JPS6338266A - Constant-voltage diode - Google Patents

Constant-voltage diode

Info

Publication number
JPS6338266A
JPS6338266A JP18152586A JP18152586A JPS6338266A JP S6338266 A JPS6338266 A JP S6338266A JP 18152586 A JP18152586 A JP 18152586A JP 18152586 A JP18152586 A JP 18152586A JP S6338266 A JPS6338266 A JP S6338266A
Authority
JP
Japan
Prior art keywords
conductive layer
insulating film
voltage diode
constant voltage
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18152586A
Other languages
Japanese (ja)
Inventor
Hiroyasu Uehara
上原 啓靖
Tokuo Nakamura
徳雄 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP18152586A priority Critical patent/JPS6338266A/en
Publication of JPS6338266A publication Critical patent/JPS6338266A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To reduce the conducting resistance of a constant-voltage diode thereby to decrease a noise voltage by providing an insulating film having a predetermined thickness on a boundary between a second conductive layer and a third conductive layer, and providing a third electrode on the insulating film. CONSTITUTION:First and second electrodes 26 and 27, 28 are respectively formed on second and third, fourth conductive layers 22 and 23, 25, and the surface except the electrodes 26, 27, 28 is covered with an insulating film 29 made of silicon oxide (SiO2). A gate insulating film 30 directly on the bonding surface 34 of a P-N junction is formed in a predetermined thickness under the control of the thickness by stepwise etching, and a third electrode 31 is formed therethrough. When a potential exceeding an insulating film threshold voltage is applied to the film 30 to lead a current to a junction surface 24 of deeper part than the surface, an increase in a carrier recombination current due to the generation of a trap center in a depleted layer near the junction 24 in the vicinity of the surface can be reduced, thereby decreasing a conductive resistance of a constant-voltage diode 40.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、定電圧回路や基準電圧電源等に用いられる定
電圧ダイオード、特にその導通抵抗を小さくするための
構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a constant voltage diode used in a constant voltage circuit, a reference voltage power supply, etc., and particularly to a structure for reducing its conduction resistance.

(従来の技術) 従来、このような分野の技術としては、第2図に示され
るようなものがあった。以下、その構成を図を用いて説
明する。
(Prior Art) Conventionally, there has been a technology in this field as shown in FIG. The configuration will be explained below using figures.

第2図は従来の半導体集積回路等の定電圧回路や安定化
電源回路等に使用される定電圧ダイオードの一構成例を
示す断面図である。図において、■は基板に形成された
n形の第1導電層であり、この第1導電層l内にはp形
の第2導電層2が形成され、さらに第2導電層2の内部
および外部には、それぞれn形の第3同電層3および第
4導電層4が形成されている。前記第2導電層2と第3
導電層3とは、その境界面を接合面5とするpn接合を
成している。また、前記第4導電層4は第1導電層1に
固定電位を与えるために設けられているものである。
FIG. 2 is a sectional view showing an example of a configuration of a constant voltage diode used in a constant voltage circuit, a stabilized power supply circuit, etc. of a conventional semiconductor integrated circuit. In the figure, ■ is an n-type first conductive layer formed on the substrate, a p-type second conductive layer 2 is formed within this first conductive layer l, and further inside the second conductive layer 2 and A third isoconductive layer 3 and a fourth conductive layer 4, each of n-type, are formed on the outside. the second conductive layer 2 and the third conductive layer 2;
The conductive layer 3 forms a pn junction with its boundary surface serving as a bonding surface 5. Further, the fourth conductive layer 4 is provided to apply a fixed potential to the first conductive layer 1.

上記の第2.第3および第4導電層2,3゜4の半導体
表面を成す部分には、絶縁膜6に被覆されている部分を
除いて、それぞれ電極部7゜8.9が設けられている。
No. 2 above. Electrode portions 7.8.9 are provided on portions of the third and fourth conductive layers 2, 3.4, which constitute semiconductor surfaces, except for the portions covered with the insulating film 6.

