対して共
通信号電極504と505が分割されており、そ
の間隔508は10μmである。斜線部は金属電極
であり、マイクロシヤツター窓506の部分は透
明電極で構成される。マイクロシヤツターは千鳥
状にP2=100μmピツチ2000個(片側200μmピツ
チで1000個)並んでいる。この2枚のガラスを中
心線503と507が合うように重ねたものがc
図である。斜線部は光をしや断し、マイクロシヤ
ツター511を透過する光が変調される。従つて
マイクロシヤツター以外の部分からの光の漏れは
バツククラウンドのノイズとなり好しくないが、
2つの共通信号電極間の間隔508からの光漏れ
は幾何学的に避けられない。それ故本実施例では
信号電極の一部501に金属でマスクを施し光漏
れを起こす部分512を実用上問題にならない
程、最小限におさえた。しかも信号電極の辺が中
心線と直角に交わることにより、ある面積におけ
る光漏れ部512に対して信号電極間の間隔が最
大となることができ、パネル製作上有利となる。
FIGS. 10a, b, and c show the signal electrodes, common electrodes, and their combinations in this embodiment. a is the second
In the signal electrode 500 formed on the glass, the electrodes other than the shaded area are transparent electrodes, and the shaded area 501 is a metal film that blocks light. The electrode terminals extend in the vertical direction of the drawing in an interdigital manner, and the pitch P1 between the electrodes on one side is 400 μm, and there are 500 on each side. This improves reliability in high-density mounting of electrode terminals.
Spacing 50 between adjacent electrodes near center line 503
2 is 10 μm. b is a common signal electrode formed on the first glass. Common signal electrodes 504 and 505 are divided with respect to a center line 507, and the interval 508 is 10 μm. The shaded area is a metal electrode, and the microshutter window 506 is a transparent electrode. The microshutters are arranged in a staggered pattern with 2000 pieces at a pitch of P 2 = 100 μm (1000 pieces at a pitch of 200 μm on each side). When these two pieces of glass are stacked so that the center lines 503 and 507 match
It is a diagram. The shaded area slightly cuts the light, and the light transmitted through the microshutter 511 is modulated. Therefore, light leakage from parts other than the microshutter causes background noise, which is not desirable.
Light leakage from the spacing 508 between the two common signal electrodes is geometrically unavoidable. Therefore, in this embodiment, a portion 501 of the signal electrode is masked with metal to minimize the portion 512 that causes light leakage to the extent that it does not pose a practical problem. Moreover, since the sides of the signal electrodes intersect at right angles to the center line, the distance between the signal electrodes can be maximized with respect to the light leakage portion 512 in a certain area, which is advantageous in panel manufacturing.

次に信号電極500を斜線部501を残してす
べて透明電極とすることにより、第1のガラスと
組み合わせた時の誤差マージンを上下方向ともに
大きくとることができ、歩留りが向上した。
Next, by making the signal electrode 500 transparent except for the shaded portion 501, the error margin when combined with the first glass can be increased both in the vertical direction, and the yield is improved.

また千鳥状に配置した2列のマイクロシヤツタ
ーアレイの間隔l(b図)は1/2時分割駆動する時
には、書かれたドツトが半ピツチずれないために
書き込み速度と感光体の移動速度、すなわち書か
れたドツトの感光体の移動方向のピツチによつて
制限を受ける。今回は100μmピツチで書いたた
め、l=250μmとした。このためには片側のマ
イクロシヤツターのデータを2ライン分遅らせる
だけでなく、一方パネルを作る際のマージンが増
える。
In addition, the interval l between the two rows of microshutter arrays arranged in a staggered manner (Figure b) is determined by the writing speed and photoconductor movement speed, since the written dots do not shift by half a pitch when driving in 1/2 time division. That is, it is limited by the pitch of the written dots in the moving direction of the photoreceptor. This time, I wrote at a pitch of 100 μm, so l = 250 μm. To do this, not only do we have to delay the data from the microshutter on one side by two lines, but we also have to increase the margin when creating one panel.

次に信号電極の全体のプロフイルを第11図に
示した。今回製作したパネルの寸法を入れてみた
が(単位はmm)このような形状のものは透明電極
だけで構成すると端子自身のインピーダンスが無
視できないくらい大きくなる。従つて図に示した
如く端子のある程度の部分に金属膜を形成し、端
子のインピーダンスを下げた。
Next, FIG. 11 shows the overall profile of the signal electrode. I have included the dimensions of the panel I made this time (units are mm), but if something of this shape were constructed only from transparent electrodes, the impedance of the terminals themselves would be too large to be ignored. Therefore, as shown in the figure, a metal film was formed on a certain portion of the terminal to lower the impedance of the terminal.

