JPS62292362A - Roll processing method for shaft fillet part with different stress distribution - Google Patents

Roll processing method for shaft fillet part with different stress distribution

Info

Publication number
JPS62292362A
JPS62292362A JP13345486A JP13345486A JPS62292362A JP S62292362 A JPS62292362 A JP S62292362A JP 13345486 A JP13345486 A JP 13345486A JP 13345486 A JP13345486 A JP 13345486A JP S62292362 A JPS62292362 A JP S62292362A
Authority
JP
Japan
Prior art keywords
stress
pressure
point
processing
fillet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13345486A
Other languages
Japanese (ja)
Other versions
JPH0581389B2 (en
Inventor
Junichi Yonezawa
米沢 純一
Yasuki Ishibashi
石橋 保樹
Shinpei Suito
出納 眞平
Kazuo Yokogawa
横川 和夫
Masahiko Imai
今井 正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13345486A priority Critical patent/JPS62292362A/en
Publication of JPS62292362A publication Critical patent/JPS62292362A/en
Publication of JPH0581389B2 publication Critical patent/JPH0581389B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To effectively perform roll processing by regarding both end sides, in the circumferential direction, of a maximum stress part and a region, in the circumferential direction, of a minimum stress part as a transient region of respective pressing forces and processing a work with a lower pressuring force than a constant one. CONSTITUTION:For example, transient regions L1, L2 are made 15 deg. and a necessary process range L1+L2+L3 is made 210 deg. from the stress distribution of the pin fillet part 3 of a crank shaft which is an object of processing. And, when processing beings, a curved surface roller 5 is firstly set at point A, a pressure is gradually increased to point B by means of pressure control with a sequencer, kept constant from point B to point C, and gradually lowered from point C to point D reversely. Secondly, a crank shaft is put in reverse turn, a pressure between point B and point C is gradually increased more than the previous pressure, and the processing pattern is performed in reverse order to the prior one to improve fatigue strength with the help of performing the processing through necessary stages. Accordingly, roll processing can be performed even on a pin on which a fillet is broken at the top part.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は、エンジンのクランク軸、その他、ピン付カム
等のように、軸フィレット部を有する被加工軸のロール
加工方法に係り、より具体的には円周方向で応力分布が
異なる軸フィレット部の部分的なロール加工方法に関す
る。
Detailed Description of the Invention 3. Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a roll of a shaft to be processed having a shaft fillet portion, such as an engine crankshaft, a cam with a pin, etc. The present invention relates to a processing method, and more specifically, to a method for partially rolling an axial fillet portion in which stress distribution differs in the circumferential direction.

(従来の技術) 軸フィレット部のロール加工方法としては、特公昭52
−10818号公報で開示の技術がある。
(Prior art) As a roll processing method for the shaft fillet part,
There is a technique disclosed in Japanese Patent No.-10818.

すなわち、被加工軸のフィレット部に千ローラと曲面ロ
ーラとを押付け、硬化層を形成して軸の強度向上を図る
ようにしている。
That is, a roller and a curved roller are pressed against the fillet portion of the shaft to be processed to form a hardened layer to improve the strength of the shaft.

ここで、一般的なロール加工方法を、舶用大型クランク
軸を例に採って第3図を参照して説明する。
Here, a general roll processing method will be explained with reference to FIG. 3, taking a large marine crankshaft as an example.

第3図において、ターンテーブルl上において焼ばめ組
立前のクランクスロー2の状態でビンフィレット部3に
、平ローラ4および曲面ローラ5を押付けて全周にわた
ってロール加工している。
In FIG. 3, a flat roller 4 and a curved roller 5 are pressed against a bin fillet portion 3 in a crank throw 2 state before shrink-fit assembly on a turntable 1 to perform roll processing over the entire circumference.

この場合、ビントップ部で曲面ローラ5がビンフィレッ
ト部3より外れないように、ビントップ部で余肉6をつ
けて全周を一様にロール加工している。
In this case, in order to prevent the curved roller 5 from coming off the bottle fillet part 3 at the bottle top part, extra thickness 6 is provided at the bottle top part and the entire circumference is uniformly rolled.

