JPS6324000B2 - - Google Patents

Info

Publication number
JPS6324000B2
JPS6324000B2 JP12860580A JP12860580A JPS6324000B2 JP S6324000 B2 JPS6324000 B2 JP S6324000B2 JP 12860580 A JP12860580 A JP 12860580A JP 12860580 A JP12860580 A JP 12860580A JP S6324000 B2 JPS6324000 B2 JP S6324000B2
Authority
JP
Japan
Prior art keywords
tetrocalcin
chloroform
culture
acetone
volume ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12860580A
Other languages
Japanese (ja)
Other versions
JPS5753498A (en
Inventor
Fusao Tomita
Tatsuya Tamaoki
Kimikatsu Shirahata
Masaji Kasai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KH Neochem Co Ltd
Original Assignee
Kyowa Hakko Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co Ltd filed Critical Kyowa Hakko Kogyo Co Ltd
Priority to JP12860580A priority Critical patent/JPS5753498A/en
Priority to US06/252,062 priority patent/US4346075A/en
Publication of JPS5753498A publication Critical patent/JPS5753498A/en
Publication of JPS6324000B2 publication Critical patent/JPS6324000B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は䞀般匏〔〕 ただし匏䞭R1が―CHO基の堎合はR2は氎玠
原子を衚わし、R1が䞀CH2OHたたは―COOHの
堎合はR2は次蚘に瀺す二糖類残基を衚わす
The present invention is based on the general formula [] (However, in the formula, when R 1 is -CHO group, R 2 represents a hydrogen atom, and when R 1 is monoCH 2 OH or -COOH, R 2 represents the following disaccharide residue:

【匏】で衚わされるテ トロカルシン類以䞋、R1が―CHO基でR2が氎
玠原子の化合物をテトロカルシンR1が―
CH2OH基でR2が前蚘二糖類残基の化合物をテト
ロカルシンR1が―COOH基でR2が前蚘二糖
類残基の化合物をテトロカルシンずする。お
よびその塩およびテトロカルシンおよび
の補造法に関する。 本発明者らは有甚な抗生物質を芋い出す目的で
倩然界より数倚くの埮生物を入手しお抗生物質の
生産に぀いお研究した。その結果宮城県仙台垂内
の土壌から分離した菌株KY11091ず称する
を培地に培逊するず培逊物䞭に新芏な抗生物質
DC―11DC―11――DC―11――
DC―11―などが生産されるこずを芋い出した。
これらはいずれもその物理化孊的性質から極めお
類䌌した構造匏を有する化合物ず考えられ、埌に
本発明者らによ぀おテトロカルシン類ず総称する
こずにした。DC―11DC―11――DC―
11――DC―11―はそれぞれテトロカル
シンテトロカルシンテトロカルシン
テトロカルシンず呜名されおいる。DC―11に
関しおはすでに同䞀出願人により特願昭53−
45916特開昭54−138501および特願昭53−
153027特願昭55−79322に開瀺されおいる。 DC―11――DC―11――DC―11
―に぀いおも同䞀出願人による特願昭55−
1749855−24924特開昭56−11579456−
122392、以䞊件DC―11――、特願昭54−
15225355−24925特開昭56−7550056−
122393、以䞊件DC―11――、特願昭55−
24926特開昭56−122394、DC―11―に蚘茉
されおいる。 さらにその埌テトロカルシン――が
芋い出された。これらの化合物に぀いおは同䞀出
願人による特願昭55−114343特開昭57−38796
に蚘茉されおいる。たたさらにテトロノラむド類
に぀いおは特願昭55−80482特開昭57−7479に
蚘茉されおいる。 本発明者らはさらに研究を重ねた結果、䞊蚘菌
株培逊物䞭に既出願に蚘茉された物質ずは異なる
新芏テトロカルシンおよびを芋い出しこ
れらを単離した。 たたテトロカルシンおよびはテトロカルシ
ンを化孊的に凊理しおも埗られるこずを芋い出
した。このようにしお埗られたテトロカルシン
およびは抗菌䜜甚を瀺す。たたそれらの
構造から明らかなように既出願のテトロノラむド
類やテトロカルシン類およびそれらの誘導䜓補造
の原料ずしお利甚できる。 さらにそれら自身も抗腫瘍性を瀺すこずが期埅
できる。 これらの化合物の具䜓的な理化孊的性質は次の
通りである。 (1) テトロカルシン 融点201〜204℃ 比旋光床〔α〕27 D−49.4゜0.61ア
セトン 元玠分析倀C55H76N2O19ずしお    蚈算倀 61.8 7.2 2.6 実枬倀 61.5 7.4 2.6 IRKBr第図 PMRCDCl3TMS基準第図 (2) テトロカルシン 融点194〜198℃ 比旋光床〔α〕25 D−68.7゜1.0アセ
トン 元玠分析倀C67H98N2O24ずしお    蚈算倀 61.2 7.5 2.1 実枬倀 61.0 7.6 2.1 IRKBr第図 PMRCDCl3TMS基準第図 (3) テトロカルシン 融点211〜216℃ 比旋光床〔α〕25 D−69.2゜0.72ア
セトン 元玠分析倀C67H96N2O25ずしお    蚈算倀 60.5 7.3 2.1 実枬倀 60.2 7.4 2.1 IRKBr第図 PMRCDCl3TMS基準第図 次にテトロカルシンおよびの薄局クロ
マトグラフむヌにおける挙動を第衚に瀺す。 第衚 シリカゲルプレヌト商品名DC―
Fertigplatten Kieselgel 60F254E.Merckを
甚いたずき。 展開剀クロロホルムメタノヌル
容量比 物 質 Rf倀 テトロカルシン 0.57 〃  0.52 〃  0.56 〃  0.53 〃 ― 0.77 〃 ― 0.65 〃  0.66 〃  0.47 〃  0.27 展開剀トル゚ンアセトン35.65容量
比 物 質 Rf倀 テトロカルシン 0.55 テトロカルシン― 0.64 テトロカルシン― 0.60 テトロカルシン 0.66 展開剀酢酞゚チル酢酞20容量比 物 質 Rf倀 テトロカルシン 0.42 テトロカルシン― 0.67 テトロカルシン― 0.62 テトロカルシン 0.64 テトロカルシン 0.27 次にテトロカルシンおよびの各皮埮生
物に察する抗菌掻性PH7.0の培地䜿甚を第
衚に瀺す。
[Formula]) (hereinafter, compounds in which R 1 is a -CHO group and R 2 is a hydrogen atom) are referred to as tetrocalcin F, and R 1 is -
A compound in which R 1 is a CH 2 OH group and R 2 is the above-mentioned disaccharide residue is called tetrocalcin G, and a compound in which R 1 is a —COOH group and R 2 is the above-mentioned disaccharide residue is called tetrocalcin H. ) and its salts and tetrocalcin F, G and H
Concerning the manufacturing method. In order to find useful antibiotics, the present inventors obtained a large number of microorganisms from the natural world and conducted research on the production of antibiotics. As a result, a bacterial strain (referred to as KY11091) was isolated from soil in Sendai City, Miyagi Prefecture.
When cultured in a culture medium, a novel antibiotic appears in the culture.
DC-11, DC-11-A-2, DC-11-A-3,
It was discovered that models such as DC-11-B were produced.
All of these compounds are considered to have very similar structural formulas due to their physicochemical properties, and the present inventors later decided to collectively name them tetrocalcins. DC-11, DC-11-A-2, DC-
11-A-3, DC-11-B are tetrocalcin A, tetrocalcin B, tetrocalcin C, respectively.
It is named tetrocalcin D. Regarding DC-11, the same applicant has already applied for a patent application in 1983.
45916 (Japanese Unexamined Patent Publication No. 138501) and patent application No. 1385-
No. 153027 (Japanese Patent Application No. 55-79322). DC-11-A-2, DC-11-A-3, DC-11
-Patent application filed by the same applicant for B in 1982-
17498, 55-24924 (JP-A-115794, 56-
122392, above two cases DC-11-A-2), patent application 1977-
152253, 55-24925 (Unexamined Japanese Patent Publication No. 1983-75500, 56-
122393, above two cases DC-11-A-3), patent application 1982-
24926 (Japanese Unexamined Patent Publication No. 56-122394, DC-11-B). Further later, tetrocalcin E-1 and E-2 were discovered. Regarding these compounds, patent application No. 55-114343 (Japanese Unexamined Patent Publication No. 57-38796) filed by the same applicant
It is described in. Furthermore, tetronolides are described in Japanese Patent Application No. 55-80482 (Japanese Unexamined Patent Publication No. 57-7479). As a result of further research, the present inventors discovered and isolated novel tetrocalcins F, G, and H, which are different from the substances described in the previous application, in the above-mentioned bacterial strain culture. It has also been found that tetrocalcin G and H can be obtained by chemically treating tetrocalcin A. Tetrocalcins F, G and H thus obtained exhibit antibacterial activity. Furthermore, as is clear from their structures, they can be used as raw materials for the production of tetronolides and tetrocalcins and their derivatives, which have already been filed. Furthermore, they themselves can be expected to exhibit antitumor properties. The specific physical and chemical properties of these compounds are as follows. (1) Tetrocalcin F Melting point: 201-204℃ Specific optical rotation: [α] 27 D = -49.4° (c = 0.61, acetone) Elemental analysis value (%) (as C 55 H 76 N 2 O 19 ) C H N Calculated value 61.8 7.2 2.6 Actual value 61.5 7.4 2.6 IR (KBr): Figure 1 PMR (CDCl 3 , TMS standard): Figure 2 (2) Tetrocalcin G Melting point: 194-198℃ Specific optical rotation: [α] 25 D = -68.7゜ (c=1.0, acetone) Elemental analysis value (%) (as C 67 H 98 N 2 O 24 ) C H N Calculated value 61.2 7.5 2.1 Actual value 61.0 7.6 2.1 IR (KBr): Figure 3 PMR (CDCl 3 , TMS standard): Figure 4 (3) Tetrocalcin H Melting point: 211-216°C Specific rotation: [α] 25 D = -69.2° (c = 0.72, acetone) Elemental analysis value (%) ( C 67 H 96 N 2 O 25 ) C H N Calculated value 60.5 7.3 2.1 Actual value 60.2 7.4 2.1 IR (KBr): Figure 5 PMR (CDCl 3 , TMS standard): Figure 6 Next, tetrocalcin F, G and Table 1 shows the behavior of H in thin layer chromatography. Table 1 Silica gel plate (product name DC-
Fertigplatten Kieselgel 60F 254 , E. Merck). Developer: Chloroform:methanol = 9:1
(Volume ratio) Substance Rf value Tetrocalcin A 0.57 B 0.52 C 0.56 D 0.53 E-1 0.77 E-2 0.65 F 0.66 G 0.47 H 0.27 Developer: Toluene: Acetone = 3 5.65 (capacity ratio ) Substance Rf value Tetrocalcin A 0.55 Tetrocalcin E-1 0.64 Tetrocalcin E-2 0.60 Tetrocalcin F 0.66 Developer: Ethyl acetate:acetic acid = 20:1 (volume ratio) Substance Rf value Tetrocalcin A 0.42 Tetrocalcin E-1 0.67 Tetrocalcin E -2 0.62 Tetrocalcin F 0.64 Tetrocalcin G 0.27 Next, the antibacterial activity of tetrocalcin F, G and H against various microorganisms (using a pH 7.0 medium) was evaluated in the second
Shown in the table.

