JPS6338565B2 - - Google Patents
Info
- Publication number
- JPS6338565B2 JPS6338565B2 JP17939582A JP17939582A JPS6338565B2 JP S6338565 B2 JPS6338565 B2 JP S6338565B2 JP 17939582 A JP17939582 A JP 17939582A JP 17939582 A JP17939582 A JP 17939582A JP S6338565 B2 JPS6338565 B2 JP S6338565B2
- Authority
- JP
- Japan
- Prior art keywords
- crankshaft
- journal
- parts
- pin
- hardening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000010410 layer Substances 0.000 description 18
- 238000000034 method Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 238000010791 quenching Methods 0.000 description 7
- 230000000171 quenching effect Effects 0.000 description 7
- 238000002485 combustion reaction Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C3/00—Shafts; Axles; Cranks; Eccentrics
- F16C3/04—Crankshafts, eccentric-shafts; Cranks, eccentrics
- F16C3/06—Crankshafts
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Ocean & Marine Engineering (AREA)
- Mechanical Engineering (AREA)
- Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
- Heat Treatment Of Articles (AREA)
Description
本発明はクランクシヤフトに係り、特にピン部
およびジヤーナル部の表面焼入れにおいて各軸受
円筒部の円筒方向に沿つて硬化層深さを連続的に
変化するように表面焼入れを施したクランクシヤ
フトに関する。
一般にクランクシヤフトのピン部およびジヤー
ナル部の軸受部分を表面焼入れする場合は熱処理
によつて発生する歪みを最小にする為の一手段と
して高周波誘導加熱による表面焼入れ方法が採用
されている。
従来は第1図に示すクランクシヤフト10の軸
断面図で見られる様にピン部11,12,13,
14およびジヤーナル部21,22,23,2
4,25の各軸受円筒部30および硬化層40に
限定して表面焼入れが施されていた。
一方、内燃機関の馬力増加に呼応して同一寸法
のクランクシヤフトの強度向上を図る為に第2図
の軸断面図に示す様に前記軸受円筒部30のみな
らず、円筒部30に続く曲成部31およびこれに
続くフイレツト部32をも含めた部分にも表面硬
化層50を形成させる方法が施行されるようにな
つて来た。
しかしながらクランクシヤフトはピン部とジヤ
ーナル部が同一軸線上になく、曲りくねつた複雑
な形状であるため、表面焼入後歪みが発生し、以
後の製作工程に多大の支障を来たしているのが現
状であり、特に前述の第2図に示す様に広い範囲
に硬化層パターンを形成させた場合にはますます
歪みが増大し、発生する歪みの量によつてクラン
クシヤフトの使用が不可能になることも多い。
尚表面焼入れ後歪みを矯正する場合に第2図に
示す如き硬化層パターンが形成されているときに
は曲成部31寸近に矯正時の応力が集中して、割
れ、破損等を起こす危険性が極めて高く、また焼
入れ時の発生歪みが大きいときは矯正作業は殆ん
ど不可能となる。
本発明は上記の点に鑑みてなされたものであつ
て、ヒン部およびジヤーナル部の軸受円筒部を含
みこれに続く曲成部およびフイレツト部に表面焼
入れを施し、かつ歪みの発生量を最小として、焼
入れ後の矯正作業を必要としないクランクシヤフ
トを提供することを目的とする。
歪みの発生を防止するためには焼入れ後に発生
する歪みの量や方向を予測し、歪みの原因となる
内部残留応力が相互に打ち消される様な硬化層パ
ターンを形成させればよく、その一つの方法とし
て前述の第2図に示す円周方向に均一の硬化層の
深さを持つ従来の均一硬化層パターンに対して円
周方向に深さの変化する偏差付硬化層パターンを
形成させる方法が考えられる。
しかしながらクランクシヤフトの曲成部および
フイレツト部まで焼入れすることにより発生する
歪みの量とその最大値を示す方向を決定する因子
は複雑で、しかも各因子の相互干渉効果を認めら
れ、これらを体系づけて解析することは極めて困
難である。
そこで、それ等を実験的に求める為に、加熱に
よつて歪みの発生を助長する様な加工による内部
応力が残留していないクランクシヤフトに対して
各種の実験を繰返えした結果、最大歪み量とその
方向を左右する因子として下記の項目をあげ得る
ことが判明した。
(1) クランクシヤフト自体の材質、前熱処理、形
状および寸法。
(2) 円筒部、曲成部、フイレツト部に誘導加熱に
よる表面焼入れを行つた場合については、
(2,1) 有効硬化層のパターンとその深
さ。
(2,2) ピン部及びジヤーナル部の焼入れ
の順序。
(2,3) 焼もどし処理方法。
以下に上記の実験を踏まえて実施した本発明の
実施例について説明する。
第3図は4気筒の内燃機関に使用されるクラン
クシヤフトのピン部11,12,13,14、ジ
ヤーナル部21,22,23,24,25に対し
て第1表に示す順序および条件で表面焼入れおよ
び焼もどしを行い、その都度クランクシヤフトの
両端をセンターで押え、ジヤーナル部22,23
および24に当接させたダイヤルゲージの読みを
そのまゝプロツトした折線を示している。
尚図中の折線は焼入れ前の状態を示してお
り、順序5′,6′は別個の試験片に対して順序4
まで同一の処理を行い次の段階でジヤーナル部2
3の焼入方法を均等焼入れから偏差付焼入れに変
更したものである。又、偏差付焼入れ、均等焼入
れについては後述する。
The present invention relates to a crankshaft, and more particularly to a crankshaft in which a pin portion and a journal portion are surface hardened so that the depth of the hardened layer is continuously changed along the cylindrical direction of each bearing cylindrical portion. Generally, when surface hardening the bearing parts of the pin part and journal part of a crankshaft, a surface hardening method using high frequency induction heating is adopted as a means to minimize the distortion caused by heat treatment. Conventionally, as seen in the axial cross-sectional view of the crankshaft 10 shown in FIG.
14 and journal parts 21, 22, 23, 2
