JPS633790B2 - - Google Patents
Info
- Publication number
- JPS633790B2 JPS633790B2 JP6801781A JP6801781A JPS633790B2 JP S633790 B2 JPS633790 B2 JP S633790B2 JP 6801781 A JP6801781 A JP 6801781A JP 6801781 A JP6801781 A JP 6801781A JP S633790 B2 JPS633790 B2 JP S633790B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- wave
- carrier wave
- circuit
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 101150011693 phr gene Proteins 0.000 description 22
- 238000001514 detection method Methods 0.000 description 11
- 230000005540 biological transmission Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 101001022847 Homo sapiens E3 ubiquitin-protein ligase MYCBP2 Proteins 0.000 description 2
- 101001126102 Homo sapiens Pleckstrin homology domain-containing family B member 1 Proteins 0.000 description 2
- 102100030462 Pleckstrin homology domain-containing family B member 1 Human genes 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 101100491376 Arabidopsis thaliana APL gene Proteins 0.000 description 1
- 101100243901 Halobacterium salinarum (strain ATCC 700922 / JCM 11081 / NRC-1) phr gene Proteins 0.000 description 1
- 101100385336 Natronomonas pharaonis (strain ATCC 35678 / DSM 2160 / CIP 103997 / JCM 8858 / NBRC 14720 / NCIMB 2260 / Gabara) cry gene Proteins 0.000 description 1
- 101150049436 PHR2 gene Proteins 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Landscapes
- Train Traffic Observation, Control, And Security (AREA)
Description
【発明の詳細な説明】
この発明は、軌道回路を介して送受信される振
巾変調式自動列車制御(略称ATC)信号の機器
集中形地上送受信器において、送信されるATC
信号を用いて受信器入力の位相を反転させ、よつ
て得られる所定の周波数信号により列車を検知す
るATC軌道回路に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides an equipment-intensive ground transceiver for amplitude modulated automatic train control (abbreviated as ATC) signals transmitted and received via a track circuit.
This invention relates to an ATC track circuit that uses a signal to invert the phase of a receiver input, and detects a train using the resulting predetermined frequency signal.
列車線路の軌道回路を介して送受信される
ATC信号の地上装置には、車軸の軌条短絡によ
るATC信号の有無を検出して列車検知を確実に
行なうと共に、ATC閉そく区間の閉そくまたは
開通条件に応じて予め定められた速度制限の
ATC情報を車上に伝送する役割がある。而して
従来地上受信器では、設定された制限速度に対応
するATC信号を選別して後方区間への伝送を行
なつていた。しかし複数閉そく区間の地上装置を
一機器室内に収容するいわゆる機器集中形地上装
置では、該複数区間の閉そくまたは開通状態を同
一機器室内で容易に知ることができるから、それ
らの組合せで車上へのATC情報を変更して伝送
でき、地上受信器では列車の検知を確実に行ない
得ればよく、ATC信号選別の必要はなくなる。
それ故に近時第1図に示す如き回路構成によつ
て、従来の如き信号種別を選別するATC信号ご
との受信回路を省略し、列車検知専用の受信回路
を設けたATC軌道回路方式が提供されている。 transmitted and received via the train track's track circuit
The ATC signal ground equipment detects the presence or absence of an ATC signal due to an axle track short circuit to ensure train detection, and also sets speed limits that are predetermined according to the blockage or opening conditions of the ATC block section.
Its role is to transmit ATC information to the vehicle. Conventional terrestrial receivers select ATC signals corresponding to the set speed limit and transmit them to the rear section. However, with so-called equipment centralized ground equipment where ground equipment for multiple block sections is housed in one equipment room, the block or open status of the multiple sections can be easily known in the same equipment room. ATC information can be changed and transmitted, and the ground receiver only needs to be able to reliably detect trains, eliminating the need for ATC signal selection.
Therefore, in recent years, an ATC track circuit system has been provided that omit the conventional receiving circuit for each ATC signal that selects the signal type and provides a receiving circuit exclusively for train detection using a circuit configuration as shown in Fig. 1. ing.