前記第2導電層2の電極部7はアノードlOに接続され
、第3導電層3の電極部8は第4導電層4の電極部9と
共にカソード11に接続されている6 以−Lのように構成される定電圧ダイオードにおいて、
アノード1oにバイアス電源の陰極を、カソード11に
陽極を接続して、pn接合に対する逆方向電流をグーえ
れば、定電圧ダイオードの電圧鉾伏特性により、広い電
流範囲に渡ってほぼ一定の電圧出力を得ることができる
The electrode portion 7 of the second conductive layer 2 is connected to the anode IO, and the electrode portion 8 of the third conductive layer 3 is connected to the cathode 11 together with the electrode portion 9 of the fourth conductive layer 4. In the constant voltage diode configured as
If you connect the cathode of a bias power supply to the anode 1o and the anode to the cathode 11 to generate a reverse current to the pn junction, the voltage output will be almost constant over a wide current range due to the voltage dip characteristic of the constant voltage diode. can be obtained.

(発明が解決しようとする問題点) しかしながら、上記構成の定電圧ダイオードでは、第2
導電層2のp形半導体の不純物濃度は通常1011〜1
018原子数/c113以下であり、この場合にはバイ
アス電流をグーえると、定電圧ダイオードの導通抵抗が
著しく増加するという現象が発生する。これを防ぐため
には、不純物濃度を増すという方法もあるが、p形不純
物濃度を1018原子数/cI+3以−1−とすること
は非常に難しく、製造−[二程上の問題も生じる。に記
現象は、定電圧ダイオ−1にバイアス電流を与えたとき
、特に半導体表面近傍における第2導電層2と第3導電
層3の接合面5付近の空乏層中にトラップセンタ(tr
apcenter)が生成されるために、キャリア再結
合電流が増加し、これに伴いアノード10側への到達電
流が減少することにより発生するものである。
(Problem to be solved by the invention) However, in the voltage regulator diode with the above configuration, the second
The impurity concentration of the p-type semiconductor of the conductive layer 2 is usually 1011 to 1
018 atoms/c113 or less, and in this case, if the bias current is reduced, a phenomenon occurs in which the conduction resistance of the constant voltage diode increases significantly. In order to prevent this, there is a method of increasing the impurity concentration, but it is very difficult to increase the p-type impurity concentration to 1018 atoms/cI+3 or more and -1-, which also causes problems on the order of two times higher than production. The phenomenon described above occurs when a bias current is applied to the constant voltage diode 1, trap centers (tr
This occurs because the carrier recombination current increases due to the generation of apcenter), and the current reaching the anode 10 side decreases accordingly.

例えば、第1導電層lのn形不純物濃度 1×1015
原子数/el13.第2導電層2のp形不純物濃度 約
1011原子数/c113、第3、第4導電層3.4の
n形不純物濃度をいずれも約1020原子数/cm3 
とし、第2導電層2のアノード面積48×727i+g
2、第3導電層のカソード面積40X40JL112と
した構成において、周囲温度125℃にてバイアス電流
的700 pLAを4えたときの定電圧ダイオードの導
通抵抗は約107Ωとなる。これは、バイアス電流を与
える前の抵抗的54Ωに対し約2倍も増加したことにな
る。
For example, the n-type impurity concentration of the first conductive layer l is 1×1015
Number of atoms/el13. The p-type impurity concentration of the second conductive layer 2 is approximately 1011 atoms/c113, and the n-type impurity concentration of the third and fourth conductive layers 3.4 is approximately 1020 atoms/cm3.
and the anode area of the second conductive layer 2 is 48×727i+g
2. In a configuration in which the cathode area of the third conductive layer is 40×40JL112, the conduction resistance of the constant voltage diode is approximately 107Ω when the bias current is 700 pLA at an ambient temperature of 125°C. This is approximately twice as high as the resistive resistance of 54Ω before applying the bias current.