Surface hardening was applied only to the cylindrical bearing portions 30 and the hardened layer 40 of the bearings Nos. 4 and 25. On the other hand, in order to improve the strength of the crankshaft of the same size in response to the increase in horsepower of internal combustion engines, not only the bearing cylindrical portion 30 but also the curved portion continuing to the cylindrical portion 30 are A method of forming the surface hardening layer 50 on the portion including the portion 31 and the fillet portion 32 following it has come to be practiced. However, since the pin part and journal part of the crankshaft are not on the same axis and have a complicated curved shape, distortion occurs after surface hardening, which causes a great deal of trouble in the subsequent manufacturing process. The current situation is that, especially when a hardened layer pattern is formed over a wide area as shown in Figure 2 above, the distortion increases even more, and the amount of distortion that occurs makes it impossible to use the crankshaft. It often happens. When straightening distortion after surface hardening, if a hardened layer pattern as shown in Figure 2 is formed, there is a risk that the stress during straightening will be concentrated near the curved part 31, causing cracking, damage, etc. If the strain is extremely high and the strain generated during hardening is large, straightening work is almost impossible. The present invention has been made in view of the above points, and includes surface hardening of the bearing cylindrical portion of the hinge portion and the journal portion, and subsequent curved portions and fillet portions, and minimizes the amount of distortion generated. The object of the present invention is to provide a crankshaft that does not require straightening work after hardening. In order to prevent the occurrence of distortion, it is necessary to predict the amount and direction of distortion that will occur after quenching, and to form a hardened layer pattern that cancels out the internal residual stress that causes distortion. One method is to form a deviated hardened layer pattern whose depth varies in the circumferential direction, as opposed to the conventional uniform hardened layer pattern which has a uniform hardened layer depth in the circumferential direction as shown in FIG. Conceivable. However, the factors that determine the amount of distortion generated by hardening down to the curved and fillet parts of the crankshaft and the direction in which it shows its maximum value are complex, and the mutual interference effects of each factor have been recognized, so it is necessary to systematize them. It is extremely difficult to analyze it. Therefore, in order to determine these values experimentally, we repeated various experiments on crankshafts that had no residual internal stress due to processing that would promote distortion due to heating, and found that the maximum strain It was found that the following factors can be cited as factors that influence the amount and direction. (1) Material, pre-heat treatment, shape and dimensions of the crankshaft itself. (2) When surface hardening is performed on cylindrical parts, curved parts, and fillet parts by induction heating, (2,1) Effective hardened layer pattern and its depth. (2, 2) Quenching order of pin part and journal part. (2, 3) Tempering treatment method. Examples of the present invention carried out based on the above experiments will be described below. Figure 3 shows the surfaces of pin parts 11, 12, 13, 14 and journal parts 21, 22, 23, 24, 25 of a crankshaft used in a four-cylinder internal combustion engine in the order and conditions shown in Table 1. After quenching and tempering, hold both ends of the crankshaft at the center each time, and then tighten the journal parts 22 and 23.
and 24, which shows a polygonal line plotting the reading of the dial gauge in contact with 24. The broken lines in the figure show the state before quenching, and the orders 5' and 6' indicate the order 4 for separate test pieces.