すなわち、第1図はATC信号の速度情報種別
を低速ls、中速ms、高速hsの3段階とした場合
を例として示した、上記ATC軌道回路方式にお
ける地上装置の概要図で、破線のブロツクで示す
送信回路S、列車検知専用の受信回路Rおよびこ
の方式の特徴たる周波数群作成の中間回路M等か
ら構成されている。送信回路Sは信号搬送波fcの
発振器Fc、低速信号fl、中速信号fm、高速信号
fhのそれぞれの発生器Fl,Fm,Fhおよび変調器
Ms、増巾器As等からなり、搬送波fcは、隣接す
る前方閉そく区間の閉そくまたは開通の条件に応
じて切替動作する低速リレーlR、中速リレー
mR、高速リレーhR(何れも図示せず)の何れか
の動作接点(以下接点はその属するリレーと同一
記号で示す)を介して変調器Msに入力する信号
波fl,fm,fhの何れかによつて変調されれ、さら
に増巾されて線路Lの閉そく区開ITの軌道回路
送電端に送出される。 That is, Fig. 1 is a schematic diagram of the ground equipment in the above ATC track circuit system, showing as an example the case where the speed information type of the ATC signal is set to three stages: low speed LS, medium speed ms, and high speed HS. It consists of a transmitting circuit S shown by , a receiving circuit R dedicated to train detection, and an intermediate circuit M for creating a frequency group, which is a feature of this system. The transmitting circuit S includes an oscillator Fc of a signal carrier wave fc, a low speed signal fl, a medium speed signal fm, and a high speed signal.
respective generators Fl, Fm, Fh and modulators of fh
Ms, amplifier As, etc., and the carrier wave fc is a low-speed relay lR and a medium-speed relay that switch according to the conditions of blocking or opening of the adjacent forward blocking section.
Any of the signal waves fl, fm, fh that is input to the modulator Ms via an operating contact (hereinafter, contacts are indicated by the same symbol as the relay to which they belong) of either mR or high-speed relay hR (none of which are shown). The signal is modulated by the signal, further amplified, and sent to the track circuit power transmission end of the block section IT of the line L.
中間回路Mは、この方式における特設の搬送波
f0を発生する発振器F0、この搬送波f0と送信回路
Sの信号波fl,fm,fhのそれぞれとにより(f0+
fl)、(f0+fm)、(f0+fh)のそれぞれの平衡変調
周波数を発生させる平衡変調器Ml,Mm,Mh、
前記変調周波数のそれぞれの通過帯域フイルタ
BPl,BPm,BPhおよびそれらに連なる増巾器
等から構成されている。この受信回路Rは搬送波
fcとその側帯波fc±(fl〜fh)の通過帯域フイルタ
BPFc、入力増巾器Ar、検波器Dr、平衡復調器
BDM、搬送波f0のみの通過帯域フイルタBPF0、
レベル検知器LD、出力増巾器Ap、整流器RFお
よび列車検知リレーTR等から構成されている。 The intermediate circuit M is a special carrier wave in this method.
The oscillator F 0 that generates f 0 , this carrier wave f 0 , and each of the signal waves fl, fm, and fh of the transmitting circuit S generate (f 0 +
balanced modulators Ml, Mm, Mh, which generate balanced modulation frequencies of fl), (f 0 + fm), and (f 0 + fh), respectively;
a passband filter for each of said modulation frequencies;
It consists of BPl, BPm, BPh, and amplifiers connected to them. This receiving circuit R is a carrier wave
Passband filter for fc and its sideband fc±(fl~fh)
BPFc, input amplifier Ar, detector Dr, balanced demodulator
BDM, carrier f 0 only passband filter BPF 0 ,
It consists of a level detector LD, an output amplifier Ap, a rectifier RF, a train detection relay TR, etc.
要するに、第1図に示したATC軌道回路方式
は、特設搬送波f0を信号波fl,fm,fhでそれぞれ
平衡変調して得られる平衡変調周波数(f0+fl)、
(f0+fm)、(f0+fh)の何れかをATC速度制限の
条件、すなわち、低速リレーlR、中速リレー
mR、高速リレーhRの何れか一つの動作接点を介
して受信回路Rの平衡復調器BDMに導入する一
方、閉そく区間ITの軌道回路を介して受信回路
Rに受信され、検波復調されたATC信号波を、
中間回路Mから導入された同一信号の変調波によ
り平衡復調器BDMで抑圧除去し、搬送波f0のみ
取り出してフイルタBPF0を通し、レベル検知し
た後増巾、整流してリレーTRを動作させるよう
にしたものである。従つてリレーTRは低速、中
速、高速等の種別に拘らずATC信号の受信によ
つて動作する。 In short, the ATC track circuit system shown in Fig. 1 has a balanced modulation frequency (f 0 + fl) obtained by balanced modulating the special carrier wave f 0 with signal waves fl, fm, and fh, respectively.