上記の如き定電圧ダイオードを半導体集積回路の内部基
準電源等に用いた場合、定電圧ダイオードを流れる不均
一な電流に起因して生じる雑音電流が、増加した導通抵
抗によって電圧変換されるために、雑音電圧も約2倍に
増幅されることになる。したがって、定電圧ダイオード
を内部ス(準電源として用いた増幅器等にあっては、低
雑音のものを得るのが難しいという問題があった。
When a voltage regulator diode such as the one described above is used as an internal reference power source of a semiconductor integrated circuit, the noise current generated due to the non-uniform current flowing through the voltage regulator diode is converted into voltage by the increased conduction resistance. The noise voltage will also be amplified approximately twice. Therefore, there is a problem in that it is difficult to obtain low noise in amplifiers and the like in which a constant voltage diode is used as an internal power supply (quasi-power supply).

本発明は、前記従来技術がもっていた問題点として、定
電圧ダイオードにバイアス電流を勺゛−えると導通抵抗
が大幅に増大し、これに比例して雑音電圧も増幅されて
しまうので、低電圧ダイオードを内部基準電源として用
いた定雑音の増幅器等を得るのが困難である点について
解決した低電圧ダイオードを提供するものである。
The present invention solves the problem of the prior art described above, in that when a bias current is applied to a constant voltage diode, the conduction resistance increases significantly, and the noise voltage is also amplified in proportion to this. The present invention provides a low-voltage diode that solves the difficulty of obtaining a constant-noise amplifier using a diode as an internal reference power source.

(問題点を解決するための手段) 本発明は、前記問題点を解決するために、第1導電層を
有する半導体基板と、前記゛1′−導体基板内に形成さ
れかつ第1電極部に接続された、該第1導電層と逆極性
の第2導電層と、前記第2導電層内に形成されかつ第2
電極部に接続された、該第2導電層と逆極性の第3導電
層とを備えた定電圧ダイオードにおいて、前記第2導電
層と第3導電層との境界部上に所定に膜厚を有する絶縁
膜を介して第3電極部を設けたものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a semiconductor substrate having a first conductive layer, and a first conductive layer formed within the conductor substrate and provided with a first electrode portion. a second conductive layer connected to the first conductive layer and having a polarity opposite to that of the first conductive layer;
In a constant voltage diode including a third conductive layer having a polarity opposite to that of the second conductive layer connected to an electrode part, a film thickness is formed on the boundary between the second conductive layer and the third conductive layer to a predetermined thickness. A third electrode portion is provided through an insulating film having a third electrode portion.

(作 用) 本発明によれば1以上のように定電圧ダイオードを構成
したので、所定の膜厚を有する絶縁膜は、所定に閾値電
圧を設定し、第3電極部は第2電極部より高く、かつ前
記絶縁膜の閾値電圧より高い電位を与えることにより、
第2導電層と第3導電層の表面近傍の境界部のpn接合
部付近をピンチオフ(Pinch−off)する働きを
する。この働きにより定電圧ダイオードのバイアス電流
は、前記第2、第3導電層の表面付近から、より深いp
n接合部へ導かれ、表面近傍のpn接合部付近の空乏層
中のトラップセンタの生成によるキャリア再結合電流が
低減するので、導通抵抗の増大を抑制することができる
。このような機能により雑音電圧の増幅も抑制されるの
で、前記問題点を除去することができるのである。
(Function) According to the present invention, since the constant voltage diode is configured in one or more ways, the insulating film having a predetermined thickness sets a threshold voltage to a predetermined value, and the third electrode portion is lower than the second electrode portion. By applying a potential that is high and higher than the threshold voltage of the insulating film,
It functions to pinch-off the vicinity of the pn junction at the boundary near the surface of the second conductive layer and the third conductive layer. Due to this function, the bias current of the constant voltage diode is changed from near the surface of the second and third conductive layers to the deeper p
Since the carrier recombination current guided to the n-junction and generated by trap centers in the depletion layer near the pn junction near the surface is reduced, an increase in conduction resistance can be suppressed. Since such a function also suppresses amplification of noise voltage, the above-mentioned problem can be eliminated.