【衚】【table】

【衚】 䞊蚘の理化孊的性質等よりテトロカルシン
を盞互に区別できるのみならず、これらず
他のテトロカルシン類ずを区別するこずもでき
る。 次に本発明のテトロカルシン類の補造法に぀い
お述べる。 テトロカルシンは前述のずおり、醗
酵法でも䜿甚できるし、たたテトロカルシンを
化孊的に凊理するこずによ぀おもテトロカルシン
を補造できる。 テトロカルシン又はを埮生物の培逊物
䞭から埗るには、ミクロモノスポラ属に属し、テ
トロカルシン又は生産胜を有する埮生物
を栄逊培地に培逊し、該化合物を培逊物䞭に蓄積
せしめ該培逊物から蓄積したテトロカルシン
又はを採取するこずによ぀おテトロカルシン
又はが埗られる。 䜿甚しうる埮生物ずしおはミクロモノスポラ属
に属しテトロカルシン又は生産胜を有す
る埮生物であれば、いずれの埮生物も甚いるこず
ができる。 奜適な菌ずしおは、ミクロモノスポラ・チダル
セアKY11091株があげられる。該菌株は埮工研
菌寄第4458号、NRRL11289ずしお、それぞれ寄
蚗されおいる。該菌株の菌孊的性質は特願昭53−
4596特開昭54−138501、特願昭54−152253特
開昭56−75500、同55−17498特開昭56−
115794、同55−24926特開昭56−122394明现
曞に蚘茉されおいる。 次に培逊方法に぀いお述べる。 本発明の培逊に甚いる培地ずしおは資化可胜な
炭玠源、窒玠源、無機物、埮量栄逊玠等を皋よく
含有する培地であれば倩然培地、合成培地いずれ
も䜿甚可胜である。 炭玠源ずしおはグルコヌス、殿粉、デキストリ
ン、マンノヌス、フラクトヌス、シナヌクロヌ
ス、糖蜜などが単独たたは組み合わせお甚いられ
る。さらに、菌の資化胜によ぀おは炭化氎玠、ア
ルコヌル類、有機酞なども甚いうる。窒玠源ずし
おは無機および有機の窒玠化合物䟋えば塩化アン
モン、硫酞アンモン、消酞アンモン、硝酞゜ヌ
ダ、尿玠などがたた倩然物由来の窒玠源、䟋えば
ペプトン、肉゚キス、酵母゚キス、也燥酵母、コ
ヌン・スチヌプ・リカヌ、倧豆粉、倧豆粕粉末、
カザミノ酞などが単独たたは組み合わせお甚いら
れる。無機物ずしおは、食塩、塩化カリ、硫酞マ
グネシりム、炭酞カルシりム、燐酞二氎玠カリり
ム、燐酞氎玠二カリりム、硫酞第䞀鉄、塩化カル
シりム、硫酞マンガン、硫酞亜鉛、硫酞銅などが
甚いられる。さらに䜿甚菌の生育やテトロカルシ
ンの生産を促進する埮量栄逊玠䟋えば
ビタミンB1、ビオチンなどを適圓に添加するこ
ずができる。 培逊法ずしおは、液䜓培逊法、ずくに深郚撹拌
培逊法がも぀ずも適しおいる。培逊枩床は25〜40
℃、特に28〜38℃が最適で培地のPHはアンモニア
氎や炭酞アンモン溶液などを添加しお、PH〜
10、奜たしくは〜で培逊を行なうこずが望た
しい。 液䜓培逊で通垞日ないし日培逊を行なう
ず、目的物質が培逊液䞭に生成蓄積される。培逊
液䞭の生成量が最倧に達したずきに培逊を停止
し、菌䜓を別しお埗られる培逊液䞭より目的物
を単離粟補する。 培逊液からのテトロカルシンの単
離粟補には埮生物代謝生産物をその培逊液から単
離するためにふ぀う甚いられる分離・粟補の方法
が利甚される。䟋えば、培逊生産物を培逊液ず菌
䜓ずに分離し、培逊液はそのたたPH6.0非む
オン性倚孔性暹脂商品名「HP−20」䞉菱化成
補などを通過させ、抗菌掻性を有する成分を吞
着させた埌、メタノヌル、アセトン、酢酞゚チル
などを甚いお吞着物質を脱着させる。この脱着液
を濃瞮也固し、氎に溶解しお掻性炭玠に吞着させ
る。掻性炭玠からはアセトン、酢酞゚チルなどの
有機溶媒で掻性物質を溶出する。この溶出液を濃
瞮也固しクロロホルムに溶解させ、予めクロロホ
ルムに懞濁埌カラムに充填したシリカゲルを甚い
おクロマトグラフむヌを行う。たずクロロホルム
を通塔するこずによ぀お䞍玔物である黄色系の色
玠が陀去される。次いでクロロホルムメタノヌ
ル98、容量比の混合液で掻性物質を溶出
するこずができる。ここではテトロカルシン、
テトロカルシン、テトロカルシン、テトロカ
ルシン、テトロノラむド類化合物−、テト
ロカルシン−、テトロカルシン−、テト
ロカルシンの混合物ずしお溶出させる。これら
の分離を行うには、この掻性画分を濃瞮也固し、
少量のクロロホルムメタノヌル氎
、容量比の混合物の䞋局溶媒に溶解する。こ
れを前蚘䞋局溶媒を甚いお充填したシリカゲルの
カラムに通塔し、同じ溶媒で溶出するずテトロカ
ルシン−、テトロカルシン、テトロカルシ
ン−、テトロノラむド類化合物−、テト
ロカルシン、テトロカルシン、テトロカルシ
ン、テトロカルシンの順に溶出されおくる。
テトロカルシンの倚く含たれおいる画分をず
り、再クロマト凊理に付し、さらにシリカゲル薄
局クロマトで凊理するこずによ぀おテトロカルシ
ンを埗るこずができる。薄局クロマト凊理はシ
リカゲル薄局商品名 DC−Fertigplatten
Kieselgel 60F254E.Merckを甚い、クロロホ
ルムメタノヌル、容量比で展開埌盞
圓する郚分をかきずり、該展開溶媒もしくはアセ
トンで溶出し、溶出液を濃瞮也固するずテトロカ
ルシンが埗られる。 テトロカルシンを含む画分は、前蚘クロロホ
ルムメタノヌル98、容量比の混合液
を甚いるカラムクロマトグラフむヌにおいお、テ
トロカルシンを含む画分を溶出埌、クロロホル
ムメタノヌル95、容量比の混合液で溶
出するこずによ぀お埗られる。 この画分を同じ系で再クロマトを行い、テトロ
カルシンを含む画分を埗る。これを䞊蚘ず同じ
シリカゲル薄局を甚いおクロロホルムメタノヌ
ル、容量比で展開埌、盞圓する郚分を
かきずり、該展開溶媒もしくはアセトンで溶出
し、溶出液を濃瞮する。これをさらにクロロホル
ム酢酞氎、容量比の混合液の
䞋局で薄局クロマトの展開を行い、Rf0.52近傍
のテトロカルシン盞圓郚分をかきずる。これを
該展開溶媒もしくはアセトンで溶出し、溶出液を
濃瞮也固するずテトロカルシンが埗られる。テ
トロカルシンを含む画分は、䞊蚘テトロカルシ
ンを含む画分を溶出埌、クロロホルムメタノ
ヌル、容量比で溶出するこずによ぀お
埗られる。この画分を同様に同じ溶媒系で再クロ
マト埌、前者ず同様にしおクロロホルムメタノ
ヌル、容量比で薄局クロマトグラフむ
ヌを行い、盞圓する郚分をかきずり、該展開溶媒
もしくはアセトンで溶出し、溶出液を濃瞮也固し
おテトロカルシンが埗られる。 これらテトロカルシンを埗るに際
し、必芁に応じお抜出、晶析等の手段を加えおも
よい。たた分離を完党にするために䞊蚘ず同じク
ロマトを繰返すかあるいはセフアデツクスLH−
20Pharmacia Fine Chemicals Incスり゚ヌ
デンのカラムに通塔する操䜜を加えおもよい。 次にテトロカルシンのテトロカルシン
からの化孊的補造法に぀いお述べる。 テトロカルシンは次の構造を有する。 テトロカルシンをテトロカルシンから合成
するには、テトロカルシンをNaBH4などの還
元剀で実斜䟋の(1)に瀺したような条件䞋に還元
し、反応終了埌生成したテトロカルシンをシリ
カゲルクロマトなどの粟補法で埗るこずができ
る。たたテトロカルシンは2Oなどの酞化
剀の存圚䞋にテトロカルシンを実斜䟋の(2)に
瀺したような条件䞋に酞化し、反応終了埌シリカ
ゲルクロマトなどによ぀おテトロカルシンを単
離するこずによ぀お埗られる。 次に実斜䟋をあげお本発明化合物の具䜓的補法
を瀺す。 実斜䟋䞭、物質の動向は、バチルス、ズブチリ
スNo.10707を甚いるバむオアツセむたたはTLCク
ロマトスキダンナヌ法島接クロマトスキダンナ
ヌCS910玫倖郚反射法、ダブルビヌム、シン
グルスキダン、波長サンプル260nm、リフアレン
ス350nmを甚いお远跡した。 実斜䟋  皮菌ずしおミクロモノスボラ・チダルセア
KY11091を甚いた。該菌株を容量の䞉角フ
ラスコ䞭の皮培地〔KC、SO4・
7H2O0.5、KH2PO41.5、硫安5.0
、シナヌクロヌス20、フラクトヌス
10、グルコヌス10、コヌンスチヌプ
リカヌ5.0、CaCO320 PH7.0〕300
mlに怍菌し、30℃で48時間振ずう220r.p.m.
培逊した。かくしお埗られた皮培逊液を30容量
のゞダヌフアヌメンタヌ䞭の䞋蚘組成の発酵培地
15に容量の割合で移し、30℃で通気撹
拌方匏回転数250r.p.m.通気量15minによ
り培逊を行぀た。発酵培地組成可溶性デンプン
60、倧豆粕粉末10、ペプトン10
、K2HPO40.5、MgSO4・7H2O0.5
、CaCO31、PH7.2殺菌前にNaOHで
調敎する。 培逊䞭培地のPHは制埡しないで、72時間培逊し
た。培逊液より菌䜓および沈殿物を別し、液
13を埗た。たず液13をの非むオン性倚
孔性暹脂商品名「HP−10」䞉菱化成補に通
塔しお掻性物質を吞着させ氎掗埌さらに30
アセトン氎溶液で掗い䞍玔物を陀去す
る。次いでアセトンで溶出する。アセトン画分を
濃瞮也固し、30アセトン氎溶液に溶
解する。この溶液を掻性炭500mlを充填したカラ
ムに吞着させる。30アセトン氎溶液
で掗滌埌アセトンで掻性画分を溶出する。この操
䜜で䞍玔物ずしお存圚する色玠の倧郚分を陀くこ
ずができる。掻性画分を濃瞮也固し、少量のクロ
ロホルム玄10mlに溶解する。このクロロホル
ム溶液を予めクロロホルムを溶媒ずしお充填した
シリカゲル〔商品名クロマトグラフ甚シリカゲ
ル100〜200メツシナ関東化孊、以䞋も同じ〕
500mlのカラムに静かに乗せ、たずクロロホル
ムで充分玄に掗い、次いでクロロホル
ムメタノヌル98、容量比で溶出を行う
ずテトロカルシン〜、テトロノラむド類化合
物−、テトロカルシン−、−が
混合しお溶出される。これを濃瞮也固し、少量の
クロロホルムメタノヌルH2O、
容量比の混合物の䞋局溶媒に溶解する。これを
前蚘䞋局溶媒で充填したシリカゲルカラム500
mlに静かに乗せ、同じ溶媒で展開するずテトロ
カルシン−、、−、テトロノラむド類
化合物−、テトロカルシンの
順に溶出されおくる。さらに同様にしお再クロマ
トを行぀お、テトロカルシンを䞻成分ずする分
画を集め濃瞮也固する。これをアセトンたたはク
ロロホルムに溶解し、シリカゲル薄局を甚い、ク
ロロホルムメタノヌル、容量比で展
開した。テトロカルシンに盞圓する郚分をかき
ずり、アセトンで溶出埌、濃瞮也固し酢酞゚チル
に溶解する。これを0.1NHClず振ずりたぜ酢酞
゚チル局を取り、濃瞮也固する。 このずき也固したものを酢酞゚チルに再溶解埌
ヘキサンで沈殿させるこずによ぀おも粉末が埗ら
れる。 テトロカルシンを埗るには、前蚘クロロホル
ムメタノヌル98、容量比で溶出埌のカ
ラムをクロロホルムメタノヌル95、容量