In the next step, the journal part 2 is
The hardening method in No. 3 was changed from uniform hardening to deviation hardening. Further, deviation hardening and uniform hardening will be described later.
【表】
更に上記の実験結果について考察すると第3図
の折線はジヤーナル部23の焼入れ前の状態で
あり、同ジヤーナル部は同図の方向に0.63mm変
位しているが、ジヤーナル部23に均等焼入れを
施した場合は折線で示す様に上記と逆の方向即
ち方向に0.42mm変位している。
これは第3図の側よりも側のフイレツト付
近の質量が小さいために熱伝導損失が少なく、結
果として蓄積された熱がフイレツト部および曲成
部の硬化層深さ等に影響を与え方向に於ける軸
方向の伸びより方向に於ける軸方向の伸びが相
当量大きい為であると考えられる。
これに対してジヤーナル部23に対して偏差付
焼入を施した結果、前記の伸びの差を軽減するこ
とにより第3図に示す如き良好な結果が得られ
たものと考えられる。
そこで第4図に本発明の実施例につきピン部お
よびジヤーナル部の硬化層の形成状況を示す。
即ち全長約500mm、ピンのハーフストローク約
45mmの4気筒の内燃機関に使用されるクランクシ
ヤフトであつて軸受円筒部およびこれに続く曲成
部ならびにフイレツト部にまで表面焼入れが施さ
れると共に、全てのピン部およびジヤーナル部2
3には偏差付焼入れ、他のジヤーナル部に均等焼
入れが施されている。なお、第4図において10
1,102,103および104はカウンターウ
エイトである。
こゝにピン部11,12,13,14の偏差付
焼入れによる硬化層の深さはともに直径約50mmmm
の円筒部でクランクシヤフトの中心軸から遠い側
即ちトツプ側tで円筒部に於ける最小値3.2mm、
曲成部45度方向で2.2mm反対側のウエブ側wで最
大値4.2mm、曲成部45度方向で6.2mmである。
又、ジヤーナル部23については直径60mmの円
筒部に対しては図の上側即ちu部で最大値4.0mm、
下側即ちd部で最小値3.3mmであり23以外のそ
の他のジヤーナル部はすなわち21,22,2
4,25は3.3〜3.5mmの範囲内で同一深さの均等
焼入れが行われている。
以上説明したように、すべてのピン部およびジ
ヤーナル部23において、表面硬化層の円周方向
からみた深さが、それぞれのピン部或いはジヤー
ナル部23に隣接するカウンターウエイトをクラ
ンクシヤフトの軸方向からみて左右対称に分割す
る平面がそれぞれのピン部或いはジヤーナル部2
3と交差して生じるそれぞれのピン部或いはジヤ
ーナル部23の直径の端部のうち、上記カウンタ
ーウエイトに近いほうの端部において最大とな
り、他の端部において最小となり、両端部の中間
部分では最大から最小へまたは最小から最大へと
漸次変化しているような偏差付硬化層パターンが
形成されていることになる。
尚前記表面焼入れはピン部およびジヤーナル部
にそれぞれ最適のコイル体を使用し、ピン部およ
びジヤーナル部に対して12,13,14,1
1,22,24,25,21,23の順序で1個
処づつ順次行つた。
次に第5図は偏差付硬化層パターンを形成させ
る為の表面焼入れ方法を説明する為の説明図であ
る。
80は高周波コイル体であり、これが被焼入れ
面即ち図ではクランクシヤフト10のピン部11
の円筒部30に絶縁性のスペーサ81を介して当
接しており、公知のパンタグラフ機構により、加
熱中は被焼入れ部分の公転および自転にともない
前記スペーサ81により被焼入れ部分と一定の間
隙を保持しながら、クランクシヤフトの回転に応
じて追従する。
一方クランクシヤフト10を回転させるとピン
部11は矢印の様に公転しながら自転し、コイル
体80はピン部11の円筒部の全周にわたつて一
定の間隙を保つて摺動することとなり、その間コ
イル体80には高周波電流が通電される。
こゝで同図にθとして示す区間略120度に於て
小電流を流し、他の区間は大電流を流して加熱
し、適当な時間加熱した後被焼入面の表面から冷
媒により急冷却すれば、大電流を流した区間の硬
化層は厚く、他の区間では漸次薄くなり、小電流
区間の中間に於て最小の深さの硬化層が得られ
る。
上記の方法はジヤーナル部についても同様であ
り、高周波電流の変化時期はリミツトスイツチ等
を設定することにより、自動的に偏差付表面焼入
れを施すことができる。
本実施例に於ては4気筒の内燃機関のクランク
シヤフトについて説明したがこれに限ることはな
く、6気筒或いはそれ以上の多気筒のものについ
ても同様に製作することができる。
この場合いずれのジヤーナルに、いずれの方向
に偏差は焼入れを実施すべきかは若干の実験によ
つて容易に決定することができる。
本発明は以上述べて来た如くクランクシヤフト
のピン部およびジヤーナル部に於いてその円筒部
のみならず円筒部の端部に形成されている曲成部
およびフイレツト部にまで表面焼入れを実施する
場合に於て、すべてのピン部および一つ以上のジ
ヤーナル部について表面硬化層の円周方向からみ
た深さが、それぞれのピン部或いはジヤーナル部
に隣接するカウンターウエイトをクランクシヤフ
トの軸方向からみて左右対称に分割する平面がそ
れぞれのピン部或いはジヤーナル部と交差して生
じるそれぞれのピン部或いはジヤーナル部の直径
の端部のうち、前記カウンターウエイトに近いほ
うの端部において最大となり、他の端部において
最小となり、両端部の中間部分では最大から最小
へまたは最小から最大へと漸次変化している偏差
付硬化層パターンを有しているので内燃機関の馬
力増加に対応し得ると共に焼入れ歪の量を減少で
き、従つて焼入れ後のプレス矯正を省略すると共
