JPS6338038B2 - - Google Patents

Info

Publication number
JPS6338038B2
JPS6338038B2 JP11437380A JP11437380A JPS6338038B2 JP S6338038 B2 JPS6338038 B2 JP S6338038B2 JP 11437380 A JP11437380 A JP 11437380A JP 11437380 A JP11437380 A JP 11437380A JP S6338038 B2 JPS6338038 B2 JP S6338038B2
Authority
JP
Japan
Prior art keywords
tetrocalcin
culture
chloroform
acetone
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11437380A
Other languages
Japanese (ja)
Other versions
JPS5738796A (en
Inventor
Fusao Tomita
Tatsuya Tamaoki
Kimikatsu Shirahata
Masaji Kasai
Kazuyuki Mineura
Shinzo Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KH Neochem Co Ltd
Original Assignee
Kyowa Hakko Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co Ltd filed Critical Kyowa Hakko Kogyo Co Ltd
Priority to JP11437380A priority Critical patent/JPS5738796A/en
Priority to US06/252,062 priority patent/US4346075A/en
Publication of JPS5738796A publication Critical patent/JPS5738796A/en
Publication of JPS6338038B2 publication Critical patent/JPS6338038B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は䞀般匏〔〕 匏䞭、R1およびR2は氎玠原子たたはアセチ
ル基を衚わす。ただし、R1が氎玠原子の堎合は
R2はアセチル基、R2が氎玠原子の堎合はR1はア
セチル基ずする。で衚わされるテトロカルシン
類以䞋、R1が氎玠原子でR2がアセチル基の化
合物をテトロカルシン―R1がアセチル基
でR2が氎玠原子の化合物をテトロカルシン―
ずする。およびその塩およびテトロカルシン
―および―の補造法に関する。 本発明者らは有甚な抗生物質を芋い出す目的で
倩然界より数倚くの埮生物を入手しお抗生物質の
生産に぀いお研究した。その結果宮城県仙台垂内
の土壌から分離した菌株KY11091ず称する
を培地に培逊するず培逊物䞭に新芏な抗生物質
DC―11DC―11――DC―11――
DC―11―などが生産されるこずを芋い出した。
これらはいずれもその物理化孊的物質から極めお
類䌌した構造匏を有する化合物ず考えられ、埌に
本発明者らによ぀おテトロカルシン類ず総称する
こずずにした。DC―11DC―11――DC
―11――DC―11―はそれぞれテトロカ
ルシンテトロカルシンテトロカルシン
テトロカルシンず呜名されおいる。DC―
11に関しおはすでに同䞀出願人により特願昭53−
45916特開昭54−138501および特願昭53−
153027特開昭53−79322に開瀺されおいる。
DC―11――DC―11――DC―11―
に぀いおも同䞀出願人による特願昭55−17498
55−24924特開昭56−11579456−122392、以䞊
件DC―11――54−15225355−24925
特開昭56−7550056−122393、以䞊件DC―
11――55―24926特開昭56−122394、DC
―11―に蚘茉されおいる。たたさらにテトロ
ノラむド類に぀いおは特願昭55−80482特開昭57
−7479に蚘茉されおいる。 䞊蚘においおテトロカルシンおよびに぀い
おはその埌次の化孊構造を有するこずが明らかに
な぀た。 本発明者らはさらに研究を重ねた結果、䞊蚘菌
株培逊物䞭に既出願に蚘茉された物質ずは異る新
芏物質テトロカルシン―およびテトロカルシ
ン―を芋い出しこれらを単離した。たたテト
ロカルシン―およびテトロカルシン―は
テトロカルシンテトロカルシンテトロカ
ルシンの単独たたは混合物を化孊的に分解しお
も埗られるこずを芋い出した。このようにしお埗
られたテトロカルシン―およびテトロカルシ
ン―は抗菌䜜甚を瀺す。たたそれらの構造か
ら明らかなように既出願のテトロノラむド類やテ
トロカルシン類およびそれらの誘導䜓補造の原料
ずしお利甚できる。 さらにそれ自身も抗腫瘍性を瀺すこずが期埅で
きる。 これらの化合物の具䜓的な理化孊的性質は次の
通りである。 (1) テトロカルシン― 融点207〜210℃ 元玠分析倀 蚈算倀61.6 7.0 2.9 実枬倀61.3 6.9 3.0 C49H66N2O17ずしお蚈算 赀倖郚吞収スペクトルKBr錠剀法第
図 PMRスペクトルCDCl3䞭、TMS基準
第図 CMRスペクトルΎppmCDCl3䞭、TMS
基準 206.1201.3192.4170.4166.5
157.3149.4141.3136.3135.7
126.6125.5123.3118.3100.9
99.796.491.585.683.977.8
75.169.469.265.562.154.1
53.752.851.244.843.441.7
38.435.935.334.231.130.7
29.725.321.921.117.516.9
16.115.014.414.3 比旋光床〔α〕28 D−31.6゜1.0アセト
ン (2) テトロカルシン― 融点205〜208℃ 元玠分析 蚈算倀61.6 7.0 2.9 実枬倀61.4 7.1 2.9 C49H66N2O17ずしお蚈算 赀倖郚吞収スペクトルKBr錠剀法第
図 PMRスペクトルCDCl3䞭、TMS基準
第図 CMRスペクトルΎppmCDCl3䞭TMS
基準 206.2201.4192.4171.3166.5
157.3149.5141.2136.2136.0
126.1125.8123.0118.2100.8
97.796.491.583.983.877.7
71.669.769.3本64.654.2
53.752.751.244.843.241.5
38.435.934.433.131.130.6
29.725.321.921.417.616.9
16.015.014.313.9 比旋光床〔α〕28 D−27.4゜1.0アセト
ン 次にテトロカルシン―テトロカルシン
―の薄局でクロマトグラフむヌにおける挙動を
第衚に瀺す。 第衚 シリカゲルプレヌト商品名DC―
Fertigplatteu Kieselgel 60F254E.Merckを
甚いたずき。 展開剀クロロホルムメタノヌル
容量比 物 質 Rf倀 テトロカルシン 0.57 〃  0.52 〃  0.56 〃  0.53 〃 ― 0.77 〃 ― 0.65 展開剀トル゚ンアセトン3565容量
比 物 質 Rf倀 テトロカルシン 0.55 テトロカルシン― 0.64 テトロカルシン― 0.60 展開剀酢酞゚チル酢酞20容量比 物 質 Rf倀 テトロカルシン 0.42 テトロカルシン― 0.67 テトロカルシン― 0.62 次にテトロカルシン―テトロカルシン
―の各皮埮生物に察する抗菌掻性PH7.0の培
地䜿甚を第衚に瀺す。
The present invention is based on the general formula [] (In the formula, R 1 and R 2 represent a hydrogen atom or an acetyl group. However, if R 1 is a hydrogen atom,
R 2 is an acetyl group, and when R 2 is a hydrogen atom, R 1 is an acetyl group. ) (Hereinafter, compounds in which R 1 is a hydrogen atom and R 2 is an acetyl group are referred to as tetrocalcin E-1, and compounds in which R 1 is an acetyl group and R 2 is a hydrogen atom are referred to as tetrocalcin E-1.
Set it to 2. ) and its salt, and a method for producing tetrocalcin E-1 and E-2. In order to find useful antibiotics, the present inventors obtained a large number of microorganisms from the natural world and conducted research on the production of antibiotics. As a result, a bacterial strain (referred to as KY11091) was isolated from soil in Sendai City, Miyagi Prefecture.