(実施例) 第1図は本発明の実施例を示す定電圧グイオードの断面
図、および第3図はその使用例を示す回路図である。
(Embodiment) FIG. 1 is a sectional view of a constant voltage guide according to an embodiment of the present invention, and FIG. 3 is a circuit diagram showing an example of its use.

第1図において、21はノ、(板に形成された第1導電
層で、この第1導電層21はけい素(Sl)等の真性半
導体の中に不純物として5価の原子、例えばひ素(As
)を極〈少敬混合した結晶体のn形゛V−導体によって
構成されている。第1導電層21の表面を含む上部には
、第2導電層22が形成されており、この第2導電層2
2は、Si等の真性半導体中にほう素(B)等の3価の
原子を不純物として極〈少早混ぜ合わせたp形半導体に
より構成されている。前記第2導電層22の内部には、
n形の第3導電層23が形成され、その境界部はpn接
合の接合面24を成している。また、第1導電層21.
1部の第2導電層22付近には、第1導電層21に固定
電位を与えるためのn形半導体から成る第4導電層25
が設けられている。
In FIG. 1, 21 is a first conductive layer formed on a plate, and this first conductive layer 21 contains pentavalent atoms as impurities in an intrinsic semiconductor such as silicon (Sl), such as arsenic ( As
) is composed of a crystalline n-type V-conductor with a very small amount of mixture. A second conductive layer 22 is formed on the upper part including the surface of the first conductive layer 21.
2 is composed of a p-type semiconductor in which trivalent atoms such as boron (B) are mixed very quickly into an intrinsic semiconductor such as Si as an impurity. Inside the second conductive layer 22,
An n-type third conductive layer 23 is formed, and its boundary portion forms a pn junction junction surface 24 . In addition, the first conductive layer 21.
A fourth conductive layer 25 made of an n-type semiconductor is provided near a portion of the second conductive layer 22 to provide a fixed potential to the first conductive layer 21.
is provided.

上記第2、第3および第4導電層22,23.25の表
面には、それぞれに対応して第1電極部2B、第2電極
部27および電極部28が設けられており、これ等の電
極部2B、27.28を除く表面は、酸化けい素(Si
O2)等の絶縁膜28により被覆されている。この絶縁
膜28の、pn接合の接合面24直上のゲート絶縁膜3
0は、ステップエツチング等による膜厚制御により所定
の膜厚とされた絶縁膜であり、これを介して第3電極部
31が設けられている。前記電極部28,27.28.
31はい0ずれもアルミニウム(剋)蒸着等により形成
されており、第2導電層22の第1電極部26はアノー
ド32に接続され、第3導電層23の第2電極部27は
第4導電層25の電極flA2Bと共にカソード33に
接続され、第3電極部31はゲート34に接続されてい
る。
A first electrode part 2B, a second electrode part 27 and an electrode part 28 are provided on the surfaces of the second, third and fourth conductive layers 22, 23.25, respectively. The surface except for the electrode parts 2B and 27.28 is made of silicon oxide (Si
It is covered with an insulating film 28 such as O2). The gate insulating film 3 directly above the junction surface 24 of the pn junction of this insulating film 28
0 is an insulating film made to a predetermined thickness by controlling the film thickness by step etching or the like, and the third electrode portion 31 is provided through this. Said electrode section 28, 27.28.
31 are both formed by aluminum vapor deposition, etc., the first electrode part 26 of the second conductive layer 22 is connected to the anode 32, and the second electrode part 27 of the third conductive layer 23 is connected to the fourth conductive layer 22. It is connected to the cathode 33 together with the electrode flA2B of the layer 25, and the third electrode part 31 is connected to the gate 34.

以−にのように構成される定電圧ダイオードの動作を第
1図および第3図を参照しつつ説明する。
The operation of the constant voltage diode constructed as described above will be explained with reference to FIGS. 1 and 3.