Set either (f 0 + fm) or (f 0 + fh) to the ATC speed limit condition, i.e., low speed relay lR or medium speed relay.
The ATC signal is introduced into the balanced demodulator BDM of the receiving circuit R through the operating contact of either mR or high-speed relay hR, and is received by the receiving circuit R via the track circuit of the block section IT, and the ATC signal is detected and demodulated. waves,
The modulated wave of the same signal introduced from the intermediate circuit M is suppressed and removed by the balanced demodulator BDM, and only the carrier wave f 0 is taken out and passed through the filter BPF 0. After the level is detected, it is amplified and rectified to operate the relay TR. This is what I did. Therefore, the relay TR operates by receiving the ATC signal regardless of the type, such as low speed, medium speed, high speed, etc.
しかし、上記ATC軌道回路方式の地上装置で
は、受信回路は簡易化されているが、中間回路M
を特設しているため、地上装置全体として必しも
簡易化されたとはいい難く、経済的効果も不十分
であつた。 However, in the above-mentioned ATC track circuit type ground equipment, although the receiving circuit is simplified, the intermediate circuit M
Because the ground equipment was specially installed, it cannot be said that the ground equipment as a whole was necessarily simplified, and the economic effect was also insufficient.
そのため、第1図の地上装置における中間回路
を省略し、かつ接触不良等により故障原因となる
機械的要素を持つリレー回路を半減させる目的の
もとに、送信されるATC信号を用いて受信器入
力の位相を反転させ、よつて得られる周波数信号
により列車検知を行なうATC軌道回路の発明が、
本発明と同一発明者名のもとに、同日出願に係わ
る特許願として提出されている。その特許願の発
明では、受信回路に位相反転器を用い、これに局
部的にATC信号を導入することにより、軌道回
路から受信されるATC信号の搬送波を抽出し、
その搬送波電流によつて列車検知リレーを駆動す
る方式を採つている。 Therefore, with the aim of omitting the intermediate circuit in the ground equipment shown in Figure 1 and halving the number of relay circuits that have mechanical elements that can cause failures due to poor contact, etc., the receiver The invention of the ATC track circuit, which inverts the phase of the input and detects trains using the resulting frequency signal,
This patent application was filed on the same day under the name of the same inventor as the present invention. The patented invention uses a phase inverter in the receiving circuit and locally introduces the ATC signal into it to extract the carrier wave of the ATC signal received from the orbital circuit.
The system uses the carrier wave current to drive the train detection relay.
そこで、位相反転器に例えばリング変復調器を
用い、かつ搬送波と変調信号波との周波数比が大
きいときは、搬送波とそのサイドバンド周波数と
の帯域巾が狭くなり、搬送波の帯域フイルタでサ
イドバンド周波数を減衰させることが困難となる
場合がある。 Therefore, when a ring modulator/demodulator is used as a phase inverter, and the frequency ratio between the carrier wave and the modulated signal wave is large, the bandwidth between the carrier wave and its sideband frequency becomes narrow, and the sideband frequency is It may be difficult to attenuate the
本発明は上述の如き場合の対策として、軌道回
路側から受信回路に入力する変調波信号を復調し
た波で、局部的に特設した搬送波の位相を反転さ
せ、さらにこの波形を送信回路から導入した信号
波で再度位相反転を行ない、特設搬送波の帯域フ
イルタを通した電流を用いて列車検知リレーを駆
動するようにしたものである。従つて本発明の目
的とするところは上記別途特許願の発明の目的と
同様である。 As a countermeasure to the above-mentioned case, the present invention inverts the phase of a locally specially provided carrier wave using a demodulated wave of the modulated wave signal inputted from the track circuit side to the receiving circuit, and further introduces this waveform from the transmitting circuit. The signal wave is phase-inverted again, and the train detection relay is driven using the current that has passed through a special carrier waveband filter. Therefore, the object of the present invention is the same as the object of the invention of the above-mentioned separate patent application.
つぎに本発明の実施例を第2図以下の図面と共
に説明する。第2図は本発明の1実施例を示す
ATC地上装置の回路図で、第1図の回路要素と
同様と見做される回路要素には同一記号を用いて
ある。第2図を第1図と比較すると、送信回路は
略同様であるが、第1図の中間回路Mは第2図で
は省略されている。また、受信回路の軌道回路側
入力フイルタBPFc、増巾器Ar、検波器Dr等は
第1図と同様であるが、さらに続けてレベル検知
器LDを設ける。一方、別途に特設搬送波f0を発
生する発振器F0、第1位相反転器PHR1、第2位
相反転器PHR2、搬送波f0の通過帯域フイルタ
BPF0等を設け、搬送波f0が入力する第1位相反
転器PHR1に軌道回路側から入力し検波復調して
レベル検知されたATC信号波を供給して搬送波
f0の位相反転を行なう。位相を反転して第2位相
反転器PHR2に入力した搬送波f0を、送信回路か
ら第2位相反転器PHR2に導入された位号波によ
つて再度位相反転した後、フイルタBPF0を通し、
レベル検知、増巾、整流して列車検知リレーTR
を駆動するのである。なお位相反転器PHR1,
PHR2に例えばリング変復調器を用いるとき、導
入される信号波の極性が正負に切替るごとに搬送
波の位相が反転することはリング変復調器の特性
として周知のことである。 Next, embodiments of the present invention will be described with reference to FIG. 2 and the following drawings. FIG. 2 shows one embodiment of the invention.
In the circuit diagram of the ATC ground equipment, the same symbols are used for circuit elements that are considered to be similar to the circuit elements in Figure 1. Comparing FIG. 2 with FIG. 1, the transmitting circuit is substantially the same, but the intermediate circuit M in FIG. 1 is omitted in FIG. Further, the track circuit side input filter BPFc, amplifier Ar, detector Dr, etc. of the receiving circuit are the same as those shown in FIG. 1, but a level detector LD is further provided. On the other hand, an oscillator F 0 that generates a special carrier wave f 0 , a first phase inverter PHR 1 , a second phase inverter PHR 2 , and a passband filter for the carrier wave f 0 are separately installed.
A BPF 0 etc. is provided, and the carrier wave f 0 is inputted from the track circuit side to the first phase inverter PHR 1 , which is detected and demodulated, and the level detected ATC signal wave is supplied to the carrier wave.
Perform phase inversion of f 0 . After the phase of the carrier wave f 0 which has been inverted and inputted to the second phase inverter PHR 2 is inverted again by the phase wave introduced from the transmission circuit to the second phase inverter PHR 2 , the filter BPF 0 is inverted. Through,
Train detection relay TR with level detection, width increase, and rectification
It drives the. Note that the phase inverter PHR 1 ,
For example, when a ring modem is used in PHR 2 , it is a well-known characteristic of the ring modem that the phase of the carrier wave is inverted each time the polarity of the introduced signal wave switches between positive and negative.
そこで、第3図Aのチヤートaに示すように、
軌道回路からの受信入力が例えば信号波fmで変
調された搬送波fcであり、その変調波が波復調さ
れ、さらにレベル検知器LDを通り、第1位相反
転器PHR1に入力する信号波を同図のチヤートb
に示す波形とする。また同図のチヤートcを発振
器F0から発生し、第1位相反転器PHR1に入力す
る特設の連続搬送波F0の波形とすると、第1位
相反転器PHR1から出力する搬送波f0の波形は同
図のチヤートdに示すように、チヤートbの信号
波の極性が(+)または(−)に切替るごとにそ
の位相を反転して第2位相反転器PHR2に入力す
る。なおチヤートd′は反転する位相の正(+)、
負(−)の時点を表わしている。従つて第2位相
反転器PHR2に送信回路から導入される信号波が
同図のeに示す如く、チヤートbの信号波と同じ
信号波fmであると、この信号波の極性が切替る
ごとに搬送波f0の位相が再反転し、第2位相反転
器PHR2から出力する搬送波f0は同図のチヤート
fに示す如く、もとの搬送波f0と同じ波形に戻
り、フイルタBPF0を通つてリレーTRを駆動す
る。このことは他の信号波fl,fhに関しても同様
である。 Therefore, as shown in chart a of Figure 3A,
The received input from the orbital circuit is, for example, a carrier wave fc modulated by a signal wave fm, and the modulated wave is demodulated, and further passes through a level detector LD, and the signal wave input to the first phase inverter PHR 1 is synchronized. diagram chart b
The waveform is shown in . Furthermore, if chart c in the same figure is the waveform of the special continuous carrier wave F0 generated from the oscillator F0 and input to the first phase inverter PHR1 , then the waveform of the carrier wave f0 output from the first phase inverter PHR1 . As shown in chart d of the figure, each time the polarity of the signal wave of chart b switches to (+) or (-), its phase is inverted and input to the second phase inverter PHR 2 . Note that the chart d′ is the positive (+) of the inverted phase,
It represents a negative (-) time point. Therefore, if the signal wave introduced from the transmission circuit to the second phase inverter PHR 2 is the same signal wave fm as the signal wave of chart b, as shown in e of the same figure, each time the polarity of this signal wave is switched, , the phase of the carrier wave f 0 is inverted again, and the carrier wave f 0 output from the second phase inverter PHR 2 returns to the same waveform as the original carrier wave f 0 as shown in chart f in the same figure, and the filter BPF 0 is and drives relay TR. This also applies to the other signal waves fl and fh.
第3図Bは受信回路の軌道側に搬送波fcが無変
調の連続雑音として混入した場合の回路動作を説
明するタイムチヤートである。すなわち同図Bの
チヤートaは無変調状態の雑音としての搬送波
fc、従つて軌道回路から入力して検波復調される
信号波はなく、同図Bのチヤートbに示す如く、
レベル検知器LDの出力は現れない。また同図B
のチヤートcは第3図Aのチヤートcと同じ搬送
波f0の連続波で第1位相反転器PHR1に入力する。
第3図Bのチヤートdは、レベル検知器LDに出
力がなく、第1位相反転器PHR1の信号入力端に
印加される極性に変化がないことを示したもの
で、この場合入力搬送波f0は同図Bのチヤートe
に示すように同図Bのチヤートcの波がそのまま
素通りして第2位相反転器PHR2に入力する。し
かるに同図Bのチヤートfに示すように例えば信
号波fmが送信回路から第2位相反転器PHR12に
導入されていると、信号波fmの極性の切替るご
とに、搬送波f0の位相が反転し、その出力波形は
同図Bのチヤートgに示す如くになり、かつ正
(+)、負(−)の位相反転時点はチヤートd′に示
す如くで、これがフイルタBPF0内で相殺されて
その出力は減衰し、レベル検知器LDの出力は同
図のチヤートhに示す如く現われず、リレーTR
を復旧させる。 FIG. 3B is a time chart illustrating the circuit operation when the carrier wave fc is mixed into the orbit side of the receiving circuit as unmodulated continuous noise. In other words, chart a in Figure B is a carrier wave as unmodulated noise.
fc, therefore there is no signal wave input from the track circuit to be detected and demodulated, and as shown in chart b in Figure B,
The output of the level detector LD does not appear. Also, figure B
The chart c is input to the first phase inverter PHR 1 as a continuous wave of the same carrier wave f 0 as the chart c in FIG. 3A.
Chart d in Figure 3B shows that there is no output from the level detector LD and there is no change in the polarity applied to the signal input terminal of the first phase inverter PHR 1 , in which case the input carrier f 0 is chart e in figure B
As shown in the figure, the wave of chart c in figure B passes through as it is and is input to the second phase inverter PHR2 . However, as shown in chart f in FIG . The output waveform is as shown in chart g in Figure B, and the positive (+) and negative (-) phase inversion points are as shown in chart d', which are canceled out in the filter BPF 0 . The output of the level detector LD is attenuated, and the output of the level detector LD does not appear as shown in chart h of the same figure, and the relay TR
to be restored.
第3図cは軌道回路から入力する搬送波fcの変
調波信号と送信回路から第2位相反転器PHR2に
導入される信号波が異別の場合の動作状態を示す
タイムチヤートで、以下同図Cのチヤートaは搬
送波fcの変調波を信号波fhとした場合の入力波
形、チヤートbはチヤートaの波形の検波復調信
号波形、チヤートcは第1位相反転器に入力する
搬送波f0の連続波形、チヤートdはチヤートbの
信号波で位相反転された搬送波f0の第1位相反転
器PHR1の出力波形、チヤートd′は正、負位相の
反転時点、チヤートeは送信回路から第2位相反
転器PHR2に導入されている信号波flの波形、チ
ヤートfはチヤートdの波が信号波flの極性切替
り時点でさらに位相反転する状態を表わした第2
位相反転器PHR2の出力波形、チヤートf′はその
正、負位相の反転時点を示す。このような位相反
転の繰返しによるフイルタBPF0の相殺現象から、
その出力は減衰し、チヤートgに示す如く小さく
なり、レベル検知器LDの検知レベル以下となつ
て、その出力はなくなるので、リレーTRは復旧
する。 Figure 3c is a time chart showing the operating state when the modulated wave signal of the carrier wave fc input from the track circuit and the signal wave introduced from the transmission circuit to the second phase inverter PHR 2 are different. Chart a of C is the input waveform when the modulated wave of carrier wave fc is used as signal wave fh, chart b is the detected demodulated signal waveform of the waveform of chart a, and chart c is the series of carrier waves f 0 input to the first phase inverter. The waveform, chart d is the output waveform of the first phase inverter PHR 1 of the carrier wave f 0 whose phase is inverted by the signal wave of chart b, chart d' is the positive and negative phase inversion point, and chart e is the output waveform of the carrier wave f 0 whose phase is inverted by the signal wave of chart b. The waveform of the signal wave fl introduced into the phase inverter PHR 2 , chart f, is the second wave representing the state in which the phase of the wave of chart d is further inverted at the time when the polarity of the signal wave fl is switched.
The output waveform of the phase inverter PHR 2 , chart f', indicates the point at which its positive and negative phases are inverted. From the cancellation phenomenon of filter BPF 0 due to repeated phase inversion,
The output attenuates and becomes small as shown in chart g, becoming below the detection level of the level detector LD, and the output disappears, so that the relay TR is restored.
なお、上記の第1位相反転器PHR1は、軌道回
路から入力した検波復調信号により、第2位相反
転器PHR2は送信回路から導入された信号波でそ
れぞれ位相反転を行なわせたが、その逆に反転を
行なわせても全く同様の動作となる。 Note that the first phase inverter PHR 1 described above inverts the phase of the detected demodulated signal input from the orbit circuit, and the second phase inverter PHR 2 inverts the phase of the signal wave introduced from the transmission circuit. On the contrary, even if the inversion is performed, the operation will be exactly the same.
上述のように軌道回路から受信される信号波と
同じ信号波が送信回路から受信回路の第2位相反
転器PHR2に供給されたときのみ、特設搬送波f0
の電流によつて列車検知リレーTRを駆動させる
ことができる。従つて本発明の場合、ATC信号
の搬送波と変調信号波との周波数比の大小、搬送
波とそのサイドバンド周波数との帯域巾の広狭は
関係がなくなる。 As mentioned above, only when the same signal wave as the signal wave received from the orbital circuit is supplied from the transmitting circuit to the second phase inverter PHR 2 of the receiving circuit, the special carrier wave f 0
The train detection relay TR can be driven by the current. Therefore, in the case of the present invention, the magnitude of the frequency ratio between the carrier wave of the ATC signal and the modulated signal wave, and the width of the bandwidth between the carrier wave and its sideband frequency are irrelevant.
以上の実施例から明かなように、本発明によれ
ば第1図に示した如き中間回路を省略することが
できるから、コストダウンとなる効果は多きく、
さらにリレー接点の如き機械的回路を半減し得る
ので信頼性を向上させる効果を奏するものであ
る。 As is clear from the above embodiments, according to the present invention, the intermediate circuit as shown in FIG. 1 can be omitted, so there is a large effect of reducing costs.
Furthermore, since the number of mechanical circuits such as relay contacts can be reduced by half, reliability is improved.
第1図はATCの機器集中形地上装置における
従来の1例図、第2図は本発明の実施例を示す機
器集中形地上装置の1例図、第3図は同上装置の
動作を説明するタイムチヤートである。
PHR1:第1位相反転器、PHR2:第2位相反
転器、F0:特設搬送波発振器、BPF0:特設搬送
波通過フイルタ、TR:列車検知リレー、f0:特
設搬送波、fc:信号搬送波、fl,fm,fh:信号波
(変調波)。
Fig. 1 is an example of a conventional equipment-intensive ground equipment for ATC, Fig. 2 is an example of equipment-intensive ground equipment showing an embodiment of the present invention, and Fig. 3 explains the operation of the same equipment. It is a time chart. PHR 1 : 1st phase inverter, PHR 2 : 2nd phase inverter, F 0 : Special carrier wave oscillator, BPF 0 : Special carrier wave passing filter, TR: Train detection relay, f 0 : Special carrier wave, fc: Signal carrier wave, fl, fm, fh: Signal wave (modulated wave).
Claims (1)
調式自動列車制御信号の機器集中形地上送受信装
置において、平衡変調特性を有する第1、第2の
位相反転器2個を受信回路に連設し、かつ信号搬
送波と異なる特設搬送波発振器を備え、前記第1
位相反転器に入力する前記特設搬送波の位相を、
軌道回路を介して受信されかつ検波復調された信
号波の極性転換により反転し、第2位相反転器に
入力する前記反転した特設搬送波の位相を、前記
検波復調された信号波と同一波形の信号波を送信
回路から第2位相反転器に導入して再反転する
か、または第1、第2位相反転器の順序を逆にし
て再反転し、よつて得られる特設搬送波電流によ
つて列車を検知することを特徴とする自動列車制
御軌道回路。1. In an equipment-intensive ground transceiver for rectangular amplitude modulated automatic train control signals transmitted and received via a track circuit, two first and second phase inverters having balanced modulation characteristics are connected to the receiving circuit. and a special carrier wave oscillator different from the signal carrier wave,
The phase of the special carrier wave input to the phase inverter is
The polarity of the signal wave received via the orbital circuit and detected and demodulated is inverted, and the phase of the inverted special carrier wave input to the second phase inverter is changed to a signal having the same waveform as the detected and demodulated signal wave. Either the wave is introduced from the transmitting circuit into the second phase inverter and re-inverted, or the order of the first and second phase inverters is reversed and the wave is re-inverted, and the resulting special carrier wave current is used to drive the train. An automatic train control track circuit characterized by detecting.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6801781A JPS57182562A (en) | 1981-05-06 | 1981-05-06 | Automatic train control track circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6801781A JPS57182562A (en) | 1981-05-06 | 1981-05-06 | Automatic train control track circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57182562A JPS57182562A (en) | 1982-11-10 |
JPS633790B2 true JPS633790B2 (en) | 1988-01-26 |
Family
ID=13361631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6801781A Granted JPS57182562A (en) | 1981-05-06 | 1981-05-06 | Automatic train control track circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57182562A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6175264B2 (en) * | 2013-03-29 | 2017-08-02 | 日本信号株式会社 | Signal processing apparatus and train control apparatus |
-
1981
- 1981-05-06 JP JP6801781A patent/JPS57182562A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57182562A (en) | 1982-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4018994A (en) | Compatible AM stereophonic receivers | |
US3962551A (en) | Methods and systems for providing stereo decoding signals | |
US5077542A (en) | Transmission system with suppressed carrier signal amplitude modulation preserving the polarity of the transmitted signal, and corresponding transmitter and receiver | |
JPS627226A (en) | System for switching common standby line | |
US4234852A (en) | Coherent frequency shift key demodulator | |
JPS633790B2 (en) | ||
Costas | Synchronous communications | |
JPS633789B2 (en) | ||
JP3283999B2 (en) | Communication device for train control | |
JP3118068B2 (en) | Train position detection device | |
JPH1076948A (en) | Vehicle control device | |
CA1057357A (en) | Compatible am stereophonic receivers | |
JPS6199448A (en) | Psk demodulating circuit | |
JPH05294239A (en) | Train control communication device | |
JPS6139636A (en) | Information transmitting device | |
JPH04137837A (en) | Railway information transmitter | |
JPH07135481A (en) | Reference signal synchronization form spread spectrum communication system | |
JP2877197B2 (en) | Non-regenerative relay alarm transmission apparatus and method | |
JP3561665B2 (en) | AM radio receiver | |
GB1601111A (en) | Electrical signal transmission | |
JPH06164554A (en) | Frequency diversity communication device | |
GB1601112A (en) | Signal receiving method | |
JPH0523652B2 (en) | ||
JPS6232665B2 (en) | ||
JPH11208472A (en) | Ground transmitting/receiving device for controlling train |