When cultured in a culture medium, a novel antibiotic appears in the culture.
DC-11, DC-11-A-2, DC-11-A-3,
It was discovered that models such as DC-11-B were produced.
All of these are considered to be compounds having extremely similar structural formulas based on their physicochemical substances, and the present inventors later decided to collectively refer to them as tetrocalcins. DC-11, DC-11-A-2, DC
-11-A-3 and DC-11-B are named tetrocalcin A, tetrocalcin B, tetrocalcin C, and tetrocalcin D, respectively. DC―
Regarding No. 11, the same applicant has already filed a patent application in 1983-
45916 (Japanese Unexamined Patent Publication No. 138501) and patent application No. 1385-
153027 (Japanese Unexamined Patent Publication No. 53-79322).
DC-11-A-2, DC-11-A-3, DC-11-
Regarding B, a patent application filed in 17498, filed by the same applicant,
55-24924 (JP 56-115794, 56-122392, above two DC-11-A-2), 54-152253, 55-24925
(Japanese Patent Publication No. 56-75500, 56-122393, above two DC-
11-A-3), 55-24926 (Unexamined Japanese Patent Publication No. 56-122394, DC
-11-B). Furthermore, regarding tetronolides, Japanese Patent Application No. 55-80482
-7479). In the above, it was later revealed that tetrocalcins A and B have the following chemical structures. As a result of further research, the present inventors discovered and isolated new substances tetrocalcin E-1 and tetrocalcin E-2, which are different from the substances described in the previous application, in the above-mentioned bacterial strain culture. It has also been found that tetrocalcin E-1 and tetrocalcin E-2 can be obtained by chemically decomposing tetrocalcin A, tetrocalcin B, and tetrocalcin D, either alone or as a mixture. Tetrocalcin E-1 and tetrocalcin E-2 thus obtained exhibit antibacterial activity. Furthermore, as is clear from their structures, they can be used as raw materials for the production of tetronolides and tetrocalcins and their derivatives, which have already been filed. Furthermore, it can be expected that it itself exhibits antitumor properties. The specific physical and chemical properties of these compounds are as follows. (1) Tetrocalcin E-1 Melting point: 207-210℃ Elemental analysis value Calculated value: C: 61.6% H: 7.0% N: 2.9% Actual value: C: 61.3% H: 6.9% N: 3.0% (C 49 H 66 N 2 O 17 ) Infrared absorption spectrum (KBr tablet method): 1st
Figure PMR spectrum (in CDCl 3 , TMS reference):
Figure 2 CMR spectrum ÎŽ (ppm) (in CDCl 3 , TMS
Standard) 206.1, 201.3, 192.4, 170.4, 166.5,
157.3, 149.4, 141.3, 136.3, 135.7,
126.6, 125.5, 123.3, 118.3, 100.9,
99.7, 96.4, 91.5, 85.6, 83.9, 77.8,
75.1, 69.4, 69.2, 65.5, 62.1, 54.1,
53.7, 52.8, 51.2, 44.8, 43.4, 41.7,
38.4, 35.9, 35.3, 34.2, 31.1, 30.7,
29.7, 25.3, 21.9, 21.1, 17.5, 16.9,
16.1, 15.0, 14.4, 14.3 Specific optical rotation [α] 28 D = -31.6° (c, 1.0, acetone) (2) Tetrocalcin E-2 Melting point: 205-208℃ Elemental analysis Calculated value: C: 61.6% H: 7.0% N: 2.9% Actual value: C: 61.4% H: 7.1% N: 2.9% (calculated as C 49 H 66 N 2 O 17 ) Infrared absorption spectrum (KBr tablet method): 3rd
Figure PMR spectrum (in CDCl 3 , TMS reference):
Figure 4 CMR spectrum ÎŽ (ppm) (in CDCl 3 , TMS
Standard) 206.2, 201.4, 192.4, 171.3, 166.5,
157.3, 149.5, 141.2, 136.2, 136.0,
126.1, 125.8, 123.0, 118.2, 100.8,
97.7, 96.4, 91.5, 83.9, 83.8, 77.7,
71.6, 69.7, 69.3 (2 pieces), 64.6, 54.2,
53.7, 52.7, 51.2, 44.8, 43.2, 41.5,
38.4, 35.9, 34.4, 33.1, 31.1, 30.6,
29.7, 25.3, 21.9, 21.4, 17.6, 16.9,
16.0, 15.0, 14.3, 13.9 Specific optical rotation [α] 28 D = -27.4° (c, 1.0, acetone) Next, tetrocalcin E-1, tetrocalcin E
Table 1 shows the behavior in chromatography of a thin layer of -2. Table 1 Silica gel plate (product name DC-
Fertigplatteu Kieselgel 60F 254 , E. Merck). Developer: Chloroform:methanol = 9:1
(Volume ratio) Substance Rf value Tetrocalcin A 0.57 〃 B 0.52 〃 C 0.56 〃 D 0.53 〃 E-1 0.77 〃 E-2 0.65 Developer: Toluene: Acetone = 35:65 (Volume ratio) Substance Rf value Tetrocalcin A 0.55 Tetrocalcin E-1 0.64 Tetrocalcin E-2 0.60 Developer: Ethyl acetate:acetic acid = 20:1 (volume ratio) Substance Rf value Tetrocalcin A 0.42 Tetrocalcin E-1 0.67 Tetrocalcin E-2 0.62 Next, Tetrocalcin E-1, Tetrocalcin E
Table 2 shows the antibacterial activity of -2 against various microorganisms (using a pH7.0 medium).