〔効果〕〔effect〕

上述の如く本発明は、該共通電極は透明導電膜
からなる窓と不透明金属導電膜からなる該窓以外
の導電領域とからなり、該信号電極は、該窓に対
応した領域は透明導電膜、該複数の共通電極間の
すき間に対応した領域は不透明部材で形成された
から、液晶に印加される電圧の有無にかかわらず
多桁共通電極の構成にあつても窓部以外はほぼ完
全に光遮へいする事ができる効果を有する。又、
この光遮へいは、透明導電膜の信号電極上で不透
明部材によつて形成するだけでよいので工程が簡
略化することができる。
As described above, in the present invention, the common electrode consists of a window made of a transparent conductive film and a conductive region other than the window made of an opaque metal conductive film, and the signal electrode has a region corresponding to the window made of a transparent conductive film, Since the region corresponding to the gap between the plurality of common electrodes is formed of an opaque material, light is almost completely shielded except for the window portion even in the configuration of a multi-digit common electrode, regardless of whether or not a voltage is applied to the liquid crystal. It has the effect of being able to or,
This light shielding can be simply formed using an opaque member on the signal electrode of the transparent conductive film, so that the process can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光書込信号発生部である。第2図、第
3図は液晶パネルの構造を示した。第4図は本発
明で用いた液晶材料の誘電異方性の周波数特性を
示した図である。第5図は本発明に使用した液晶
材料の応答特性及びその時の駆動信号を示した図
である。第6図は本発明に使用した電極構成を示
した図である。第7図は本発明による液晶駆動波
形であり、420,421はそれぞれ共通電極信
号波形、422,423はそれぞれ開及び閉信号
波形である。第8図は実際に液晶に加わる電圧波
形であり、共通電極波形と信号電極波形の組合わ
せにより図に示す如く4種類の波形となる。第9
図は第8図に示した4種類の信号が印加された時
のマイクロシヤツターの光透過特性を示した。4
24が430に、425が431に、426が4
32に、427が433にそれぞれ対応する。 第10図はマイクロシヤツターを構成する部分
の電極の形状を表わした図である。aは信号電
極、bは共通信号行極、cは上記の2つを重ねた
図である。第11図は信号電極の全体の略図であ
る。
FIG. 1 shows an optical write signal generating section. FIGS. 2 and 3 show the structure of a liquid crystal panel. FIG. 4 is a diagram showing the frequency characteristics of dielectric anisotropy of the liquid crystal material used in the present invention. FIG. 5 is a diagram showing the response characteristics of the liquid crystal material used in the present invention and the driving signals at that time. FIG. 6 is a diagram showing the electrode configuration used in the present invention. FIG. 7 shows liquid crystal driving waveforms according to the present invention, 420 and 421 are common electrode signal waveforms, and 422 and 423 are open and closed signal waveforms, respectively. FIG. 8 shows the voltage waveform actually applied to the liquid crystal, and the combination of the common electrode waveform and the signal electrode waveform results in four types of waveforms as shown in the figure. 9th
The figure shows the light transmission characteristics of the microshutter when the four types of signals shown in FIG. 8 are applied. 4
24 becomes 430, 425 becomes 431, 426 becomes 4
32 and 427 correspond to 433, respectively. FIG. 10 is a diagram showing the shape of the electrodes constituting the microshutter. A is a signal electrode, b is a common signal row electrode, and c is a diagram in which the above two are superimposed. FIG. 11 is a schematic diagram of the entire signal electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 透明な一対の基板内に液晶が封入されてな
り、該基板の一方に複数行の共通電極、他方に複
数個の信号電極が形成され、各信号電極は該共通
電極に交差して配置されて複数個のマイクロシヤ
ツタ窓を有する液晶ライトバルブにおいて、該共
通電極は透明導電膜からなる窓と不透明金属導電
膜からなる該窓以外の導電領域とからなり、該信
号電極は、該窓に対応した領域は透明導電膜、少
なくとも複数の該共通電極間のすき間に対応した
領域は不透明部材で形成されてなる事を特徴とす
る液晶ライトバルブ。
1 A liquid crystal is sealed in a pair of transparent substrates, a plurality of rows of common electrodes are formed on one of the substrates, and a plurality of signal electrodes are formed on the other, and each signal electrode is arranged to cross the common electrode. In a liquid crystal light valve having a plurality of micro-shutter windows, the common electrode consists of a window made of a transparent conductive film and a conductive region other than the window made of an opaque metal conductive film, and the signal electrode is arranged on the window. A liquid crystal light valve characterized in that the corresponding regions are formed of a transparent conductive film, and the regions corresponding to at least the gaps between the plurality of common electrodes are formed of an opaque material.
JP56007046A 1981-01-19 1981-01-19 Liquid crystal light valve Granted JPS57120470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56007046A JPS57120470A (en) 1981-01-19 1981-01-19 Liquid crystal light valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56007046A JPS57120470A (en) 1981-01-19 1981-01-19 Liquid crystal light valve