一方、第4図で示す一体型クランク軸においては、ビン
フィレット部3はジャーナルフィレット部7と違いビン
トップ部で符号8で示す如(フィレットが途切れている
ため全周をロール加工できないことから、第6図で示す
如くビントップ部で曲面ローラ5が脱落せず、最低限加
工圧に耐える程度の余肉6をクランクアーム9に付けて
ロール加工していた。
On the other hand, in the integrated crankshaft shown in FIG. 4, the bin fillet part 3 is different from the journal fillet part 7, as shown by the symbol 8 at the bin top part (because the fillet is interrupted, the entire circumference cannot be rolled, As shown in FIG. 6, the curved roller 5 did not fall off at the top of the bottle, and the crank arm 9 was rolled with an extra thickness 6 that could at least withstand the processing pressure.

ところで、組立型、一体型を問わずビンフィレ7)部3
においては、第5図に示す如く応力分布になる。
By the way, regardless of whether it is an assembled type or an integrated type, the bottle fillet 7) part 3
In this case, the stress distribution becomes as shown in FIG.

すなわち、ピンボトム部3Bでは最大応力(本図示例で
は12.91kg/龍2で示し、これを1.00として
いる)が発生し、ビンフィレット部、3のボトム部3B
より円周方向両側に向うに従って、すなわち、ビントッ
プ部3Tに向うに従って、応力値が低下して行く応力分
布になる(図示ではピンボトム部3B。
That is, the maximum stress (in this illustrated example, it is expressed as 12.91 kg/Ryu 2, which is taken as 1.00) occurs in the pin bottom part 3B, and the pin bottom part 3B of the pin fillet part, 3
The stress distribution becomes such that the stress value decreases toward both sides in the circumferential direction, that is, toward the bottle top portion 3T (in the drawing, the stress value decreases toward the pin bottom portion 3B).

ビントップ部3Tを通る中心線X−Xを境にしてそれぞ
れ両側に15°間隔ごとの応力値と最大応力値との比を
それぞれ示している)。
The ratios of the stress values and the maximum stress values are shown at 15° intervals on both sides of the center line XX passing through the bottle top portion 3T.

(発明が解決しようとする問題点) 近年エンジンのコンパクト化に伴いクランク軸のビント
ップ部も可能な限り余肉を除去した設計になっている。
(Problems to be Solved by the Invention) In recent years, as engines have become more compact, the top portion of the crankshaft has been designed to remove as much excess material as possible.

また、これは一体型クランク軸においては、一般的なこ
とである。そのため、従来技術によって一体型クランク
軸のビンフィレット部をロール加工する場合以下の問題
があった。
Also, this is common in integral crankshafts. Therefore, when the conventional technology rolls the bin fillet portion of the integral crankshaft, there are the following problems.

■ 曲面ロール脱落防止のために付けた余肉は、台盤す
なわち、舶用ディーゼルエンジンにおいてクランク軸を
マウントする土台に干渉するので、ロール加工後機械加
工にて切削しなければならず、そのための余分な労力が
必要となる。
■ The extra thickness added to prevent the curved roll from falling off interferes with the base plate, that is, the base on which the crankshaft is mounted in a marine diesel engine, so it must be cut by machining after the roll is processed. It requires a lot of effort.

■ 逆に余肉を残したままだと、台盤をそれに合せて機
械加工しなければならずエンジン本体の設計変更にもつ
ながる。
■ On the other hand, if excess metal is left, the base plate will have to be machined to match, which will lead to changes in the design of the engine itself.

■ 余肉を付けているため歩留が低下する。■ Yield decreases due to excess thickness.

■ 全周ロール加工するため、ビンフィレット部の応力
分布に応じた部分的なロール加工に比べて余分な時間を
費やすことになる。
■ Because the entire circumference is rolled, extra time is spent compared to partial roll processing according to the stress distribution of the bin fillet.

本発明は、斯る問題点を解消する異なる応力分布を有す
る軸フィレット部(クランク軸、ピン付カム等を含む)
のロール加工方法を提供するのが目的である。
The present invention solves these problems by providing shaft fillet parts (including crankshafts, cams with pins, etc.) having different stress distributions.
The purpose is to provide a roll processing method.