先ず、定電圧ダイオードを用いて第3図に示す回路を構
成したとする。図において、定電圧ダイオード40のア
ノード41は接地され、カソード42には抵抗43およ
び定電圧ダイオードのバイアス電源44の陽極が順次直
列に接続されている。ゲート45はゲートバイアス電源
46の陽極に接続され、その陰極は前記定電圧ダイオー
ド40のバイアス電源44の陰極と共に接地されている
First, assume that the circuit shown in FIG. 3 is constructed using a constant voltage diode. In the figure, an anode 41 of a constant voltage diode 40 is grounded, and a resistor 43 and an anode of a bias power source 44 of the constant voltage diode are connected in series to a cathode 42 in this order. The gate 45 is connected to the anode of a gate bias power supply 46, and its cathode is grounded together with the cathode of the bias power supply 44 of the voltage regulator diode 40.

上記回路において、ゲートバイアス電源46の電圧をバ
イアス電源44より高くし、前記ゲート絶縁膜30に絶
縁膜閾値電圧を超える電位を与える。こうすることによ
り、第2、第3導電層22.23の表面近傍の接合面2
4付近における定電圧ダイオード40ノバイアス電流を
ピンチオフさせて、電流を表面より深い部分の接合面2
4へ導く。これにより、前記表面近傍の接合面24付近
における空乏層中のトラップセンタ生成によるキャリア
再結合電流の増加を低減できるため、定電圧ダイオード
40の導通抵抗を減少させることができる。」二記の如
き状態において、バイアス電源44の電流は抵抗43→
カソード42→定電圧ダイオード40→アノード41と
流れることにより、カソード42、アノード41間に定
電圧出力を得ることができる。
In the above circuit, the voltage of the gate bias power supply 46 is set higher than the bias power supply 44, and a potential exceeding the insulating film threshold voltage is applied to the gate insulating film 30. By doing this, the bonding surface 2 near the surfaces of the second and third conductive layers 22 and 23
By pinching off the constant voltage diode 40 bias current near 4, the current is transferred to the junction surface 2 deeper than the surface.
Leads to 4. As a result, it is possible to reduce the increase in carrier recombination current due to the generation of trap centers in the depletion layer near the junction surface 24 near the surface, so that the conduction resistance of the constant voltage diode 40 can be reduced. ” In the state shown in 2, the current of the bias power supply 44 is caused by the resistance 43 →
By flowing from the cathode 42 to the constant voltage diode 40 to the anode 41, a constant voltage output can be obtained between the cathode 42 and the anode 41.

本実施例においては、」−記のように定電圧ダイオード
40の導通抵抗を減少させることができるので、定電圧
ダイオード40を用いた内部電源をもつ増幅器等にあっ
ては、低雑音のものを得られるという利点がある。また
、未定電圧ダイオード素子は前記利点を付加したもかか
わらず、一平面内に構成できる構造となっているので、
半導体集積回路全般に適用できるという利点もある。
In this embodiment, since the conduction resistance of the voltage regulator diode 40 can be reduced as shown in ``-'', it is possible to reduce the conduction resistance of the voltage regulator diode 40. There are advantages that can be obtained. In addition, although the undefined voltage diode element has the above-mentioned advantages, it has a structure that can be configured within one plane.
Another advantage is that it can be applied to semiconductor integrated circuits in general.