比で溶出する。テトロカルシンを含む画分が
埗られるので、これにさらに以䞋の凊理を行う。
テトロカルシンを含む画分を濃瞮也固埌、クロ
ロホルムメタノヌル98、容量比の少量
に溶解する。溶解液を同じ溶媒を甚いお充填した
シリカゲルカラム100mlに静かに乗せ、同じ溶媒
200mlを流した埌、クロロホルムメタノヌル
95、容量比で溶出する。テトロカルシン
を含む画分を濃瞮也固し、少量のアセトンに溶
解しシリカゲル薄局クロマトをクロロホルムメ
タノヌル、容量比を展開溶媒ずしお展
開する。テトロカルシン盞圓郚分をかきずり、
アセトンで溶出埌濃瞮也固し、少量のアセトンに
溶解する。これをさらにクロロホルム酢酞氎
、容量比の混合液の䞋局を展開溶
媒ずしお薄局クロマトを行う。Rf0.52のテトロ
カルシン盞圓郚分をかきずり、アセトンで溶出
埌、濃瞮也固し酢酞゚チルに溶解する。これを
0.1NHClず振ずりたぜ酢酞゚チル局を取り濃瞮
也固する。このずき也固したものを酢酞゚チルに
再溶解埌ヘキサンで沈殿させるこずによ぀おもテ
トロカルシンの粉末を埗られる。 テトロカルシンを埗るには、前蚘クロロホル
ムメタノヌル95、容量比で溶出埌のカ
ラムをクロロホルムメタノヌル、容量
比で溶出を行う。テトロカルシンを含む画分
が埗られるので、これにさらに以䞋の凊理を行
う。 テトロカルシンを含む画分を濃瞮也固埌、ク
ロロホルムメタノヌル95、容量比の少
量に溶解する。溶解液を同じ溶媒を甚いお充填し
たシリカゲルカラム100mlに静かにのせ、同じ溶
媒200mlを流した埌、クロロホルムメタノヌル
、容量比で溶出する。テトロカルシン
を含む画分を濃瞮也固埌少量のアセトンに溶解
し、クロロホルムメタノヌル、容量
比を展開溶媒ずしお薄局クロマトグラフむヌを
行い、テトロカルシンに盞圓する郚分をかきず
り、アセトンで溶出し、溶出液を濃瞮也固したも
のを酢酞゚チルに溶解する。これを0.1NHClず
振りたぜ酢酞゚チル局を取り濃瞮也固する。この
ずき也固したものを酢酞゚チルに再溶解埌ヘキサ
ンで沈殿させるこずによ぀おテトロカルシンの
粉末が埗られる。 このようにしおテトロカルシンをそ
れぞれmg2.1mg、2.2mg埗た。ここで埗られた
テトロカルシンの理化孊的性質、抗菌
掻性は前蚘の通りである。 実斜䟋  実斜䟋においお、発酵培地組成を次のものに
代えお行う以倖は実斜䟋ず同様に培逊を行぀
た。 発酵培地組成可溶性デンプン40、倧豆
粕粉末30、デキストリン、コヌン
スチヌプリカヌ、K2HPO40.5、
MgSO4・7H2O0.5、CaCO31、PH7.0
殺菌前にNaOHで調敎する。 培逊液を、実斜䟋ず同様に凊理しお、テトロ
カルシンをそれぞれmg、1.5mg、1.3
mg埗た。 実斜䟋  テトロカルシンからのテトロカルシンおよ
びテトロカルシンの化孊的補造法 (1) テトロカルシンの補法 テトロカルシンA107mgず氎玠化ホり玠ナト
リりム52mgを無氎テトロヒドロフランmlに加
え、氷济䞭30分間撹拌する。アセトンmlを加
え分間撹拌埌0.1NHCl150ml加え、酢酞゚チ
ル50mlで回抜出する。酢酞゚チル局を氎掗、
無氎硫酞ナトリりムで也燥埌、溶媒を枛圧留去
する。残枣をシリカゲルカラムクロマトクロ
ロホルムメタノヌル、容量比に付
し、テトロカルシンG94mgを埗た。 (2) テトロカルシンの補法 テトロカルシンA50mgず酞化銀500mgをテト
ロヒドロフランml䞭、撹拌䞋24時還流する。
反応液に酢酞゚チル100ml、0.1NHCl120mlを
加え、10分間撹拌する。固䜓を吞匕別し、氎
局郚を酢酞゚チル30mlで回抜出する。酢酞゚
チル局を氎50mlで回掗浄し、無氎硫酞ナトリ
りムで也燥埌、酢酞゚チルを枛圧留去す。残枣
をシリカゲル薄局クロマトクロロホルムメ
タノヌル、容量比で目的物を分取
し、同䞀溶媒で溶出する。溶媒を枛圧留去埌、
酢酞゚チル30mlに溶解し、0.1NHCl氎溶液で
凊理するこずにより、mgのテトロカルシン
を埗た。
[Table] From the above physical and chemical properties, tetrocalcin F,
Not only can G and H be distinguished from each other, but also these can be distinguished from other tetrocalcins. Next, the method for producing tetrocalcins of the present invention will be described. As mentioned above, tetrocalcin F, G, and H can be used by fermentation, and tetrocalcin G and H can also be produced by chemically treating tetrocalcin A. To obtain tetrocalcin F, G, or H from a microbial culture, microorganisms belonging to the genus Micromonospora and capable of producing tetrocalcin F, G, or H are cultured in a nutrient medium, and the compound is accumulated in the culture. Tetrocalcin F accumulated from the culture,
By collecting G or H, tetrocalcin F, G or H can be obtained. As the microorganism that can be used, any microorganism that belongs to the genus Micromonospora and has the ability to produce tetrocalcin F, G, or H can be used. A suitable bacterium is Micromonospora tyarcea KY11091 strain. The strain has been deposited as FIKEN Bibori No. 4458 and NRRL11289, respectively. The mycological properties of this strain were disclosed in a patent application filed in 1983.
4596 (Japanese Unexamined Patent Publication No. 54-138501), Patent Application No. 54-152253 (Unexamined Japanese Patent Application No. 56-75500), No. 55-17498 (Unexamined Japanese Patent Application No. 56-1983)
115794) and 55-24926 (Japanese Unexamined Patent Publication No. 56-122394). Next, the culture method will be described. As the medium used for the culture of the present invention, both natural and synthetic media can be used as long as they contain appropriate amounts of assimilable carbon sources, nitrogen sources, inorganic substances, micronutrients, and the like. As the carbon source, glucose, starch, dextrin, mannose, fructose, sucrose, molasses, etc. are used alone or in combination. Furthermore, depending on the assimilation ability of the bacteria, hydrocarbons, alcohols, organic acids, etc. may also be used. Nitrogen sources include inorganic and organic nitrogen compounds such as ammonium chloride, ammonium sulfate, ammonium sulfur, sodium nitrate, urea, etc., but also nitrogen sources of natural origin, such as peptone, meat extract, yeast extract, dried yeast, corn steep.・Liquor, soybean flour, soybean meal powder,
Casamino acids and the like are used alone or in combination. As the inorganic substance, common salt, potassium chloride, magnesium sulfate, calcium carbonate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, ferrous sulfate, calcium chloride, manganese sulfate, zinc sulfate, copper sulfate, etc. are used. Furthermore, micronutrients such as vitamin B 1 and biotin, which promote the growth of the bacteria used and the production of tetrocalcins F, G, and H, can be appropriately added. As a culture method, a liquid culture method, especially a deep agitation culture method, is suitable. Culture temperature is 25-40