に研摩仕上げの工数を縮少し得る利点を有する。[Table] Furthermore, considering the above experimental results, the broken line in Figure 3 shows the state of the journal part 23 before quenching, and the journal part 23 is displaced by 0.63 mm in the direction shown in the figure, but it is evenly distributed in the journal part 23. In the case of hardening, there is a displacement of 0.42 mm in the opposite direction to the above, as shown by the broken line. This is because the mass near the fillet on the side shown in Figure 3 is smaller, so there is less heat conduction loss, and as a result, the accumulated heat affects the depth of the hardened layer in the fillet and curved parts, and This is thought to be because the axial elongation in the direction is considerably larger than the axial elongation in the direction. In contrast, as a result of applying deviation hardening to the journal portion 23, it is believed that by reducing the difference in elongation, good results as shown in FIG. 3 were obtained. FIG. 4 shows the formation of the hardened layer in the pin portion and journal portion in accordance with an embodiment of the present invention. That is, the total length is approximately 500 mm, and the pin half stroke is approximately
This is a crankshaft used in a 45mm four-cylinder internal combustion engine, and the bearing cylindrical part and the following curved part and fillet part are surface hardened, and all pin parts and journal parts 2.
3 has been subjected to deviation hardening, and the other journal parts have been uniformly hardened. In addition, in Figure 4, 10
1, 102, 103 and 104 are counterweights. The depth of the hardened layer of the pin parts 11, 12, 13, and 14 due to deviation hardening is approximately 50 mm in diameter.
The minimum value in the cylindrical part on the side far from the central axis of the crankshaft, that is, the top side t, is 3.2 mm,
The maximum value is 4.2 mm on the opposite web side w, which is 2.2 mm in the 45-degree direction of the curved portion, and 6.2 mm in the 45-degree direction of the curved portion. Regarding the journal part 23, for a cylindrical part with a diameter of 60 mm, the maximum value is 4.0 mm at the upper side of the figure, that is, the u part,
The minimum value is 3.3 mm on the lower side, that is, the d part, and the other journal parts other than 23 are 21, 22, and 2.
Nos. 4 and 25 are uniformly hardened to the same depth within the range of 3.3 to 3.5 mm. As explained above, in all pin parts and journal parts 23, the depth of the hardened surface layer when viewed from the circumferential direction is the same as the depth of the counterweight adjacent to each pin part or journal part 23 when viewed from the axial direction of the crankshaft. The plane that divides left and right symmetrically is each pin part or journal part 2
Among the ends of the diameter of each pin part or journal part 23 that intersect with 3, the maximum is at the end near the counterweight, the minimum is at the other end, and the maximum is at the intermediate part between both ends. A deviated hardened layer pattern is formed that gradually changes from the minimum to the maximum or from the minimum to the maximum. In the surface hardening, the optimum coil bodies are used for the pin part and the journal part, respectively.