(問題点を解決するための手段) 本発明が前述目的を達成するために講じる技術的手段の
第1は、円周方向で応力分布が異なる軸フィレット部に
、千ローラと曲面ローラとを押付けて硬化層を形成する
ロール加工方法において、軸フィレット部の円周方向に
関して、最大応力部分より円周方向の両側に応力が徐々
に低くなる最小応力部分を有する応力分布を見い出し、
最小応力部分間における最大応力部分を含む円周方向領
域を、一定の加圧力で大きくし、かつ少なくとも最終加
工段階で最大応力部分に見合う疲労強度を有するように
加工し、 最大応力部分の円周方向両端側と最小応力部分間の円周
方向領域はそれぞれ加圧力の遷移領域とされ、この各遷
移領域では前記一定加圧力を上限としこれより低い加圧
力で加工する点にある。
(Means for Solving the Problems) The first technical means taken by the present invention to achieve the above-mentioned object is to press a roller and a curved roller against an axial fillet portion having different stress distributions in the circumferential direction. In the roll processing method for forming a hardened layer, in the circumferential direction of the axial fillet part, a stress distribution is found that has a minimum stress part where the stress is gradually lowered on both sides of the circumferential direction from the maximum stress part,
The circumferential area including the maximum stress part between the minimum stress parts is enlarged with a constant pressing force, and at least in the final processing stage, the area in the circumferential direction including the maximum stress part is processed to have a fatigue strength commensurate with the maximum stress part, and the circumference of the maximum stress part is increased. The regions in the circumferential direction between both end sides and the minimum stress portion are respectively defined as pressure force transition regions, and in each transition region, processing is performed using a pressure force lower than the above-mentioned constant pressure force as an upper limit.

更に、技術的手段の第2では、円周方向で応力分布が異
なる軸フィレット部に、平ローラと曲面ローラとを押付
けて硬化層を形成するロール加工方法において、 軸フィレット部の円周方向に関して、最大応力部分より
円周方向の両側に応力が徐々に低くなる最小応力部分を
有する応力分布を見い出し、最小応力部分間における最
大応力部分を含む円周方向領域を、一定の加圧力を段階
的に大きくし、かつ少なくとも最終加工段階で最大応力
部分に見合う疲労強度と有するように加工し、 最大応力部分の円周方向両端側と最小応力部分間の円周
方向領域はそれぞれ加圧力の遷移領域とされ、この各遷
移領域では前記一定加圧力を上限としこれより低い加圧
力間で段階的に加圧力を増加して加工する点にある。
Furthermore, in the second technical means, in a roll processing method in which a flat roller and a curved roller are pressed against an axial fillet portion having different stress distributions in the circumferential direction to form a hardened layer, , find a stress distribution that has a minimum stress part where the stress is gradually lower on both sides of the circumference than the maximum stress part, and apply a constant pressure stepwise to the circumferential region containing the maximum stress part between the minimum stress parts. and processed to have a fatigue strength commensurate with the maximum stress part at least in the final processing stage, and the circumferential regions on both circumferential ends of the maximum stress part and the circumferential region between the minimum stress part are respectively pressure force transition regions. In each of these transition regions, processing is performed by increasing the pressing force stepwise between the above-mentioned constant pressing force as an upper limit and a lower pressing force.

すなわち、ピンフィレット部の途切れている部分(第4
図の符号8を参照)で曲面ローラが脱落しないように、
全周ロール加工せずピンフィレット部に作用する応力分
布に応じた円周方向に関して部分的なロール加工とする
。具体的には第2図に示すようにピンフィレット部に作
用する応力分布Eが立ち上がるA点とD点の間を往復し
ながら一挙に、又は段階的にロール加工する。また、加
圧パターンとしては、A点、D点で硬度の急激な変化が
生じないように遷移領域Ll、L2、すなわち、AB、
CDを設ける。
In other words, the broken part of the pin fillet (the fourth
(see reference numeral 8 in the figure) to prevent the curved roller from falling off.
Instead of rolling the entire circumference, partial rolling is performed in the circumferential direction according to the stress distribution acting on the pin fillet. Specifically, as shown in FIG. 2, rolling is performed all at once or in stages while reciprocating between points A and D, where the stress distribution E acting on the pin fillet rises. In addition, the pressure pattern includes transition regions Ll and L2, that is, AB,
Provide a CD.

(発明の構成) 本発明の方法に使用する加工装置は、第3図で示した千
ローラと曲面ローラを有する点で共通し、両ローラをピ
ンフィレット部に押付けて硬化層を形成していく。
(Structure of the Invention) The processing equipment used in the method of the present invention has the same feature as the roller shown in Fig. 3 and a curved roller, and both rollers are pressed against the pin fillet portion to form a hardened layer. .