℃, especially 28 to 38℃, is optimal, and the pH of the culture medium is adjusted to PH4 to 4 by adding aqueous ammonia or ammonium carbonate solution.
10, preferably 6 to 8. When culture is carried out in liquid culture for usually 1 to 7 days, the target substance is produced and accumulated in the culture solution. When the production amount in the culture solution reaches the maximum, the culture is stopped, the bacterial cells are separated, and the target product is isolated and purified from the obtained culture solution. For the isolation and purification of tetrocalcins F, G, and H from the culture fluid, separation and purification methods commonly used to isolate metabolic products of microorganisms from the culture fluid are utilized. For example, a culture product is separated into a culture solution and bacterial cells, and the culture solution is passed as is (PH6.0) through a nonionic porous resin (trade name "HP-20" manufactured by Mitsubishi Kasei, etc.), and the antibacterial activity is After adsorbing the component having , the adsorbed substance is desorbed using methanol, acetone, ethyl acetate, etc. This desorption solution is concentrated to dryness, dissolved in water, and adsorbed onto activated carbon. The active substance is eluted from the activated carbon using an organic solvent such as acetone or ethyl acetate. This eluate is concentrated to dryness, dissolved in chloroform, suspended in chloroform, and then chromatographed using silica gel packed in a column. First, impurity yellow pigment is removed by passing chloroform through the column. The active substance can then be eluted with a mixture of chloroform:methanol (98:2, by volume). Here, tetrocalcin A,
It is eluted as a mixture of tetrocalcin B, tetrocalcin C, tetrocalcin D, tetronolide compound F-1, tetrocalcin E-1, tetrocalcin E-2, and tetrocalcin F. To carry out these separations, this active fraction is concentrated to dryness,
A small amount of chloroform:methanol:water (3:1:
1, volume ratio) of the mixture in the lower layer solvent. This was passed through a silica gel column packed using the lower layer solvent, and eluted with the same solvent: tetrocalcine E-1, tetrocalcine F, tetrocalcine E-2, tetronolide compound F-1, tetrocalcine A, tetrocalcine B, tetrocalcine. D and tetrocalcin C are eluted in this order.
Tetrocalcin F can be obtained by taking a fraction containing a large amount of tetrocalcin F, subjecting it to re-chromatography, and further processing with silica gel thin layer chromatography. Thin layer chromatography is performed using a thin layer of silica gel (product name: DC-Fertigplatten).
After developing with chloroform:methanol (9:1, volume ratio) using Kieselgel 60F 254 (E.Merck), the corresponding portion was scraped off, eluted with the developing solvent or acetone, and the eluate was concentrated to dryness to obtain tetrocalcin F. can get. The fraction containing tetrocalcin G was eluted in column chromatography using the above-mentioned mixture of chloroform:methanol (98:2, volume ratio). It can be obtained by elution with a mixture of (volume ratio) This fraction is rechromatographed using the same system to obtain a fraction containing tetrocalcin G. After developing this with chloroform:methanol (9:1, volume ratio) using the same thin layer of silica gel as above, the corresponding portion is scraped off, eluted with the developing solvent or acetone, and the eluate is concentrated. This is further subjected to thin layer chromatography under a mixture of chloroform:acetic acid:water (2:1:1, volume ratio), and the portion corresponding to tetrocalcin G near Rf=0.52 is scraped off. Tetrocalcin G is obtained by eluting this with the developing solvent or acetone and concentrating the eluate to dryness. The fraction containing tetrocalcin H is obtained by eluting the fraction containing tetrocalcin G, and then eluting with chloroform:methanol (9:1, volume ratio). This fraction was similarly chromatographed again using the same solvent system, then thin-layer chromatography was performed using chloroform:methanol (9:1, volume ratio) in the same manner as before, the corresponding portion was scraped off, and the developing solvent or acetone was used. Tetrocalcin H is obtained by elution and concentrating the eluate to dryness. When obtaining these tetrocalcins F, G, and H, means such as extraction and crystallization may be added as necessary. In addition, to complete the separation, repeat the same chromatography as above or use Sephadex LH-