The processing was performed one by one in the order of 1, 22, 24, 25, 21, and 23. Next, FIG. 5 is an explanatory diagram for explaining a surface hardening method for forming a hardened layer pattern with deviation. 80 is a high frequency coil body, which is the surface to be hardened, that is, the pin portion 11 of the crankshaft 10 in the figure.
The cylindrical part 30 is in contact with the part to be quenched via an insulating spacer 81, and during heating, as the part to be quenched revolves and rotates, the spacer 81 maintains a constant gap from the part to be quenched by means of a known pantograph mechanism. However, it follows the rotation of the crankshaft. On the other hand, when the crankshaft 10 is rotated, the pin part 11 rotates around its axis as shown by the arrow, and the coil body 80 slides with a constant gap maintained over the entire circumference of the cylindrical part of the pin part 11. During this time, a high frequency current is applied to the coil body 80. Here, a small current is passed in the section shown as θ in the figure at approximately 120 degrees, and a large current is passed in the other sections to heat it. After heating for an appropriate time, the surface of the surface to be hardened is rapidly cooled with a coolant. Then, the hardened layer is thick in the section where a large current is passed, and becomes gradually thinner in other sections, and the hardened layer with the minimum depth is obtained in the middle of the small current section. The above method is the same for the journal part, and by setting a limit switch or the like at the time of change of the high frequency current, surface hardening with deviation can be automatically performed. In this embodiment, a crankshaft for a four-cylinder internal combustion engine has been described, but the crankshaft is not limited to this, and a crankshaft for a six-cylinder or more cylinder engine can be manufactured in the same manner. In this case, it can be easily determined by a few experiments which journal and in which direction the deviation should be hardened. As described above, the present invention applies surface hardening not only to the cylindrical portions of the pin portions and journal portions of the crankshaft, but also to the curved portions and fillet portions formed at the ends of the cylindrical portions. In this case, the depth of the hardened surface layer of all the pin parts and one or more journal parts when viewed from the circumferential direction is the same as the depth of the counterweight adjacent to each pin part or journal part when viewed from the axial direction of the crankshaft. Among the ends of the diameter of each pin part or journal part, which are generated when the symmetrically dividing plane intersects with each pin part or journal part, the diameter is maximum at the end near the counterweight, and the diameter is maximum at the other end. It has a deviated hardening layer pattern that gradually changes from the maximum to the minimum or from the minimum to the maximum in the middle part of both ends, so it can respond to the increase in horsepower of the internal combustion engine and the amount of quenching distortion. This has the advantage of omitting press straightening after quenching and reducing the number of polishing steps.
第1図は従来例に於ける焼入れ状況を示すクラ
ンクシヤフトの軸断面図、第2図は表面焼入れの
範囲を拡大した場合の断面図、第3図は焼入れ時
の歪量をプロツトしたグラフ、第4図は本発明品
の焼入れ状況を示す断面図、第5図は偏差付焼入
れ法の説明図である。
10……クランクシヤフト、11,12,1
3,14……ピン部、21,22,23,24,
25……シヤンク部、80……コイル体、10
1,102,103,104……カウンターウエ
イト。
Fig. 1 is an axial cross-sectional view of a crankshaft showing the hardening situation in a conventional example, Fig. 2 is a cross-sectional view when the range of surface hardening is expanded, and Fig. 3 is a graph plotting the amount of strain during hardening. FIG. 4 is a sectional view showing the hardening state of the product of the present invention, and FIG. 5 is an explanatory view of the deviation hardening method. 10...Crankshaft, 11, 12, 1
3, 14...pin part, 21, 22, 23, 24,
25...Shank portion, 80...Coil body, 10
1,102,103,104...Counterweight.