この場合、ロール加工に先立って軸フィレット部の円周
方向に関して、最大応力部分より円周方向の両側に応力
が徐々に低くなる第1と第2の最小応力部分を有する応
力分布を見い出す。
In this case, prior to rolling, a stress distribution is found in the circumferential direction of the axial fillet portion that has first and second minimum stress portions where the stress is gradually lower on both sides of the circumferential direction than the maximum stress portion.

この応力分布Eは例えば歪みゲージなどを使って実測す
る。今その実測結果が第2図の応力分布Eであるとする
。図中10は、母材の疲労強度であるが、応力分布Eか
ら考えて、最大応力部E1であるピンボトム部3Bで余
裕がない。そのため平ローラ4と曲面ローラ5を押付け
てロール加工して硬化層を形成する。このとき、従来法
では、全周ロール加工して、母材の疲労強度を1)の状
態まで高めてピンボトム部3Bに余裕を持たせた。しか
し、この方法だと応力分布Eから考えて加工不要な領域
(図の斜線部12)まで加工することになり、余分な時
間を費やしていることになる。そこで時間的な問題だけ
を解決するには第2図における符号13の加圧パターン
も考えられる。しかしこの方法だとA点、D点における
最小応力部分で圧力が急激に立上がるため、この部分で
硬度が急激に変化する。その結果、母材の疲労強度も1
4で示す如(A点、D点で急激に低下し、これは当該部
分でのクランクの要因となる。そこで本発明方法では、
第2図の加圧パターン15としたのである。この加圧パ
ターンを実施するに際しては、必要加工範囲ADを求め
る必要がある。これは前述した様に応力分布を実測する
ことにより求める。次にA点、D点で圧力の急激な変化
をさけるため、遷移領域AB、CDで圧力が徐々に上昇
あるいは下降するように圧力制御し、クランク軸の正転
・逆転によりA点、D点間を必要段数往復加工する。そ
の結果、母材の疲労強度も、A点、D点で急激に低下せ
ず、第2図の符号16のように応力分布に応した疲労強
度の上昇が得られる。
This stress distribution E is actually measured using, for example, a strain gauge. Assume that the actual measurement result is the stress distribution E shown in FIG. 10 in the figure is the fatigue strength of the base material, but considering the stress distribution E, there is no margin at the pin bottom portion 3B, which is the maximum stress portion E1. For this reason, a hardened layer is formed by pressing the flat roller 4 and the curved roller 5 and rolling. At this time, in the conventional method, the entire circumference was rolled to increase the fatigue strength of the base material to the condition 1) to provide a margin for the pin bottom portion 3B. However, with this method, an area that does not require processing based on the stress distribution E (the shaded area 12 in the figure) is processed, which results in extra time being spent. Therefore, in order to solve only the time problem, the pressure pattern 13 in FIG. 2 can be considered. However, with this method, the pressure rises rapidly at the minimum stress portions at points A and D, resulting in a sudden change in hardness at these portions. As a result, the fatigue strength of the base material is also 1
As shown in 4 (it rapidly decreases at points A and D, this causes cranking at that part. Therefore, in the method of the present invention,
The pressure pattern 15 shown in FIG. 2 was adopted. When implementing this pressure pattern, it is necessary to determine the required processing range AD. This is determined by actually measuring the stress distribution as described above. Next, in order to avoid sudden changes in pressure at points A and D, pressure is controlled so that the pressure gradually increases or decreases in the transition areas AB and CD, and by forward and reverse rotation of the crankshaft, points A and D are Perform reciprocating processing in the required number of stages. As a result, the fatigue strength of the base material does not suddenly decrease at points A and D, and the fatigue strength increases in accordance with the stress distribution, as shown by reference numeral 16 in FIG. 2.

すなわち、本発明では、最小応力部分A、B間における
最大応力部分E1を含む円周方向領域L3を、一定の加
圧力で一挙に、又は段階的に大きくし、かつ少なくとも
最終加工段階で最大応力部分E1に見合う疲労強度1)
を有するように加工しする。
That is, in the present invention, the circumferential region L3 including the maximum stress portion E1 between the minimum stress portions A and B is increased all at once or in stages with a constant pressing force, and the maximum stress is increased at least in the final processing stage. Fatigue strength commensurate with part E11)
Processed to have the following.