20 (Pharmacia Fine Chemicals Inc, Sweden) column may be added. Next, tetrocalcin A of tetrocalcin G and H
The chemical manufacturing method from Tetrocalcin A has the following structure. To synthesize tetrocalcin G from tetrocalcin A, tetrocalcin A is reduced with a reducing agent such as NaBH 4 under the conditions shown in Example 3 (1), and after the reaction is completed, the produced tetrocalcin G is chromatographed on silica gel, etc. It can be obtained by the following purification method. Tetrocalcin H is obtained by oxidizing tetrocalcin A in the presence of an oxidizing agent such as Ag 2 O under the conditions shown in Example 3 (2), and after the reaction is completed, tetrocalcin H is isolated by silica gel chromatography. obtained by doing. Next, examples will be given to illustrate specific methods for producing the compounds of the present invention. In the examples, the trend of substances was determined by bioassay using Bacillus subtilis No. 10707 or TLC chromatography scanner method (Shimadzu chromatography scanner CS910) (ultraviolet reflection method, double beam, single scan, wavelength sample 260 nm, reference 350 nm) was tracked using. Example 1 Micromonosvora charcea as a seed fungus
KY11091 was used. The strain was grown in a 2-volume Erlenmeyer flask as a seed medium [KC4g/, MgSO4 .
7H 2 O 0.5g/, KH 2 PO 4 1.5g/, Ammonium sulfate 5.0
g/, sucrose 20g/, fructose
10g/, glucose 10g/, corn steep liquor 5.0g/, CaCO 3 20g/ PH7.0〕300
ml and shake at 30℃ for 48 hours (220r.pm)
Cultured. The thus obtained seed culture solution was added to a fermentation medium with the following composition in a 30-capacity jar fermenter.
15 at a ratio of 5% (volume), and cultured at 30°C using an aeration stirring method (rotation speed: 250 rpm, aeration rate: 15/min). Fermentation medium composition: soluble starch
60g/, soybean meal powder 10g/, peptone 10g/
, K 2 HPO 4 0.5g/, MgSO 4・7H 2 O 0.5g/
, CaCO 3 1g/, pH adjusted to 7.2 (before sterilization) with NaOH. Culture was carried out for 72 hours without controlling the pH of the culture medium. Separate the bacterial cells and precipitate from the culture solution, and
Got 13. First, liquid 13 is passed through a column of nonionic porous resin 1 (trade name "HP-10" manufactured by Mitsubishi Kasei) to adsorb the active substance, and after washing with water, an additional 30%
(V/V) Wash with acetone aqueous solution to remove impurities. Then elute with acetone. The acetone fraction is concentrated to dryness and dissolved in a 30% (V/V) acetone aqueous solution. This solution is adsorbed onto a column packed with 500 ml of activated carbon. After washing with a 30% (V/V) acetone aqueous solution, the active fraction is eluted with acetone. This operation can remove most of the dyes present as impurities. The active fraction is concentrated to dryness and dissolved in a small amount of chloroform (approximately 10 ml). Silica gel filled with this chloroform solution in advance using chloroform as a solvent [Product name: Silica gel for chromatography (100-200 mesh) Kanto Kagaku, the same applies below]
(500 ml), washed thoroughly with chloroform (approximately 2 times), and then eluted with chloroform:methanol (98:2, volume ratio). Tetrocalcins A to D, tetronolide compounds F-1, Tetrocalcin E-1, F, and E-2 are mixed and eluted. This was concentrated to dryness and a small amount of chloroform:methanol:H 2 O (3:1:1,
(volume ratio) of the mixture in the lower layer solvent. A silica gel column (500
ml) and developed with the same solvent, tetrocalcins E-1, F, E-2, tetronolide compound F-1, and tetrocalcins A, B, D, and C were eluted in this order. Further, rechromatography is performed in the same manner, and fractions containing tetrocalcin F as the main component are collected and concentrated to dryness. This was dissolved in acetone or chloroform and developed with chloroform:methanol (9:1, volume ratio) using a thin layer of silica gel. The portion corresponding to tetrocalcin F is scraped off, eluted with acetone, concentrated to dryness, and dissolved in ethyl acetate. Shake this with 0.1NHCl, remove the ethyl acetate layer, and concentrate to dryness. A powder can also be obtained by redissolving the dried product in ethyl acetate and precipitating it with hexane. To obtain tetrocalcin G, the column after elution with chloroform:methanol (98:2, volume ratio) is eluted with chloroform:methanol (95:5, volume ratio). A fraction containing tetrocalcin G is obtained, which is further subjected to the following treatments.