Claims (1)
部の円筒部分のみならず、同部分につづく端末の
曲成部およびこの曲成部につづくフイレツト部分
にも表面焼入れを施したクランクシヤフトにおい
て、すべてのピン部および一つ以上のジヤーナル
部の表面硬化層の円周方向からみた深さが、それ
ぞれの前記ピン部或いはジヤーナル部に隣接する
カウンターウエイトを前記クランクシヤフトの軸
方向からみて左右対称に分割する平面がそれぞれ
の前記ピン部或いはジヤーナル部と交差して生じ
るそれぞれの前記ピン部或いはジヤーナル部の直
径の端部のうち、前記カウンターウエイトに近い
ほうの端部において最大となり、他の端部におい
て最小となり、両端部の中間部分では最大から最
小へまたは最小から最大へと漸次変化している偏
差付硬化層パターンを有することを特徴とするク
ランクシヤフト。1. In a crankshaft in which not only the cylindrical part of the pin part and journal part of the crankshaft, but also the curved part of the end that follows the same part and the fillet part that follows this curved part, are surface hardened, all pin parts and The depth of the surface hardened layer of one or more journal parts when viewed from the circumferential direction is such that the plane that symmetrically divides the counterweight adjacent to each of the pin parts or journal parts when viewed from the axial direction of the crankshaft is the same. Among the ends of the diameter of each of the pin parts or journal parts that intersect with the pin parts or journal parts, the diameter is maximum at the end near the counterweight, minimum at the other end, and both ends A crankshaft characterized in that the crankshaft has a deviated hardening layer pattern that gradually changes from the largest to the smallest or from the smallest to the largest in the middle part of the crankshaft.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17939582A JPS5969516A (en) | 1982-10-12 | 1982-10-12 | Crankshaft |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17939582A JPS5969516A (en) | 1982-10-12 | 1982-10-12 | Crankshaft |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5969516A JPS5969516A (en) | 1984-04-19 |
JPS6338565B2 true JPS6338565B2 (en) | 1988-08-01 |
Family
ID=16065111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17939582A Granted JPS5969516A (en) | 1982-10-12 | 1982-10-12 | Crankshaft |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5969516A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01188624A (en) * | 1988-01-22 | 1989-07-27 | Fuji Denshi Kogyo Kk | High-frequency surface hardening method for crank shaft |
JP2576960Y2 (en) * | 1990-04-11 | 1998-07-23 | 三菱自動車工業株式会社 | Crankshaft for multi-cylinder engine |
JP2588695Y2 (en) * | 1990-04-11 | 1999-01-13 | 三菱自動車工業株式会社 | Crankshaft |
EP1712745A1 (en) | 2005-04-14 | 2006-10-18 | Siemens Aktiengesellschaft | Component of a steam turbine plant, steam turbine plant, use and production method of such a component. |
US10161014B2 (en) | 2016-01-08 | 2018-12-25 | Ford Motor Company | Laser hardened crankshaft |
-
1982
- 1982-10-12 JP JP17939582A patent/JPS5969516A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5969516A (en) | 1984-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4569109A (en) | Method of making a split bearing assembly | |
US4684267A (en) | Split bearing assemblies | |
EP2029784B1 (en) | Method of treating a crankshaft | |
US20140260787A1 (en) | Selectively strengthened crankshaft | |
US10300523B2 (en) | Crankshaft and method of strengthening shaft component | |
JPS6338565B2 (en) | ||
US4633764A (en) | Aluminum base alloy piston for internal combustion engines with mechanically surface-condensed boss bores | |
JPH0531671A (en) | Peening processing method for coil spring | |
JP2006247727A (en) | Method for correcting shape of counterweight in crankshaft | |
JPH0559169B2 (en) | ||
JPS63203226A (en) | Manufacture of high strength crank shaft | |
JPS6174745A (en) | Manufacture of piston ring made of steel | |
JP3382618B2 (en) | Manufacturing method of connecting rod | |
JP2022007426A (en) | Crank shaft manufacturing method | |
JPS5927315B2 (en) | Crankshaft processing method | |
JPS62292362A (en) | Roll processing method for shaft fillet part with different stress distribution | |
JP3681644B2 (en) | Induction hardening method of crankshaft | |
JP3858886B2 (en) | Crankshaft quenching method, quenching apparatus, and crankshaft manufacturing method | |
JP2563601B2 (en) | Flat wire manufacturing method | |
JPH04191327A (en) | Manufacture of cast crank shaft | |
JP2613079B2 (en) | Manufacturing method of crankshaft | |
JPH03204412A (en) | Manufacture of two-piece bearing | |
JPS61282663A (en) | Hollow cam shaft | |
JPS62174328A (en) | Hardening method for crank shaft | |
US2662267A (en) | Method of crankshaft construction |