なお、本発明は本実施例に限定されず、種々の変形が可
能である0例えば、増幅器の内部電源用に限定されず他
の回路全般に適用可能であり、一般定電圧用ダイオード
、電圧標準用(温度補償形)ダイオードおよび高周波用
定電圧ダイオード等に適用することができる。また、半
導体はSiでなくゲルマニウム(Ge)としてもよく、
不純物についても本実施例のものに限定されず、例えば
Asに代えてりん(P)、アンチモン(Sb)等として
もよく、Bに代えてガリウム(Ga)、インジウム(I
n)等としてもよい。さらに、定電圧ダイオードの構成
および形状は図示のものに限定されず、例えば電極部2
8.27,28.31および絶縁膜28等の材質、形状
等の変更も可使である。本実施例においては、第1導電
層21がn形半導体である場合について示したが、第1
導電層21をp形半導体とすることもできる。この場合
には、第2、第3および他の4導電層をそれぞれn形、
p形およびp形半導体とすればよい。
Note that the present invention is not limited to this embodiment, and can be modified in various ways.For example, the present invention is not limited to the internal power supply of an amplifier, but is applicable to other circuits in general, and is applicable to general voltage regulator diodes, voltage standards, etc. It can be applied to general purpose (temperature compensated) diodes, high frequency constant voltage diodes, etc. Also, the semiconductor may be germanium (Ge) instead of Si,
The impurities are not limited to those of this embodiment, and for example, phosphorus (P), antimony (Sb), etc. may be used instead of As, and gallium (Ga), indium (I) may be used instead of B.
n) etc. Further, the configuration and shape of the constant voltage diode are not limited to those shown in the drawings, and for example, the configuration and shape of the constant voltage diode are not limited to those shown in the figures.
It is also possible to change the materials, shapes, etc. of 8.27, 28.31 and the insulating film 28. In this embodiment, the first conductive layer 21 is an n-type semiconductor, but the first conductive layer 21 is an n-type semiconductor.
The conductive layer 21 can also be made of a p-type semiconductor. In this case, the second, third and other four conductive layers are respectively n-type and
P-type and p-type semiconductors may be used.

(発明の効果) 以上詳細に説明したように、本発明によれば、第2導電
層と第3導電層との境界?X&J−zに所定の膜厚を有
する絶縁膜を設け、この絶縁膜上に第3電極部を設けた
ので、定電圧ダイオードの導通抵抗を減少させることに
より、雑音電圧を減少させることができる。したがって
2例えば定電圧ダイオードを内部基準電源として用いた
増幅器等において、低雑音のものを得ることができると
いう効果がある。また、前記絶縁膜および第3電極部は
、従来の定電圧ダイオード素子と同一・の1L面内に構
成できる構造としたので、半導体集積回路全般に渡って
幅広く利用できるという効果もある。
(Effects of the Invention) As described above in detail, according to the present invention, the boundary between the second conductive layer and the third conductive layer? Since an insulating film having a predetermined thickness is provided on the X&J-z and the third electrode portion is provided on this insulating film, the noise voltage can be reduced by reducing the conduction resistance of the constant voltage diode. Therefore, there is an effect that low noise can be obtained, for example, in an amplifier using a constant voltage diode as an internal reference power source. Furthermore, since the insulating film and the third electrode part have a structure that can be constructed within the same 1L plane as a conventional constant voltage diode element, there is also an effect that it can be widely used in semiconductor integrated circuits in general.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す定電圧ダイオ−ドの断面
図、第2図は従来の定電圧ダイオードの一構成例を示す
断面図、第3図は第1図の定電圧ダイオードの使用例を
示す回路図である。 21・・・・・・第1導電層、22・・・・・・第2導
電層、23・・・・・・第3導電層、24・・・・・・
接合面、2B・・・・・・第1電極部、27・・・・・
・第2電極部、29・・・・・・絶縁膜、30・・・・
・・ゲート絶縁膜 、31・・・・・・第3電極部、3
2.41・・・・・・アノード、33.42・・・・・
・カソード、34.45・・・・・・ゲート、40・・
・・・・定電圧ダイオード。
FIG. 1 is a cross-sectional view of a constant voltage diode showing an embodiment of the present invention, FIG. 2 is a cross-sectional view showing an example of the configuration of a conventional constant voltage diode, and FIG. 3 is a cross-sectional view of a constant voltage diode shown in FIG. It is a circuit diagram showing an example of use. 21...First conductive layer, 22...Second conductive layer, 23...Third conductive layer, 24...
Joint surface, 2B...First electrode part, 27...
・Second electrode part, 29... Insulating film, 30...
...Gate insulating film, 31...Third electrode part, 3
2.41... Anode, 33.42...
・Cathode, 34.45...Gate, 40...
... Constant voltage diode.