The fraction containing tetrocalcin G is concentrated to dryness and then dissolved in a small amount of chloroform:methanol (98:2, volume ratio). Gently place the solution onto a 100ml silica gel column packed with the same solvent.
After flowing 200 ml, elute with chloroform:methanol (95:5, volume ratio). The fraction containing tetrocalcin G is concentrated to dryness, dissolved in a small amount of acetone, and developed on silica gel thin layer chromatography using chloroform:methanol (9:1, volume ratio) as a developing solvent. Scrape off the portion corresponding to tetrocalcin G,
After elution with acetone, concentrate to dryness and dissolve in a small amount of acetone. This is further subjected to thin layer chromatography using the lower layer of a mixture of chloroform:acetic acid:water (2:1:1, volume ratio) as a developing solvent. A portion corresponding to tetrocalcin G with Rf=0.52 is scraped off, eluted with acetone, concentrated to dryness, and dissolved in ethyl acetate. this
Shake and mix with 0.1NHCl, remove the ethyl acetate layer, and concentrate to dryness. Tetrocalcin G powder can also be obtained by redissolving the dried product in ethyl acetate and precipitating it with hexane. To obtain tetrocalcin H, the column after elution with chloroform:methanol (95:5, volume ratio) is eluted with chloroform:methanol (9:1, volume ratio). A fraction containing tetrocalcin H is obtained, which is further subjected to the following treatments. The fraction containing tetrocalcin H is concentrated to dryness and then dissolved in a small amount of chloroform:methanol (95:5, volume ratio). The solution was gently placed on a 100 ml silica gel column packed with the same solvent, and after flowing 200 ml of the same solvent, it was eluted with chloroform:methanol (9:1, volume ratio). The fraction containing tetrocalcin H was concentrated to dryness, dissolved in a small amount of acetone, and subjected to thin layer chromatography using chloroform:methanol (9:1, volume ratio) as a developing solvent, and the portion corresponding to tetrocalcin H was scraped off. Elute with acetone, concentrate the eluate to dryness, and dissolve in ethyl acetate. Shake this with 0.1NHCl, remove the ethyl acetate layer, and concentrate to dryness. At this time, the dried product is redissolved in ethyl acetate and then precipitated with hexane to obtain a powder of tetrocalcin H. In this way, 2 mg, 2.1 mg, and 2.2 mg of tetrocalcin F, G, and H were obtained, respectively. The physicochemical properties and antibacterial activity of the tetrocalcins F, G, and H obtained here are as described above. Example 2 Culture was carried out in the same manner as in Example 1 except that the composition of the fermentation medium was changed to the following. Fermentation medium composition: soluble starch 40g/, soybean meal powder 30g/, dextrin 5g/, corn steep liquor 5g/, K 2 HPO 4 0.5g/,
MgSO 4・7H 2 O0.5g/, CaCO 3 1g/, PH7.0
Adjust with NaOH (before sterilization). The culture solution was treated in the same manner as in Example 1 to give 1 mg, 1.5 mg, and 1.3 mg of tetrocalcin F, G, and H, respectively.
I got mg. Example 3 Chemical production method of tetrocalcin G and tetrocalcin H from tetrocalcin A (1) Process for producing tetrocalcin G 107 mg of tetrocalcin A and 52 mg of sodium borohydride are added to 5 ml of anhydrous tetrahydrofuran and stirred for 30 minutes in an ice bath. Add 3 ml of acetone and stir for 5 minutes, then add 150 ml of 0.1NHCl and extract three times with 50 ml of ethyl acetate. Wash the ethyl acetate layer with water,
After drying over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography (chloroform:methanol=9:1, volume ratio) to obtain 94 mg of tetrocalcin G. (2) Method for producing tetrocalcin H 50 mg of tetrocalcin A and 500 mg of silver oxide are refluxed in 3 ml of tetrahydrofuran for 24 hours with stirring.
Add 100 ml of ethyl acetate and 120 ml of 0.1NHCl to the reaction solution, and stir for 10 minutes. The solid is removed by suction and the aqueous layer is extracted twice with 30 ml of ethyl acetate. The ethyl acetate layer was washed twice with 50 ml of water, dried over anhydrous sodium sulfate, and then ethyl acetate was distilled off under reduced pressure. The desired product is separated from the residue using silica gel thin layer chromatography (chloroform:methanol=9:1, volume ratio) and eluted with the same solvent. After removing the solvent under reduced pressure,
4 mg of tetrocalcine H was obtained by dissolving in 30 ml of ethyl acetate and treating with 0.1 NHC1 aqueous solution.
I got it.