最大応力部分E1を含む円周方向領域L3の両端側と最
小応力部分A、B間の円周方向領域はそれぞれ加圧力の
遷移領域Ll、L2とされ、この各遷移領域LIL2で
は前記一定加圧力を一ヒ限としこれより低い加圧力で一
挙に最終段階まで加工又は段階的に加圧力を増加減して
加工するのである。
The circumferential regions between both ends of the circumferential region L3 including the maximum stress portion E1 and the minimum stress portions A and B are pressure force transition regions Ll and L2, respectively, and in each transition region LIL2, the above-mentioned constant pressure force is applied. The process is carried out all at once to the final stage with a pressure lower than this limit, or by increasing and decreasing the pressure in stages.

(実施例) 第1図において、加工対象となるクランク軸のビンフィ
レット部3の応力分布Eを求めた。そこで実施例は、遷
移領域Ll 、L2を15°とし、必要加工範囲LL 
+L2 +L3 =L4を210°とした。また、加工
装置については第3図で示したと同様の一体型クランク
軸専用に試作したものを使用した。加工に際しては、ま
ずA点の位置に曲面ローラをセットし、シーケンサ−に
よって圧力制御を行いながら、B点まで圧力を徐々に上
昇させる。B点から0点までは、圧力を一定に保ち、0
点からD点の範囲では、逆に圧力を徐々に下降させて、
D点でクランク軸の回転を停止する。次にクランク軸を
逆転させてD点からA点まで前述の加エバターンの逆を
行う。この場合BC間の圧力は、前回の圧力よりも少し
づつ高くして行き、必要段数だけ加工を行う。本実施例
では、9段階の加工を実施した。第1図に加圧パターン
と疲労強度の上昇量を示す。
(Example) In FIG. 1, the stress distribution E of the bottle fillet portion 3 of the crankshaft to be processed was determined. Therefore, in the embodiment, the transition regions Ll and L2 are set to 15°, and the required machining range LL
+L2 +L3 =L4 was set to 210°. In addition, as for the processing device, a prototype machine specifically made for an integrated crankshaft similar to that shown in FIG. 3 was used. During processing, a curved roller is first set at point A, and the pressure is gradually increased to point B while controlling the pressure using a sequencer. From point B to point 0, the pressure is kept constant and 0.
In the range from point to point D, on the contrary, the pressure is gradually decreased,
Stop the rotation of the crankshaft at point D. Next, the crankshaft is reversed and the above-described machining pattern is reversed from point D to point A. In this case, the pressure between BC is increased little by little higher than the previous pressure, and processing is performed for the required number of stages. In this example, nine stages of processing were performed. Figure 1 shows the pressure pattern and the amount of increase in fatigue strength.

また本実施例と、全周ロール加工したクランク軸のピン
ボトム部での疲労強度上昇率を比較したものを下記の表
1で示す。表1より、両者とも疲労強度は、同程度の上
昇率を示しており、部分的なロール加工でも何ら問題が
ないと言える。
Further, Table 1 below shows a comparison between this example and the rate of increase in fatigue strength at the pin bottom portion of a crankshaft that has been rolled all around. From Table 1, it can be said that the fatigue strength of both specimens showed a similar rate of increase, and that there was no problem even with partial roll processing.

表1  疲労強度上昇率 なお、上述した構成、実施例では被加工物として一体型
クランク軸を示したが、組立型クランク軸でも、ピン付
カムであってもよい。
Table 1 Fatigue strength increase rate In the above-described configuration and examples, an integral crankshaft is shown as the workpiece, but an assembled crankshaft or a cam with a pin may be used.

また、第4図で示したジャーナルフィレット部7に関し
ては、加エバターン1)で行なうものとする。
Further, regarding the journal fillet portion 7 shown in FIG. 4, it is assumed that the processed evaporator 1) is used.

更に、千ローラ4と曲面ローラ5の加圧領域を一部重複
させる(特公昭52−10818号公報参照)か否かは
自由である。
Furthermore, it is optional whether or not the pressure areas of the roller 4 and the curved roller 5 are partially overlapped (see Japanese Patent Publication No. 10818/1983).

更に、実施例ではロール加工の範囲L4は210゜とし
、硬さの遷移領域Ll、L2は15°にしているが、こ
れに限らないことは明らかである。
Further, in the embodiment, the roll processing range L4 is 210 degrees, and the hardness transition regions L1 and L2 are 15 degrees, but it is clear that this is not the case.