Claims (1)

【特許請求の範囲】  第1導電層を有する半導体基板と、前記半導体基板内
に形成され第1電極部に接続された、該第1導電層と逆
極性の第2導電層と、前記第2導電層内に形成され第2
電極部に接続された、該第2導電層と逆極性の第3導電
層とを備えた定電圧ダイオードにおいて、 前記第2導電層と第3導電層との境界部上に所定の膜厚
を有する絶縁膜を介して第3電極部を設けたことを特徴
とする定電圧ダイオード。
Claims: a semiconductor substrate having a first conductive layer; a second conductive layer formed in the semiconductor substrate and connected to a first electrode portion and having a polarity opposite to that of the first conductive layer; a second conductive layer formed within the conductive layer;
In a constant voltage diode including a third conductive layer of opposite polarity to the second conductive layer connected to an electrode part, a predetermined film thickness is formed on the boundary between the second conductive layer and the third conductive layer. A constant voltage diode, characterized in that a third electrode portion is provided through an insulating film.
JP18152586A 1986-08-01 1986-08-01 Constant-voltage diode Pending JPS6338266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18152586A JPS6338266A (en) 1986-08-01 1986-08-01 Constant-voltage diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18152586A JPS6338266A (en) 1986-08-01 1986-08-01 Constant-voltage diode

Publications (1)

Publication Number Publication Date
JPS6338266A true JPS6338266A (en) 1988-02-18

Family

ID=16102287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18152586A Pending JPS6338266A (en) 1986-08-01 1986-08-01 Constant-voltage diode

Country Status (1)

Country Link
JP (1) JPS6338266A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4922316A (en) * 1985-05-17 1990-05-01 Nec Corporation Infant protection device
JPH044489U (en) * 1990-04-23 1992-01-16
WO1993019490A1 (en) * 1992-03-23 1993-09-30 Rohm Co., Ltd. Voltage regulating diode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4922316A (en) * 1985-05-17 1990-05-01 Nec Corporation Infant protection device
JPH044489U (en) * 1990-04-23 1992-01-16
WO1993019490A1 (en) * 1992-03-23 1993-09-30 Rohm Co., Ltd. Voltage regulating diode
US5475245A (en) * 1992-03-23 1995-12-12 Rohm Co., Ltd. Field-effect voltage regulator diode

Similar Documents

Publication Publication Date Title
JPH0865063A (en) Semiconductor integrated circuit
US4166224A (en) Photosensitive zero voltage semiconductor switching device
JPS6338266A (en) Constant-voltage diode
JPH0795565B2 (en) Static electricity protection device for complementary MIS integrated circuit
EP0232378B1 (en) Integrated-circuit having two nmos depletion mode transistors for producing a stable dc voltage
JPH02130868A (en) Semiconductor device
JPH04225238A (en) Lateral transistor and current mirror circuit using same
Cheng et al. Depletion and enhancement mode In0. 53Ga0. 47As/InP junction field‐effect transistor with a p+‐InGaAs confinement layer
JPS62104068A (en) Semiconductor integrated circuit device
JPH07115211A (en) Schottky semiconductor device
JPH0529616A (en) Quantum-effect type field-effect transistor
TW202425358A (en) High power density rectifier device and manufacturing method thereof
JPH021178A (en) Polycrystalline diode and manufacture thereof
JPS6194378A (en) Semiconductor device
JPH027553A (en) Semiconductor integrated circuit device
JPH03256366A (en) Pellet for glass-sealed constant-voltage diode use
JPH02189927A (en) Semiconductor device
JPS612355A (en) Composite semiconductor element
JPS6236917A (en) Integrated circuit device
JPH0563214A (en) Varactor diode
JPH039527A (en) Lateral type bipolar transistor
JPH04155957A (en) Semiconductor device
JPS6327063U (en)
JPS62245683A (en) Constant voltage diode
JPH03108773A (en) Semiconductor device