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP60169976A Division JPS6150114A (en) 1985-08-01 1985-08-01 Imaging device

Publications (2)

Publication Number Publication Date
JPS57120470A JPS57120470A (en) 1982-07-27
JPS6338689B2 true JPS6338689B2 (en) 1988-08-01

Family

ID=11655103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56007046A Granted JPS57120470A (en) 1981-01-19 1981-01-19 Liquid crystal light valve

Country Status (1)

Country Link
JP (1) JPS57120470A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228591U (en) * 1988-08-11 1990-02-23

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041023A (en) * 1983-08-16 1985-03-04 Canon Inc Optical modulating element
JPS60230631A (en) * 1984-04-29 1985-11-16 Casio Comput Co Ltd Liquid cyrstal optical shutter
JPS6138616U (en) * 1984-08-10 1986-03-11 カシオ計算機株式会社 liquid crystal device
JPH0746907Y2 (en) * 1985-11-12 1995-10-25 セイコーエプソン株式会社 LCD panel
JPS6349523U (en) * 1986-09-18 1988-04-04
JP2974520B2 (en) * 1991-10-25 1999-11-10 キヤノン株式会社 Electrode substrate and liquid crystal element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3824604A (en) * 1972-10-12 1974-07-16 E Stein Alphanumeric printing system employing liquid crystal matrix
JPS5128397A (en) * 1974-08-05 1976-03-10 Hajime Hasegawa JIGUZAGURA TSUKASOCHI
JPS51147297A (en) * 1975-06-13 1976-12-17 Hitachi Ltd Liquid crystal display panel
JPS5240094A (en) * 1975-09-22 1977-03-28 Siemens Ag Liquid crystal display unit
JPS5252389A (en) * 1975-10-24 1977-04-27 Hitachi Ltd Liquid crystal matrix panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3824604A (en) * 1972-10-12 1974-07-16 E Stein Alphanumeric printing system employing liquid crystal matrix
JPS5128397A (en) * 1974-08-05 1976-03-10 Hajime Hasegawa JIGUZAGURA TSUKASOCHI
JPS51147297A (en) * 1975-06-13 1976-12-17 Hitachi Ltd Liquid crystal display panel
JPS5240094A (en) * 1975-09-22 1977-03-28 Siemens Ag Liquid crystal display unit
JPS5252389A (en) * 1975-10-24 1977-04-27 Hitachi Ltd Liquid crystal matrix panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228591U (en) * 1988-08-11 1990-02-23

Also Published As

Publication number Publication date
JPS57120470A (en) 1982-07-27

Similar Documents

Publication Publication Date Title
US4548476A (en) Time-sharing driving method for ferroelectric liquid crystal display
US4929057A (en) Liquid crystal optical device
EP0608458B1 (en) A method of operating an optical modulator device
US4367925A (en) Integrated electronics for proximity coupled electro-optic devices
JP3140358B2 (en) LCD drive system
JPS6338689B2 (en)
US4376568A (en) Thick film line modulator
EP0321797B1 (en) Liquid crystal cell array and method for driving the same
JPS6338691B2 (en)
US5594564A (en) Space light modulating apparatus having a length to width ratio of 30:1 and staggered drivers
JPS58176620A (en) Optical imaging device
JPH02134617A (en) Electrooptical device
JP3662316B2 (en) Liquid crystal display device and driving method of liquid crystal display device
JPS59119319A (en) Liquid crystal light valve
JP2552877B2 (en) Optical scanning device
JPH07129067A (en) Spatial light modulating device and cgh device
JPS6040608B2 (en) lcd light bulb
JPS59128518A (en) Liquid crystal light valve
JPH087389Y2 (en) Liquid crystal device
JPS6053932A (en) Latent image forming device
US6561703B2 (en) Light shutter device
JPS61201217A (en) Liquid crystal cell
JPH0434407A (en) Photo-photo conversion method and display device
JPH04340932A (en) Liquid crystal display device and its driving method
JPH03209434A (en) Driving method for optical write type liquid crystal light valve