また、小型クランク軸においては、段階的に加圧力を上
昇させず、−挙に最終加工まで加工することもできる。
Further, in the case of a small crankshaft, it is possible to process the crankshaft all the way to the final stage without increasing the pressure in stages.

(発明の効果) 本発明によれば、次の利点がある。(Effect of the invention) According to the present invention, there are the following advantages.

■ トップ部でフィシ・ノドが途切れているピンについ
てもロール加工が効率良〈実施できる。
■ Roll processing can be carried out efficiently even on pins where the fissure/throat is interrupted at the top.

■ 余肉を付ける必要がないので、それに伴う機械加工
時間も不要になる。
■ Since there is no need to add extra thickness, the associated machining time is also eliminated.

■ 余肉がない分、歩留も向上する。■ Yield is also improved because there is no excess meat.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の加圧パターンを示すグラフ、第
2図は本発明と従来例を比較した加圧パターンを示すグ
ラフ、第3図は本発明および従来例による加工例を示す
正面図、第4図と第6図は本発明および従来例の加工対
象−例としてのクランク軸を示す正面図、第5図は応力
分布状態を示す図である。 3・・・軸フィレット部(ピンフィレット部)、4・・
・平ローラ、5・・・曲面ローラ、15・・・加圧パタ
ーン、Ll、L2・・・遷移領域、L3・・・最大応力
を含む加工領域、El・・・最大応力部分、E・・・応
力分布。
FIG. 1 is a graph showing a pressure pattern of an embodiment of the present invention, FIG. 2 is a graph showing a pressure pattern comparing the present invention and a conventional example, and FIG. 3 is a front view showing processing examples according to the present invention and a conventional example. 4 and 6 are front views showing a crankshaft as an example of the object to be processed according to the present invention and a conventional example, and FIG. 5 is a diagram showing a state of stress distribution. 3...Shaft fillet part (pin fillet part), 4...
- Flat roller, 5... Curved roller, 15... Pressure pattern, Ll, L2... Transition area, L3... Machining area including maximum stress, El... Maximum stress portion, E...・Stress distribution.

Claims (2)

【特許請求の範囲】[Claims] (1)円周方向で応力分布が異なる軸フィレット部に、
平ローラと曲面ローラとを押付けて硬化層を形成するロ
ール加工方法において、 軸フィレット部の円周方向に関して、最大応力部分より
円周方向の両側に応力が徐々に低くなる最小応力部分を
有する応力分布を見い出し、最小応力部分間における最
大応力部分を含む円周方向領域を、一定の加圧力で大き
くし、かつ少なくとも最終加工段階で最大応力部分に見
合う疲労強度を有するように加工し、 最大応力部分の円周方向両端側と最小応力部分間の円周
方向領域はそれぞれ加圧力の遷移領域とされ、この各遷
移領域では前記一定加圧力を上限としこれより低い加圧
力間で加工することを特徴とする異なる応力分布を有す
る軸フィレット部のロール加工方法。
(1) In the axial fillet part where the stress distribution differs in the circumferential direction,
In a roll processing method in which a hardened layer is formed by pressing a flat roller and a curved roller, the stress has a minimum stress part where the stress gradually decreases on both sides of the circumference from the maximum stress part in the circumferential direction of the shaft fillet part. Find the distribution, increase the circumferential area including the maximum stress part between the minimum stress parts with a constant pressing force, and process it so that it has fatigue strength commensurate with the maximum stress part at least at the final processing stage, and then increase the maximum stress. The circumferential region between both ends of the part in the circumferential direction and the minimum stress portion is each defined as a pressure force transition region, and in each transition region, machining is performed with the above-mentioned constant pressure being the upper limit and a pressure lower than this. A method of rolling a shaft fillet portion with a characteristic different stress distribution.
(2)円周方向で応力分布が異なる軸フィレット部に、
平ローラと曲面ローラとを押付けて硬化層を形成するロ
ール加工方法において、 軸フィレット部の円周方向に関して、最大応力部分より
円周方向の両側に応力が徐々に低くなる最小応力部分を
有する応力分布を見い出し、最小応力部分間における最
大応力部分を含む円周方向領域を、一定の加圧力を段階
的に大きくし、かつ少なくとも最終加工段階で最大応力
部分に見合う疲労強度を有するように加工し、最大応力
部分の円周方向両端側と最小応力部分間の円周方向領域
はそれぞれ加圧力の遷移領域とされ、この各遷移領域で
は前記一定加圧力を上限としこれより低い加圧力間で段
階的に加圧力を増加減して加工することを特徴とする異
なる応力分布を有する軸フィレット部のロール加工方法
(2) In the axial fillet part where the stress distribution differs in the circumferential direction,
In a roll processing method in which a hardened layer is formed by pressing a flat roller and a curved roller, the stress has a minimum stress part where the stress gradually decreases on both sides of the circumference from the maximum stress part in the circumferential direction of the shaft fillet part. The distribution is found, and the circumferential region including the maximum stress portion between the minimum stress portions is processed to have a fatigue strength commensurate with the maximum stress portion at least at the final processing stage by increasing a constant pressing force step by step. , the circumferential region between both circumferential ends of the maximum stress portion and the minimum stress portion is defined as a pressure transition region, and in each transition region, the above-mentioned constant pressure is the upper limit, and steps are applied between lower pressure. A roll processing method for an axial fillet portion having different stress distributions, characterized in that processing is performed by increasing and decreasing the pressing force.
JP13345486A 1986-06-09 1986-06-09 Roll processing method for shaft fillet part with different stress distribution Granted JPS62292362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13345486A JPS62292362A (en) 1986-06-09 1986-06-09 Roll processing method for shaft fillet part with different stress distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13345486A JPS62292362A (en) 1986-06-09 1986-06-09 Roll processing method for shaft fillet part with different stress distribution