【衚】 サ
ATCC 9992
䞊蚘の理化孊的性質等よりテトロカルシン―
ず―ずを区別するこずができるのみなら
ず、これらず他のテトロカルシン類ずを区別する
こずもできる。 次に本発明のテトロカルシン類の補造法に぀い
お述べる。 テトロカルシン―テトロカルシン―
は、前述のずおり、醗酵法でも補造できるし、た
たテトロカルシンテトロカルシンテトロ
カルシンなどを加氎分解するこずによ぀おも補
造できる。 テトロカルシン―およびテトロカルシン
―を埮生物の培逊物䞭から埗るには、ミクロモ
ノスボラ属に属し、テトロカルシン―およ
びたたはテトロカルシン―生産胜を有する
埮生物を栄逊培地に培逊し、該化合物を培逊物䞭
に蓄積せしめ該培逊物からテトロカルシン―
およびたたはテトロカルシン―を採取する
こずによ぀おテトロカルシン―およびたた
はテトロカルシン―が埗られる。 䜿甚しうる埮生物ずしおはミクロモノスポラ属
に属しテトロカルシン―およびたたはテト
ロカルシン―生産胜を有する埮生物であれ
ば、いずれの埮生物も甚いるこずができるが奜適
な菌ずしおは、ミクロモノスポラ・チダルセア
KY11091株があげられる。該菌株は埮工研菌寄
第4458号、NRRL11289ずしお、それぞれ寄蚗さ
れおいる。該菌株の菌孊的性質は特願昭53−4596
特開昭54−138501、特願昭54−152253特開昭
56−75500、特願昭55−17498特開昭56−
115794、特願昭55−24926特開昭56−122394
明现曞に蚘茉されおいる。 次に培逊方法に぀いお述べる。 本発明の培逊においおは通垞の攟線菌の培逊法
が䞀般に甚いられる。培逊のための栄逊源ずしお
は䞋蚘に瀺すごずくいろいろのものが甚いられ
る。炭玠源ずしおはブドり糖、殿粉、デキストリ
ン、マンノヌス、フラクトヌス、シナヌクロヌ
ス、糖蜜などが単独たたは組み合わせお甚いられ
る。さらに、菌の資化胜によ぀おは炭化氎玠、ア
ルコヌル類、有機酞なども甚いうる。無機および
有機の窒玠化合物ずしお塩化アンモン、硫酞アン
モン、硝酞アンモン、硝酞゜ヌダ、尿玠などがた
た倩然の窒玠源ずしおはペプトン、肉゚キス、酵
母゚キス、也燥酵母、コヌン・スチヌブ・リカ
ヌ、倧豆粉、カザミノ酞などが単独たたは組み合
わせお甚いられる。そのほか、必芁に応じお食
塩、塩化カリ、硫酞マグネシりム、炭酞カルシり
ム、燐酞二氎玠カリりム、燐酞氎玠二カリりム、
硫酞第䞀鉄、塩化カルシりム、硫酞マンガン、硫
酞亜鉛、硫酞銅などの無機塩類を加える。さらに
䜿甚菌の生育やテトロカルシン―およびテト
ロカルシン―の生産を促進する埮量成分䟋え
ばビタミンB1、ビオチンなどを適圓に添加する
こずができる。 培逊法ずしおは、液䜓培逊法、ずくに深郚撹拌
培逊法がも぀ずも適しおいる。培逊枩床は25〜40
℃、特に28〜38℃が最適で培地のPHはアンモニア
氎や炭酞アンモン溶液などを添加しお、PH〜
10、奜たしくは〜で培逊を行なうこずが望た
しい。 液䜓培逊で通垞日ないし日培逊を行なう
ず、目的物質が培逊液䞭に生成蓄積される。培逊
液䞭の生成量が最倧に達したずきに培逊を停止
し、菌䜓を別しお埗られる培逊液䞭より目的物
を単離粟補する。 培逊液からのテトロカルシン―およびテ
トロカルシン―の単離粟補には埮生物代謝生
産物をその培逊液から単離するためにふ぀う甚い
られる分離・粟補の方法が利甚される。 䟋えば、培逊生産物を培逊液ず菌䜓ずに分離
し、培逊液そのたたPH6.0非むオン性倚孔性
暹脂商品名「HP―20」䞉菱化成補などを通
過させ、抗菌掻性を有する成分を吞着させた埌、
メタノヌル、アセトン、酢酞゚チルなどを甚いお
吞着物質を脱着させる。この脱着液を濃瞮也固
し、氎に溶解しお掻性炭玠に吞着させる。掻性炭
玠からはアセトン、酢酞゚チルなどの有機溶媒で
掻性物質を溶出する。この溶出液を濃瞮也固しク
ロロホルムに溶解させ、予めクロロホルムに懞濁
埌カラム充填したシリカゲルを甚いおクロマトグ
ラフむヌを行う。たずクロロホルムを通塔するこ
ずによ぀お䞍玔物である黄色系の色玠が陀去され
る。次いでクロロホルムメタノヌル98、
容量比の混合液で掻性物質を溶出するこずがで
きる。ここではテトロカルシン、テトロカルシ
ン、テトロカルシン、テトロカルシン、テ
トロノラむド類化合物―、テトロカルシン
―、テトロカルシン―の混合物ずしお溶出
させる。これらの分離を行うには、この掻性画分
を濃瞮也固し、少量のクロロホルムメタノヌ
ル氎、容量比の混合物の䞋局溶
媒に溶解する。これを前蚘䞋局溶媒で充填したシ
リカゲルのカラムに通塔し、同じ溶媒で溶出する
ずテトロカルシン―、テトロカルシン―
、テトロノラむド類化合物―、テトロカル
シン、テトロカルシン、テトロカルシン、
テトロカルシンの順に溶出されおくる。テトロ
カルシン―、テトロカルシン―の倚く含
たれる画分をずり、それぞれをさらに再クロマト
凊理に付すか、たたはシリカゲル薄局クロマトで
凊理するこずによ぀おテトロカルシン―、
―をそれぞれ埗るこずができる。薄局クロマト
による堎合はシリカゲル薄局商品名DC
FertigPlatten Kieselgel 60F254E.Merckを
甚い、クロロホルムメタノヌル、容量
比で展開埌盞圓する郚分をかきずり、該展開溶
媒もしくはアセトン等で溶出し、溶出液を濃瞮也
固する。 さらに必芁に応じ抜出、晶析等の手段を加えお
もよい。たた分離を完党にするために、䞊蚘ず同
じクロマトグラフむヌを繰返すかあるいはセフア
デツクスLH―20Pharmacia Fine Chemicals
Inc.スり゚ヌデンのカラムに通塔する操䜜を
加えおもよい。 次にテトロカルシン―、テトロカルシン
―の加氎分解による補造法に぀いお述べる。 テトロカルシンのいずれかたたはこ
れらの混合物その組成は問わないを塩酞、硫
酞などの酞氎溶液ず有機溶媒アセトンなどの
混合物䞭で加氎分解する。加氎分解は䟋えば実斜
䟋に瀺したごずき条件䞋に行えばよい。加氎分
解埌溶媒を留去し、残氎溶液を酢酞゚チルで抜出
し、酢酞゚チル局を濃瞮也固埌、クロロホルムに
溶解する。これを予めクロロホルムで充填したシ
リカゲルのカラムに通塔し、クロロホルムメタ
ノヌル1000.5、容量比で展開するずテトロ
カルシン―、テトロカルシン―の順に溶
出されおくる。これを再クロマト法、薄局クロマ
ト法などでさらに粟補しお玔粋なテトロカルシン
―、テトロカルシン―を埗るこずができ
る。 ここでは単䞀物質から皮の物質テトロカルシ
ン―、テトロカルシン―が埗られおき
た。その埌の実隓からテトロカルシン―が本
来母化合物䞭に含たれおいお、加氎分解䞭および
分解埌溶液䞭に存圚しおいるずきに隣酞する氎酞
基にアセチル基が転移するこずによ぀おテトロカ
ルシン―が生成したず考えられる。たた䞀方
テトロカルシン―もたたアセチル基の転移に
よ぀おテトロカルシン―に倉るこずができ
る。このようなアセチル基の転移は、テトロカル
シン―およびテトロカルシン―の玔品を
溶液にするず埐々に倉換をしおテトロカルシン
―ず―の混合物ができるこずからも蚌明さ
れた。さらに同様の反応が培逊液䞭でも起぀おい
るず容易に掚定できる。 次に実斜䟋をあげお本発明化合物を具䜓的補法
を瀺す。 実斜䟋䞭、物質の動向は、バチルス・ズブチリ
スNo.10707を甚いるバむオアツセむたたはTLCク
ロマトスキダンナヌ法島接クロマトスキダンナ
ヌCS910玫倖郚反射法、ダブルビヌム、シン
グルスキダン、波長サンプル260nm、リフアレン
ス350nmを甚いお远跡した。 実斜䟋  皮菌ずしおミクロモノスポラ・チダルセア
KY11091を甚いた。該菌株を容量の䞉角フ
フラスコ䞭の皮培地〔KCl MgSO4・
7H2O0.5、KH2PO41.5、硫安5.0
、シナヌクロヌス20、フラクトヌス
10、グルコヌス10、コヌンスチヌブ
リカヌ5.0、CaCO320PH7.0〕300ml
に怍菌し、30℃で48時間振ずう220r.p.m培逊
した。かくしお埗られた皮培逊液を30容量のゞ
ダヌフアヌメンタヌ䞭の䞋蚘組成の発酵培地15
に容量の割合で移し、30℃で通気撹拌方
匏回転数250r.p.m通気量15minにより培
逊を行぀た。 発酵培地組成可溶性デンプン60、倧豆
粕粉末10、ペプトン10、
K2HPO40.5、MgSO4・7H2O0.5
、CaCO31、PH7.2殺菌前
にNaOHで調敎する。 培逊䞭培地のPHは制埡しないで、72時間培逊し
た。培逊液より菌䜓および沈殿物を別し、別液
13を埗た。たず液13をの非むオン性倚
孔性暹脂商品名「HP―10」䞉菱化成補に通
塔しお掻性物質を吞着させ氎掗埌さらに30
アセトン氎溶液で掗い䞍玔物を陀去す
る。次いでアセトンで溶出する。アセトン画分を
濃瞮也固し、30アセトン氎溶液に溶
解する。この溶液を掻性炭500mlを充填したカラ
ムに吞着させる。30アセトン氎溶液
で掗滌埌アセトンで掻性画分を溶出する。この操
䜜で䞍玔物ずしお存圚する色玠の倧郚分を陀くこ
ずができる。掻性画分を濃瞮也固し、少量のクロ
ロホルム玄10mlに溶解する。このクロロホル
ム溶液を予めクロロホルムを溶媒ずしお充填した
シリカゲル〔商品名クロマトグラフ甚シリカゲ
ル100〜200メツシナ関東化孊、以䞋も同じ〕
500mlのカラムに静かに乗せ、たずクロロホル
ムで充分玄に掗い、次いでクロロホル
ムメタノヌル98、容量比で溶出を行う
ずテトロカルシン〜、テトロノラむド類化合
物―、テトロカルシン―、―が混合
しお溶出される。これを濃瞮也固し、少量のクロ
ロホルムメタノヌルH2O、容量
比の混合物の䞋局溶媒に溶解する。これを前蚘
䞋局溶媒で充填したシリカゲルカラム500ml
に静かに乗せ、同じ溶媒で展開するずテトロカル
シン――、テトロノラむド類化合物
―、テトロカルシン、、、の順に溶出
されおくる。さらに同様にしお再クロマトを行぀
お、テトロカルシン―、―をそれぞれ䞻
成分ずする分画を濃瞮也固する。これをアセトン
たたはクロロホルムに溶解し、シリカゲル薄局を
甚い、クロロホルムメタノヌル、容量
比で展開した。―に盞圓する郚分もしくは
―に盞圓する郚分をかきずり、それぞれを展
開溶媒又はアセトンで溶出埌、濃瞮也固し酢酞゚
チルに溶解する。これを0.1N HClず振りたぜ溶
媒局を取り、濃瞮也固する。このずき也固したも
のを酢酞゚チルに再溶解埌ヘキサンで沈殿させる
こずによ぀おも粉末が埗られる。このようにしお
玄mgのテトロカルシン―ず玄mgのテトロ
カルシン―を埗た。ここで埗たテトロカルシ
ン――の理化孊的性質、抗菌掻性は前
蚘の通りである。 実斜䟋  実斜䟋においお、発酵培地組成を次のものに
代えお行う以倖は実斜䟋ず同様に培逊を行぀
た。 発酵培地組成可溶性デンプン40、倧豆
粕粉末30、デキストリン、
コヌンスチヌブリカヌ、
K2HPO40.5、MgSO4・7H2O0.5
、CaCO31、PH7.0殺菌前
にNaOHで調敎する。 培逊液を、実斜䟋ず同様に凊理しお、テトロ
カルシン――をそれぞれ玄mg、玄
mg埗た。これらの理化孊的性質、抗菌掻性は実斜
䟋で埗られたものずよく䞀臎した。 実斜䟋  テトロカルシン、、の混合物組成比は
1.70.3、重量比を50アセトン
に溶解し、PH20にHClで調敎した埌、50℃で17時
間還流しお分解させた。分解液を枛圧䞋で濃瞮
し、アセトンを陀去した埌、500mlの酢酞゚チル
を加えお抜出した。抜出液を濃瞮也固し、クロロ
ホルムに溶解し、予めクロロホルムで充填したシ
リカゲルのカラム500mlに、静かに乗せ、ク
ロロホルムメタノヌル1000.5、容量比展
開した。テトロカルシン――を含む画
分を集め、それぞれ濃瞮埌石油゚ヌテルで沈殿さ
せた。この方法でテトロカルシン――
をそれぞれ150mg、160mgを埗た。これらの理化孊
的性質、抗菌掻性などは実斜䟋で埗られたもの
ずよく䞀臎した。
[Table]
ATCC 9992
From the above physical and chemical properties, tetrocalcin E-
Not only can one distinguish between 1 and E-2, but also between these and other tetrocalcins. Next, the method for producing tetrocalcins of the present invention will be described. Tetrocalcin E-1, Tetrocalcin E-2
As mentioned above, can be produced by fermentation, or by hydrolyzing tetrocalcin A, tetrocalcin B, tetrocalcin D, etc. Tetrocalcin E-1 and Tetrocalcin E
-2 from a microbial culture, a microorganism belonging to the genus Micromonosvora and capable of producing tetrocalcin E-1 and/or tetrocalcin E-2 is cultured in a nutrient medium, and the compound is added to the culture. Tetrocalcin E-1 was accumulated from the culture.
And/or by collecting tetrocalcin E-2, tetrocalcin E-1 and/or tetrocalcin E-2 can be obtained. Any microorganism can be used as long as it belongs to the genus Micromonospora and has the ability to produce tetrocalcin E-1 and/or tetrocalcin E-2.・Chaarcea
KY11091 stock is mentioned. The strain has been deposited as FIKEN Bibori No. 4458 and NRRL11289, respectively. The mycological properties of this strain were disclosed in Japanese Patent Application 1986-4596.
(Japanese Patent Publication No. 54-138501), Patent Application No. 152253 (Japanese Patent Application
56-75500), patent application No. 55-17498 (Japanese Patent Application No. 1983-17498
115794), patent application No. 1157-24926 (Japanese Patent Application No. 1983-122394)
It is stated in the specification. Next, the culture method will be described. In the cultivation of the present invention, ordinary methods for culturing actinomycetes are generally used. Various nutrient sources can be used for culturing, as shown below. As the carbon source, glucose, starch, dextrin, mannose, fructose, sucrose, molasses, etc. are used alone or in combination. Furthermore, depending on the assimilation ability of the bacteria, hydrocarbons, alcohols, organic acids, etc. may also be used. Inorganic and organic nitrogen compounds include ammonium chloride, ammonium sulfate, ammonium nitrate, sodium nitrate, urea, etc. Natural nitrogen sources include peptone, meat extract, yeast extract, dried yeast, corn stew liquor, soy flour, and casamino. Acids and the like are used alone or in combination. In addition, salt, potassium chloride, magnesium sulfate, calcium carbonate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate,
Add inorganic salts such as ferrous sulfate, calcium chloride, manganese sulfate, zinc sulfate, and copper sulfate. Furthermore, trace components that promote the growth of the bacteria used and the production of tetrocalcin E-1 and tetrocalcin E-2, such as vitamin B 1 and biotin, can be appropriately added. As a culture method, a liquid culture method, especially a deep agitation culture method, is suitable. Culture temperature is 25-40
℃, especially 28 to 38℃, is optimal, and the pH of the culture medium is adjusted to PH4 to 4 by adding aqueous ammonia or ammonium carbonate solution.
10, preferably 6 to 8. When culture is carried out in liquid culture for usually 1 to 7 days, the target substance is produced and accumulated in the culture solution. When the production amount in the culture solution reaches the maximum, the culture is stopped, the bacterial cells are separated, and the target product is isolated and purified from the obtained culture solution. Isolation and purification of tetrocalcin E-1 and tetrocalcin E-2 from the culture solution utilizes separation and purification methods commonly used to isolate metabolic products of microorganisms from the culture solution. For example, the culture product is separated into a culture solution and bacterial cells, and the culture solution (PH6.0) is passed through a nonionic porous resin (trade name "HP-20" manufactured by Mitsubishi Kasei, etc.) to detect antibacterial activity. After adsorbing the components that have
Desorb the adsorbed substance using methanol, acetone, ethyl acetate, etc. This desorption solution is concentrated to dryness, dissolved in water, and adsorbed onto activated carbon. The active substance is eluted from the activated carbon using an organic solvent such as acetone or ethyl acetate. This eluate is concentrated to dryness, dissolved in chloroform, and chromatographed using silica gel that has been suspended in chloroform and filled in a column. First, impurity yellow pigment is removed by passing chloroform through the column. Then chloroform:methanol (98:2,
The active substance can be eluted with a mixed solution (volume ratio). Here, tetrocalcin A, tetrocalcin B, tetrocalcin C, tetrocalcin D, tetronolide compound F-1, tetrocalcin E
Elute as a mixture of -1 and tetrocalcin E-2. To carry out these separations, the active fractions are concentrated to dryness and dissolved in a small amount of the lower solvent of a mixture of chloroform:methanol:water (3:1:1, by volume). This was passed through a silica gel column filled with the lower layer solvent, and when eluted with the same solvent, tetrocalcin E-1 and tetrocalcin E-
2. Tetronolide compound F-1, tetrocalcin A, tetrocalcin B, tetrocalcin D,
Tetrocalcin C is eluted in this order. Fractions containing a large amount of tetrocalcin E-1 and tetrocalcin E-2 are taken and each is further subjected to re-chromatography or treated with silica gel thin layer chromatography to obtain tetrocalcin E-1 and E-2.
-2 each. For thin layer chromatography, use a thin layer of silica gel (product name: DC
After developing with chloroform:methanol (9:1, volume ratio) using FertigPlatten Kieselgel 60F 254 (E. Merck), a corresponding portion is scraped off, eluted with the developing solvent or acetone, and the eluate is concentrated to dryness. Furthermore, if necessary, means such as extraction and crystallization may be added. In addition, to complete the separation, repeat the same chromatography as above or use Sephadex LH-20 (Pharmacia Fine Chemicals).
Inc., Sweden) may be added. Next, tetrocalcin E-1, tetrocalcin E
-2 The production method by hydrolysis will be described. Tetrocalcin A, B, D or a mixture thereof (the composition thereof does not matter) is hydrolyzed in a mixture of an aqueous acid solution such as hydrochloric acid or sulfuric acid and an organic solvent (such as acetone). Hydrolysis may be carried out under the conditions shown in Example 3, for example. After hydrolysis, the solvent is distilled off, the remaining aqueous solution is extracted with ethyl acetate, the ethyl acetate layer is concentrated to dryness, and then dissolved in chloroform. When this is passed through a silica gel column previously filled with chloroform and developed with chloroform:methanol (100:0.5, volume ratio), tetrocalcin E-1 and tetrocalcin E-2 are eluted in this order. This can be further purified by rechromatography, thin layer chromatography, etc. to obtain pure tetrocalcin E-1 and tetrocalcin E-2. Here, two substances, tetrocalcin E-1 and tetrocalcin E-2, have been obtained from a single substance. Subsequent experiments showed that tetrocalcin E-1 was originally contained in the parent compound, and that tetrocalcin -2 is thought to have been generated. On the other hand, tetrocalcin E-2 can also be converted to tetrocalcin E-1 by transfer of the acetyl group. Such acetyl group transfer occurs when pure tetrocalcin E-1 and tetrocalcin E-1 are converted into a solution, gradually converting into tetrocalcin E.
This was also proven by the fact that a mixture of -1 and E-2 was formed. Furthermore, it can be easily assumed that a similar reaction occurs in the culture solution. Next, examples will be given to show specific methods for producing the compounds of the present invention. In the examples, the trend of substances was determined by bioassay using Bacillus subtilis No. 10707 or TLC chromatography scanner method (Shimadzu chromatography scanner CS910) (ultraviolet reflection method, double beam, single scan, wavelength sample 260 nm, reference 350 nm) was tracked using. Example 1 Micromonospora charcea as seed fungus
KY11091 was used. The strain was grown in a seed medium [KCl 4g/MgSO 4 .
7H 2 O 0.5g/, KH 2 PO 4 1.5g/, Ammonium sulfate 5.0
g/, sucrose 20g/, fructose
10g/, glucose 10g/, corn steep liquor 5.0g/, CaCO 3 20g/PH7.0〕300ml
The cells were inoculated and cultured at 30°C for 48 hours with shaking (220 rpm). The seed culture thus obtained was mixed into a fermentation medium 15 with the following composition in a 30-volume jar fermenter.
The culture was carried out at 30° C. using an aeration stirring method (rotation speed: 250 rpm, aeration rate: 15/min). Fermentation medium composition: soluble starch 60g/, soybean meal powder 10g/, peptone 10g/,
K 2 HPO 4 0.5g/, MgSO 4・7H 2 O0.5
g/, CaCO 3 1g/, PH7.2 (before sterilization)
Adjust with NaOH. Culture was carried out for 72 hours without controlling the pH of the culture medium. Separate the bacterial cells and precipitate from the culture solution and separate the
Got 13. First, liquid 13 is passed through a column of nonionic porous resin 1 (product name "HP-10" manufactured by Mitsubishi Kasei) to adsorb the active substance, and after washing with water, an additional 30%
(V/V) Wash with acetone aqueous solution to remove impurities. Then elute with acetone. The acetone fraction is concentrated to dryness and dissolved in a 30% (V/V) acetone aqueous solution. This solution is adsorbed onto a column packed with 500 ml of activated carbon. After washing with a 30% (V/V) acetone aqueous solution, the active fraction is eluted with acetone. This operation can remove most of the dyes present as impurities. The active fraction is concentrated to dryness and dissolved in a small amount of chloroform (approximately 10 ml). Silica gel filled with this chloroform solution in advance using chloroform as a solvent [Product name: Silica gel for chromatography (100-200 mesh) Kanto Kagaku, the same applies below]
(500 ml), washed thoroughly with chloroform (approximately 2 times), and then eluted with chloroform:methanol (98:2, volume ratio). Tetrocalcins A to D, tetronolide compounds E-1, Tetrocalcin E-1 and E-2 are mixed and eluted. This is concentrated to dryness and dissolved in a small amount of the lower solvent of a mixture of chloroform:methanol:H 2 O (3:1:1, volume ratio). A silica gel column (500ml) filled with this lower layer solvent
When placed gently on the gel and developed with the same solvent, tetrocalcin E-1, E-2, tetronolide compound F
-1, tetrocalcin A, B, D, and C are eluted in this order. Further, rechromatography is performed in the same manner, and the fractions containing tetrocalcins E-1 and E-2 as main components are concentrated to dryness. This was dissolved in acetone or chloroform and developed with chloroform:methanol (9:1, volume ratio) using a thin layer of silica gel. The portion corresponding to E-1 or E-2 is scraped off, each is eluted with a developing solvent or acetone, concentrated to dryness, and dissolved in ethyl acetate. Shake this with 0.1N HCl, remove the solvent layer, and concentrate to dryness. A powder can also be obtained by redissolving the dried product in ethyl acetate and precipitating it with hexane. In this way, about 5 mg of tetrocalcin E-1 and about 3 mg of tetrocalcin E-2 were obtained. The physicochemical properties and antibacterial activity of the tetrocalcins E-1 and E-2 obtained here are as described above. Example 2 Culture was carried out in the same manner as in Example 1 except that the composition of the fermentation medium was changed to the following. Fermentation medium composition: soluble starch 40g/, soybean meal powder 30g/, dextrin 5g/,
Corn stew liquor 5g/,
K 2 HPO 4 0.5g/, MgSO 4・7H 2 O0.5
g/, CaCO 3 1g/, PH7.0 (before sterilization)
Adjust with NaOH. The culture solution was treated in the same manner as in Example 1 to give about 4 mg and about 2 mg of tetrocalcin E-1 and E-2, respectively.
I got mg. These physicochemical properties and antibacterial activity were in good agreement with those obtained in Example 1. Example 3 3 g of a mixture of tetrocalcins A, B, and D (composition ratio: 8:1.7:0.3, weight ratio) was mixed with 50% acetone 2
After adjusting the pH to 20 with HCl, the solution was refluxed at 50°C for 17 hours for decomposition. The decomposed solution was concentrated under reduced pressure to remove acetone, and then extracted with 500 ml of ethyl acetate. The extract was concentrated to dryness, dissolved in chloroform, gently placed on a silica gel column (500 ml) filled with chloroform in advance, and developed with chloroform:methanol (100:0.5, volume ratio). Fractions containing tetrocalcin E-1 and E-2 were collected, concentrated, and precipitated with petroleum ether. In this method, tetrocalcin E-1, E-2
150mg and 160mg of each were obtained. These physicochemical properties, antibacterial activity, etc. were in good agreement with those obtained in Example 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第図はテトロカルシン―の赀倖郚吞収ス
ペクトルを瀺す。第図はテトロカルシン―
のPMRスペクトルを瀺す。第図はテトロカル
シン―の赀倖郚吞収スペクトルを瀺す。第
図はテトロカルシン―のPMRスペクトルを
瀺す。
FIG. 1 shows the infrared absorption spectrum of tetrocalcin E-1. Figure 2 shows tetrocalcin E-1
The PMR spectrum of FIG. 3 shows the infrared absorption spectrum of tetrocalcin E-2. Fourth
The figure shows the PMR spectrum of tetrocalcin E-2.

Claims (1)

【特蚱請求の範囲】  䞀般匏 匏䞭、R1およびR2は氎玠原子たたはアセチ
ル基を衚わす。ただし、R1が氎玠原子の堎合は
R2はアセチル基、R2が氎玠原子の堎合はR1はア
セチル基ずする。で衚わされるテトロカルシン
類およびその塩。
[Claims] 1. General formula (In the formula, R 1 and R 2 represent a hydrogen atom or an acetyl group. However, if R 1 is a hydrogen atom,
R 2 is an acetyl group, and when R 2 is a hydrogen atom, R 1 is an acetyl group. ) Tetrocalcins and their salts.
JP11437380A 1980-06-14 1980-08-20 Tetrocarcins and their preparations Granted JPS5738796A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11437380A JPS5738796A (en) 1980-08-20 1980-08-20 Tetrocarcins and their preparations
US06/252,062 US4346075A (en) 1980-06-14 1981-04-08 Antibiotic DC-11 and process for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11437380A JPS5738796A (en) 1980-08-20 1980-08-20 Tetrocarcins and their preparations

Publications (2)

Publication Number Publication Date
JPS5738796A JPS5738796A (en) 1982-03-03
JPS6338038B2 true JPS6338038B2 (en) 1988-07-28

Family

ID=14636067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11437380A Granted JPS5738796A (en) 1980-06-14 1980-08-20 Tetrocarcins and their preparations

Country Status (1)

Country Link
JP (1) JPS5738796A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11643701B2 (en) 2019-01-29 2023-05-09 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet and manufacturing method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1110960A4 (en) * 1998-08-31 2001-12-12 Kyowa Hakko Kogyo Kk Apoptosis inducing agents

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11643701B2 (en) 2019-01-29 2023-05-09 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet and manufacturing method therefor

Also Published As

Publication number Publication date
JPS5738796A (en) 1982-03-03

Similar Documents

Publication Publication Date Title
JPS6316120B2 (en)
US4495358A (en) Antibiotic pyrrolomycin E
EP0091781B1 (en) Improvement in lankacidins productions
JPH0516438B2 (en)
KR970001000B1 (en) Method for manufacturing 2-amino-2-deoxy-d-mannitol
JPS6338038B2 (en)
JPH0686682A (en) Production of 4',7,8-trihydroxyisoflavone
US4172940A (en) Purification of C-076 compounds by single column chromatography
JPS6324000B2 (en)
JPH0120153B2 (en)
JPH0740950B2 (en) Microbial production of nicotianamine
JPS6338039B2 (en)
GB2188624A (en) Preparation of antitumor antibiotic
JP3067183B2 (en) Method for producing FR900506 substance
JP2780780B2 (en) Antibiotic Fumifungin and method for producing the same
US4370415A (en) Process for producing uroporphyrin III
US4954438A (en) Process for preparing antibiotics D788-7
JP2844214B2 (en) Method for producing 4a-hydroxymilbemycin αs
JPH0646950B2 (en) Method for producing streptovaricin
JPS6253518B2 (en)
JPS589676B2 (en) Nojirimycin B
JPS6317074B2 (en)
AU620595B2 (en) Process for the preparation of macrolide compounds
JPH03219888A (en) Production of streptovaricin
JPS5932120B2 (en) Method for producing 9-β-D arabinofuranosyl adenine