【図面の簡単な説明】[Brief explanation of the drawing]

第図はテトロカルシンの赀倖郚吞収スペク
トルを瀺す。第図はテトロカルシンのPMR
スペクトルを瀺す。第図はテトロカルシンの
赀倖郚吞収スペクトルを瀺す。第図はテトロカ
ルシンのPMRスペクトルを瀺す。第図はテ
トロカルシンの赀倖郚吞収スペクトルを瀺す。
第図はテトロカルシンのPMRスペクトルを
瀺す。
FIG. 1 shows the infrared absorption spectrum of tetrocalcin F. Figure 2 shows PMR of tetrocalcin F.
The spectrum is shown. FIG. 3 shows the infrared absorption spectrum of tetrocalcin G. FIG. 4 shows the PMR spectrum of tetrocalcin G. FIG. 5 shows the infrared absorption spectrum of tetrocalcin H.
FIG. 6 shows the PMR spectrum of tetrocalcin H.

Claims (1)

【特蚱請求の範囲】  䞀般匏 ただし匏䞭R1が―CHO基の堎合はR2は氎玠
原子を衚わし、R1が䞀CH2OHたたは―COOHの
堎合はR2は次蚘に瀺す二糖類残基を衚わす。 【匏】で衚わされるテ トロカルシン類およびその塩。
[Claims] 1. General formula (However, in the formula, when R 1 is a -CHO group, R 2 represents a hydrogen atom, and when R 1 is mono-CH 2 OH or -COOH, R 2 represents a disaccharide residue shown below. [Formula ]) Tetrocalcins and their salts.
JP12860580A 1980-06-14 1980-09-18 Tetrocarcins and their preparation Granted JPS5753498A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12860580A JPS5753498A (en) 1980-09-18 1980-09-18 Tetrocarcins and their preparation
US06/252,062 US4346075A (en) 1980-06-14 1981-04-08 Antibiotic DC-11 and process for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12860580A JPS5753498A (en) 1980-09-18 1980-09-18 Tetrocarcins and their preparation

Publications (2)

Publication Number Publication Date
JPS5753498A JPS5753498A (en) 1982-03-30
JPS6324000B2 true JPS6324000B2 (en) 1988-05-18

Family

ID=14988903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12860580A Granted JPS5753498A (en) 1980-06-14 1980-09-18 Tetrocarcins and their preparation

Country Status (1)

Country Link
JP (1) JPS5753498A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01146899U (en) * 1988-04-01 1989-10-11

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60102445A (en) * 1983-11-08 1985-06-06 株匏䌚瀟長谷工コヌポレヌション Src structure of building
JPS60102444A (en) * 1983-11-08 1985-06-06 株匏䌚瀟長谷工コ−ポレ−ション Precast skeletal of building
AU5446499A (en) 1998-08-31 2000-03-21 Kyowa Hakko Kogyo Co. Ltd. Apoptosis inducing agents

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01146899U (en) * 1988-04-01 1989-10-11

Also Published As

Publication number Publication date
JPS5753498A (en) 1982-03-30

Similar Documents

Publication Publication Date Title
JPS6324000B2 (en)
EP0091781B1 (en) Improvement in lankacidins productions
JPH0516438B2 (en)
JPS6338039B2 (en)
JPH0521117B2 (en)
JPS6338038B2 (en)
EP0042172B1 (en) Antibiotic compounds, pharmaceutical compositions containing such compounds, process for production thereof
JP3067183B2 (en) Method for producing FR900506 substance
JPH0740950B2 (en) Microbial production of nicotianamine
JPH03219887A (en) Production of stereptovaricin
JP2667463B2 (en) Method for producing antibiotic D788-7
JPS6255837B2 (en)
JPS6253518B2 (en)
JPH0429356B2 (en)
JPS589676B2 (en) Nojirimycin B
JP2564379B2 (en) New substance OM-001
JPH0139436B2 (en)
JPS6322800B2 (en)
JPS5849237B2 (en) Method for producing dientamicin C/a
JPH03219888A (en) Production of streptovaricin
WO1995001981A1 (en) Novel substance dc114-a1
JPH0479354B2 (en)
JPS6366194A (en) Novel anthracycline antibiotic
JPS60186298A (en) Production of adriamycin
JPS6337636B2 (en)