Publications (2)

Publication Number Publication Date
JPS62292362A true JPS62292362A (en) 1987-12-19
JPH0581389B2 JPH0581389B2 (en) 1993-11-12

Family

ID=15105158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13345486A Granted JPS62292362A (en) 1986-06-09 1986-06-09 Roll processing method for shaft fillet part with different stress distribution

Country Status (1)

Country Link
JP (1) JPS62292362A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6415486B1 (en) * 2000-03-01 2002-07-09 Surface Technology Holdings, Ltd. Method and apparatus for providing a residual stress distribution in the surface of a part
US6622570B1 (en) 2000-03-01 2003-09-23 Surface Technology Holdings Ltd. Method for reducing tensile stress zones in the surface of a part
US6926970B2 (en) 2001-11-02 2005-08-09 The Boeing Company Apparatus and method for forming weld joints having compressive residual stress patterns

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6415486B1 (en) * 2000-03-01 2002-07-09 Surface Technology Holdings, Ltd. Method and apparatus for providing a residual stress distribution in the surface of a part
US6622570B1 (en) 2000-03-01 2003-09-23 Surface Technology Holdings Ltd. Method for reducing tensile stress zones in the surface of a part
US6926970B2 (en) 2001-11-02 2005-08-09 The Boeing Company Apparatus and method for forming weld joints having compressive residual stress patterns

Also Published As

Publication number Publication date
JPH0581389B2 (en) 1993-11-12

Similar Documents

Publication Publication Date Title
RU2128109C1 (en) Method for knurling and hardening part
US4043847A (en) Hardening process for crankshafts
JP6312808B2 (en) Strengthening method of shaft member
JPH0310022A (en) Improving method for durability of crankshaft used in piston engine
JPS62292362A (en) Roll processing method for shaft fillet part with different stress distribution
JP2006247727A (en) Method for correcting shape of counterweight in crankshaft
JP6042472B2 (en) Method and device for strengthening fillet portion of crankshaft
JPH09177758A (en) Plain bearing
JPS6338565B2 (en)
JPH0683934B2 (en) Roll processing method for the axial fillet
JPS61147935A (en) Manufacture of mono-black wheel
JP3916058B2 (en) Cylinder liner manufacturing method
JP2767323B2 (en) Method and apparatus for manufacturing camshaft
US2349372A (en) Method of processing split piston ring elements
JPS5927315B2 (en) Crankshaft processing method
JP3091430B2 (en) Rolling equipment for shafted products with head
JP3122194B2 (en) Piston ring and its manufacturing method
JP2613079B2 (en) Manufacturing method of crankshaft
GB2066377A (en) A thrust bearing with tapered lands
JP2002178083A (en) Die for sizing stainless steel ring material after crf forming for increasing die life
JP2022007426A (en) Crank shaft manufacturing method
JPS63127871A (en) Method of working crankshaft
JPH0796457A (en) Method for burnishing roll
JPS6156062B2 (en)
JPS63109112A (en) Method for treating surface hardening of piston ring

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees