JPH07135481A - Reference signal synchronization form spread spectrum communication system - Google Patents

Reference signal synchronization form spread spectrum communication system

Info

Publication number
JPH07135481A
JPH07135481A JP5303504A JP30350493A JPH07135481A JP H07135481 A JPH07135481 A JP H07135481A JP 5303504 A JP5303504 A JP 5303504A JP 30350493 A JP30350493 A JP 30350493A JP H07135481 A JPH07135481 A JP H07135481A
Authority
JP
Japan
Prior art keywords
code
data
delay time
synchronization
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5303504A
Other languages
Japanese (ja)
Inventor
Satoru Koizumi
覚 小泉
Yoshiaki Yamada
義明 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP5303504A priority Critical patent/JPH07135481A/en
Publication of JPH07135481A publication Critical patent/JPH07135481A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To surely secure synchronization by providing a synchronizing signal generating means, a sender side code generating means, a delay code generating means and a reception side code generating means so as to demodulate data while multiplying a data use PN code and a demodulation use PN code. CONSTITUTION:A PN code generator 12 is synchronous, with a zero cross point of a synchronizing signal from a synchronization generating section 11 to provide from output of spread spectral signals pn1, pn2 of modulated PN codes from a data output section 10. A zero cross detection circuit 15 detects the zero cross point of the synchronizing signal and provides an output to delay time hold circuits 16A, 16B. The circuits 16A, 16B receives the detection signal and provide an output to code generators 17A, 17B synchronous with the sent PN codes pn1, pn2 sent based on the holding synchronization delay time. Multipliers 18A, 18B multiply the modulated PN codes with the PN codes outputted from the generators 17A, 17B and a DC component is outputted to a comparator circuit 20 via LPFs 19A, 19B. Data are reproduced by giving the signals to the circuit 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は低圧配電線大地帰路回路
を用いて情報伝送する基準信号同期形スペクトル拡散通
信方式に関し、特に、伝送遅延時間の大きい周波数帯の
同期信号を使用しても確実な同期が確保できるようにし
て伝送の信頼性を高めた基準信号同期形スペクトル拡散
通信方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reference signal synchronous spread spectrum communication system for transmitting information using a ground return circuit of a low voltage distribution line, and in particular, it is reliable even if a synchronous signal in a frequency band with a large transmission delay time is used. The present invention relates to a reference signal synchronization type spread spectrum communication system in which high reliability is ensured by ensuring high synchronization.

【0002】[0002]

【従来の技術】近年、需要家の電力量計の自動検針や負
荷の制御、更には需要家および配電設備の故障監視等の
用途に対して、低圧配電線大地帰路回路を用いた通信方
式の実用化が盛んに進められている。
2. Description of the Related Art In recent years, a communication system using a low voltage distribution line ground return circuit has been used for applications such as automatic meter reading of electric power meters of consumers and control of loads, and further monitoring of failures of consumers and distribution facilities. Practical application is being actively promoted.

【0003】上記の通信方式においては、電波法によっ
て帯域当りの電力強度が制限され、且つ、低圧配電線の
伝送特性に時変特性があることから、この条件下で信頼
性の高い通信方式として伝送路において信号スペクトル
が広い帯域に分布しているスペクトル拡散通信方式が適
用されている。
In the above communication system, since the power intensity per band is limited by the Radio Law and the transmission characteristic of the low-voltage distribution line has a time-varying characteristic, it is considered as a highly reliable communication system under these conditions. A spread spectrum communication system in which a signal spectrum is distributed over a wide band is applied to a transmission line.

【0004】現在、スペクトル拡散通信方式には、直接
拡散方式と基準信号同期形拡散方式があり、前者の場合
には、スペクトル拡散され、且つ、FSK(Frepuency
Shift Keying)送信データによって変調されたpn符号
を電波法で許容された450kHz以下の周波数帯域幅
で送信し、受信側において遅延ロックループ等を用いた
同期回路で同期を取り、数百〜数千bpsの伝送速度で
情報伝送を行う。
At present, there are two types of spread spectrum communication systems, a direct spread system and a reference signal synchronous spread system. In the former case, spread spectrum and FSK (Frepuency) are used.
Shift Keying) PN code modulated by transmission data is transmitted with a frequency bandwidth of 450 kHz or less allowed by the Radio Law, and synchronization is performed by a synchronization circuit using a delay lock loop or the like on the receiving side, and a few hundred to a few thousand. Information is transmitted at a transmission rate of bps.

【0005】一方、後者の場合には、50又は60Hz
の商用周波数の同期信号と、スペクトル拡散されている
と共に送信データによって変調されたpn符号を送信
し、基準信号の電圧値が0Vとなる点、すなわち、ゼロ
クロス点を基準としてpn符号の同期を取り、数十bp
sの伝送速度で情報伝送を行う。
On the other hand, in the latter case, 50 or 60 Hz
Of the commercial frequency and the pn code which has been spectrum-spread and modulated by the transmission data are transmitted, and the pn code is synchronized with the point where the voltage value of the reference signal becomes 0V, that is, the zero-cross point. , Tens of bp
Information is transmitted at a transmission speed of s.

【0006】配電線大地帰路回路の伝送特性は、図8に
示すように、高周波領域での減衰が大きいため、前者の
ように遅延ロックループを用いた場合では、同期保持能
力が低下して雑音等の変動に対して弱くなり、条件によ
っては伝送性能の劣化が生じる。従って、配電線大地帰
路回路を用いたスペクトル拡散通信方式では、基準信号
同期形拡散方式の適用が有効になっている。
As shown in FIG. 8, the transmission characteristic of the earth return circuit of the distribution line has large attenuation in the high frequency region. Therefore, when the delay lock loop is used as in the former case, the synchronization holding ability is lowered and noise is reduced. It becomes vulnerable to such fluctuations, and the transmission performance deteriorates depending on the conditions. Therefore, in the spread spectrum communication system using the earth return circuit of the distribution line, it is effective to apply the reference signal synchronization type spread system.

【0007】[0007]

【発明が解決しようとする課題】しかし、従来の基準信
号同期形スペクトル拡散通信方式によると、電波法の規
制が緩く、且つ、伝送特性が安定した、例えば、10k
Hz以下の低周波信号を同期信号として用いると、図9
に示すように、pn符号のスペクトル拡散信号に対して
同期信号の伝送速度が遅くなるため、pn符号と同期信
号の伝送速度の差により、確実な同期を確保することが
できなくなるという不都合がある。
However, according to the conventional reference signal synchronization type spread spectrum communication system, the regulation of the Radio Law is loose and the transmission characteristic is stable, for example, 10 k.
When a low-frequency signal of Hz or less is used as the synchronization signal,
As shown in FIG. 3, since the transmission rate of the synchronization signal is slower than that of the spread spectrum signal of the pn code, there is an inconvenience that the reliable synchronization cannot be secured due to the difference in the transmission rate of the pn code and the synchronization signal. .

【0008】従って、本発明の目的は伝送遅延時間の大
きい周波数帯の同期信号を使用しても確実な同期を確保
できるようにして伝送の信頼性を高めることができる基
準信号同期形スペクトル拡散方式を提供することであ
る。
Therefore, an object of the present invention is to spread a reference signal by using a reference signal synchronization type spread spectrum system which can ensure reliable synchronization even if a synchronization signal in a frequency band having a large transmission delay time is used. Is to provide.

【0009】[0009]

【課題を解決するための手段】本発明は上記問題点に鑑
み、伝送遅延時間の大きい周波数帯の同期信号を使用し
ても確実な同期を確保できるようにして伝送路の雑音に
対する信頼性を高めるため、10kHz以下の正弦波信
号を同期信号として発生して低圧配電線を介して伝送さ
せる同期信号発生手段と、低圧配電線を伝送されるデー
タによって変調され、所定の帯域幅にスペクトル拡散さ
れると共に、同期信号のゼロクロス点に同期したデータ
用pn符号を発生して低圧配電線を介して伝送させる送
信側符号発生手段と、低圧配電線を伝送するデータ用p
n符号に対する同期信号の遅延時間を保持した遅延時間
保持手段と、同期信号のゼロクロス点と遅延時間に基づ
いてデータ用pn符号に同期したデータを復調するため
の復調用pn符号を発生する受信側符号発生手段と、デ
ータ用pn符号と復調用pn符号を乗算してデータを復
調するデータ再生手段を備えた基準信号同期形スペクト
ル拡散方式を提供するものである。
In view of the above problems, the present invention ensures reliable synchronization even when a synchronization signal in a frequency band with a large transmission delay time is used, thereby improving reliability against noise on a transmission line. In order to increase, a sine wave signal of 10 kHz or less is generated as a synchronizing signal and is transmitted through a low voltage distribution line, and a synchronization signal generating means is modulated by the data transmitted through the low voltage distribution line, and is spread spectrum to a predetermined bandwidth. At the same time, a transmitting side code generating means for generating a data pn code synchronized with the zero-cross point of the synchronizing signal and transmitting it through the low voltage distribution line, and a data p for transmitting the low voltage distribution line.
Delay time holding means for holding the delay time of the synchronizing signal with respect to the n code, and a receiving side for generating a demodulating pn code for demodulating data synchronized with the data pn code based on the zero cross point and the delay time of the synchronizing signal. The present invention provides a reference signal synchronization type spread spectrum system equipped with a code generating means and a data reproducing means for demodulating data by multiplying a pn code for data and a pn code for demodulation.

【0010】上記送信側符号発生手段は、2値データに
対応した第1,及び第2データ用pn符号を発生するよ
うになっており、上記データ再生手段は、第1データ用
pn符号に第1データ用pn符号に等しい復調用pn符
号を乗ずる第1の乗算器と、第2データ用pn符号に第
2データ用pn符号に等しい復調用pn符号を乗ずる第
2の乗算器と、第1,及び第2の乗算器の出力の低域成
分を通す第1,及び第2の低域濾波器と、第1,及び第
2の低域濾波器の出力を比較して2値データを再生する
比較手段を含んで構成されている。
The transmitting side code generating means is adapted to generate the first and second data pn codes corresponding to the binary data, and the data reproducing means is adapted to generate the first data pn code. A first multiplier for multiplying a demodulation pn code equal to one data pn code, a second multiplier for multiplying a second data pn code by a demodulation pn code equal to the second data pn code, and a first multiplier , And the output of the first and second low-pass filters that pass the low-pass component of the output of the second multiplier, and the outputs of the first and second low-pass filters are compared to reproduce binary data. It is configured to include a comparison means for performing.

【0011】上記遅延時間保持手段は、データ通信を行
う前に同期信号発生手段から同期信号を発生させると共
に、送信側符号発生手段から同期信号のゼロクロス点に
同期したデータによって変調されていない非変調pn符
号を出力させ、受信側符号発生手段から非変調用pn符
号に等しいpn符号をその発生タイミングを変化させな
がら発生させ、データ再生手段の受信電力が最大となる
時間を前記遅延時間として保持している。
The delay time holding means generates the synchronizing signal from the synchronizing signal generating means before performing data communication, and is not modulated by the data synchronized with the zero cross point of the synchronizing signal from the transmitting side code generating means. A pn code is output, a pn code equal to the non-modulation pn code is generated from the receiving side code generating means while changing its generation timing, and the time at which the received power of the data reproducing means becomes maximum is held as the delay time. ing.

【0012】[0012]

【実施例】以下、本発明の基準信号同期形スペクトル拡
散通信方式について添付図面を参照しながら詳細に説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The reference signal synchronization type spread spectrum communication system of the present invention will be described below in detail with reference to the accompanying drawings.

【0013】図1には、本発明の一実施例の通信システ
ムの構成が示されている。この通信システムは、配電線
5A,5B,5C(5Aは中性線)より成る低圧配電線
5と、中性線5Aが接続されている共同地線6と、中性
線5Aに接続された送信局1と、低圧配電線5に接続さ
れた複数の需要家7より構成されている。
FIG. 1 shows the configuration of a communication system according to an embodiment of the present invention. This communication system was connected to a low voltage distribution line 5 consisting of distribution lines 5A, 5B and 5C (5A is a neutral line), a common ground line 6 to which the neutral line 5A is connected, and a neutral line 5A. It is composed of a transmitter station 1 and a plurality of customers 7 connected to the low-voltage distribution line 5.

【0014】複数の需要家7は、電力量計3を介して低
圧配電線5に接続された負荷4と、電力量計3を介して
中性線5Aに接続された受信局2を有している。
The plurality of consumers 7 have a load 4 connected to the low-voltage distribution line 5 via the electric energy meter 3 and a receiving station 2 connected to the neutral line 5A via the electric energy meter 3. ing.

【0015】送信局1は、電力会社営業所等の集中管理
センターから高速伝送路を介して各種指令,情報を入力
し、それを低圧配電線5の中性線5Aを介して複数の受
信局2に伝送する。
The transmitting station 1 inputs various commands and information from a centralized control center such as an electric power company business office via a high-speed transmission line, and transmits them to a plurality of receiving stations via a neutral line 5A of a low voltage distribution line 5. 2 to transmit.

【0016】図2には、上記した通信システムの構成が
簡略化して示されている。この図から判るように、大地
間に接地抵抗9がそれぞれ接続された送信局1と受信局
2が伝送路(低圧配電線)5を介して接続され、低圧配
電線大地帰路回路を用いて情報伝送が行われるようにな
っている。
FIG. 2 shows a simplified configuration of the communication system described above. As can be seen from this figure, a transmitting station 1 and a receiving station 2 each having a grounding resistance 9 connected between the ground are connected via a transmission line (low voltage distribution line) 5, and information is obtained by using a low voltage distribution line earth return circuit. Transmission is to take place.

【0017】図3には、送信局1と受信局2の回路構成
が示されている。送信局1は、伝送される指令や情報等
の2値のデータを出力するデータ出力部10と、9.6
kHzの正弦波信号を同期信号として出力する同期信号
発生部11と、同期信号のゼロクロス点に同期してデー
タの2値に対応した2つのpn符号を発生する符号発生
器12を備え、伝送路5を介して正弦波の同期信号と変
調された2つのpn符号を伝送するように構成されてい
る。
FIG. 3 shows circuit configurations of the transmitting station 1 and the receiving station 2. The transmitting station 1 includes a data output unit 10 that outputs binary data such as commands and information to be transmitted, and 9.6.
A synchronization signal generator 11 for outputting a sine wave signal of kHz as a synchronization signal, and a code generator 12 for generating two pn codes corresponding to binary values of data in synchronization with the zero-cross point of the synchronization signal are provided. It is configured to transmit the sinusoidal synchronizing signal and the two modulated pn codes via 5.

【0018】一方、受信局2は、中心周波数9.6kH
zのバンドパスフィルタ等を有し、伝送路5を伝送して
きた同期信号と送信データを分離する同期信号分離回路
14と、分離した同期信号のゼロクロス点を検出するゼ
ロクロス検出回路15と、伝送路5を伝送してきたpn
符号に対する同期信号の遅延時間に基づいてデータ用p
n符号と同期の取れた復調用pn符号を発生するための
同期用遅延時間を保持した遅延時間保持回路16A,1
6Bと、同期信号のゼロクロス点と遅延時間保持回路1
6A,16Bに保持された同期用遅延時間に基づいて同
期の取れた復調用pn符号を発生する符号発生器17
A,17Bと、同期信号分離回路14において同期信号
と分離されたデータ用pn符号に復調用pn符号を乗ず
る乗算器18A,18Bと、乗算器18A,18Bの出
力の低周波成分を通すローパスフィルタ19A,19B
と、ローパスフィルタ19A,19Bの出力を比較して
2値データを再生する比較回路20を備えて構成されて
いる。
On the other hand, the receiving station 2 has a center frequency of 9.6 kHz.
a sync signal separation circuit 14 having a z band pass filter or the like for separating the sync signal transmitted through the transmission path 5 from the transmission data, a zero cross detection circuit 15 for detecting a zero cross point of the separated sync signal, and a transmission path Pn that has transmitted 5
P for data based on the delay time of the synchronization signal with respect to the code
A delay time holding circuit 16A, 1 holding a synchronization delay time for generating a demodulation pn code synchronized with the n code
6B, zero-cross point of synchronization signal and delay time holding circuit 1
A code generator 17 for generating a demodulated pn code which is synchronized based on the synchronization delay time held in 6A and 16B.
A and 17B, multipliers 18A and 18B for multiplying the demodulation pn code by the data pn code separated from the synchronization signal in the synchronization signal separation circuit 14, and a low-pass filter that passes low-frequency components of the outputs of the multipliers 18A and 18B. 19A, 19B
And a comparison circuit 20 for reproducing the binary data by comparing the outputs of the low-pass filters 19A and 19B.

【0019】ここで、図4を参照しながら遅延時間保持
回路16A,16Bの同期用遅延時間について説明す
る。遅延時間保持回路16A,16Bは符号発生器17
A,17Bに共通する単一の回路であっても良い。同期
用遅延時間は伝送路5の特性により変化させ、その最適
値を通信を行う前に探索しておく。まず、雑音が加えら
れていない状態において、受信電力が最大になる点(時
間)を探す。すなわち、図4に示されているように、送
信側から同期信号と同期信号のゼロクロス点に同期した
無変調のpn符号を送信し、同期信号分離回路14で同
期信号を分離した後、同期用遅延時間を変化させて符号
発生器17A,17Bからのpn符号の発生タイミング
を変化させ、ローパスフィルタ19A,19Bからの相
関出力値、つまり、受信電力が最大となる同期用遅延時
間を探索する。そして、探索した同期用遅延時間を遅延
時間保持回路16A,16Bに保持させる。
The synchronization delay time of the delay time holding circuits 16A and 16B will be described with reference to FIG. The delay time holding circuits 16A and 16B are the code generator 17
It may be a single circuit common to A and 17B. The delay time for synchronization is changed according to the characteristics of the transmission line 5, and its optimum value is searched for before communication. First, a point (time) at which the received power becomes maximum in the state where noise is not added is searched for. That is, as shown in FIG. 4, a synchronization signal and a non-modulated pn code synchronized with the zero-cross point of the synchronization signal are transmitted from the transmission side, and after the synchronization signal separation circuit 14 separates the synchronization signal, The delay time is changed to change the generation timing of the pn code from the code generators 17A and 17B, and the correlation output value from the low-pass filters 19A and 19B, that is, the synchronization delay time that maximizes the received power is searched. Then, the searched delay time for synchronization is held in the delay time holding circuits 16A and 16B.

【0020】図5には、伝送路をローパスフィルタで近
似させた場合のカットオフ周波数を40,70,100
kHzと変化させた場合の受信電力の変化が示されてい
る。ここで、横軸にはpn符号のチップを単位として同
期用遅延時間を示し、縦軸には受信局2の受信電圧の二
乗平方根平均値を示す。この図から判るように、伝送路
の条件によって最適な受信状態が変化する。また、大地
帰路回路の伝送特性は比較的長時間にわたって一定であ
ると考えられるので、一度、同期用遅延時間の最適値を
求めれば、伝送特性が一定の間は理想的な同期点が保持
される。
FIG. 5 shows cutoff frequencies of 40, 70, 100 when the transmission line is approximated by a low-pass filter.
The change in received power when the frequency is changed to kHz is shown. Here, the horizontal axis represents the synchronization delay time in units of pn code chips, and the vertical axis represents the root mean square value of the received voltage of the receiving station 2. As can be seen from this figure, the optimum reception state changes depending on the conditions of the transmission path. Moreover, since the transmission characteristics of the earth return circuit are considered to be constant over a relatively long period of time, once the optimum value of the delay time for synchronization is obtained, the ideal synchronization point is maintained while the transmission characteristics are constant. It

【0021】また、雑音が印加された場合の同期点の探
索も同様に行うことができる。図6には、雑音(狭帯域
・白色雑音)のある場合のローパスフィルタ19A,1
9Bの出力値が示されている。これから判るように、雑
音の存在下でも最適な同期点が得られる。
Further, the search for the synchronization point when noise is applied can be similarly performed. FIG. 6 shows the low-pass filters 19A and 1A when noise (narrow band / white noise) is present.
The output value of 9B is shown. As can be seen, the optimum sync point is obtained even in the presence of noise.

【0022】以下、本発明の基準信号同期形スペクトル
拡散通信方式の動作を図7のタイミングチャートを含め
て説明する。まず、前述したように、通信を行う前に送
信局1の同期信号発生部11から同期信号を出力すると
共に、pn符号発生器12から同期信号に同期した変調
されていないpn符号のスペクトル拡散信号を出力し、
両信号を伝送路5を介して受信局2に受信させる。一
方、受信局2では、遅延時間保持回路16A,16Bの
同期用遅延時間を変化させ、符号発生器17A,17B
から発生するpn符号と受信したスペクトル拡散信号の
pn符号の同期点を探索する。すなわち、受信したスペ
クトル拡散信号と符号発生器17A,17Bからのpn
符号を、各乗算器18A,18Bで乗算した積信号がロ
ーパスフィルタ19A,19Bを通過した信号の相関出
力値、つまり、受信電力が最大となる同期用遅延時間を
探索して、これを遅延時間保持回路16A,16Bに保
持させておく。
The operation of the reference signal synchronization type spread spectrum communication system of the present invention will be described below with reference to the timing chart of FIG. First, as described above, the synchronization signal generator 11 of the transmitting station 1 outputs the synchronization signal before communication, and the pn code generator 12 synchronizes the synchronization signal with the unmodulated pn code spread spectrum signal. And output
Both signals are received by the receiving station 2 via the transmission path 5. On the other hand, in the receiving station 2, the delay times for synchronization of the delay time holding circuits 16A and 16B are changed to change the code generators 17A and 17B.
The synchronization point of the pn code generated from the pn code of the received spread spectrum signal is searched for. That is, the received spread spectrum signal and pn from the code generators 17A and 17B.
The correlation output value of the signal obtained by multiplying the code by each of the multipliers 18A and 18B and passing through the low-pass filters 19A and 19B, that is, the delay time for synchronization that maximizes the received power is searched for and the delay time is calculated. It is held in the holding circuits 16A and 16B.

【0023】続いて、送信局1から受信局2にデータを
伝送する。すなわち、データ出力部10から2値のデー
タを出力する共に、同期信号発生部11から9.6kH
zの正弦波の同期信号Sを出力する。また、pn符号発
生器12から同期信号のゼロクロス点に同期し、データ
出力部10からの2値のデータに応じて変調されたpn
符号のスペクトル拡散信号pn1,pn2を出力する。
そして、出力された同期信号Sとpn符号pn1,pn
2のスペクトル拡散信号(図7の(a))が伝送路5を介し
て受信局2まで伝送される。
Then, the data is transmitted from the transmitting station 1 to the receiving station 2. That is, the data output unit 10 outputs binary data and the synchronization signal generation unit 11 outputs 9.6 kHz.
The sine wave synchronization signal S of z is output. Further, the pn code generator 12 synchronizes with the zero-cross point of the synchronizing signal and is modulated according to the binary data from the data output unit 10.
The code spread spectrum signals pn1 and pn2 are output.
Then, the output synchronization signal S and the pn codes pn1 and pn
The spread spectrum signal No. 2 ((a) in FIG. 7) is transmitted to the receiving station 2 via the transmission line 5.

【0024】伝送路5を伝送してきた同期信号Sとpn
符号pn1,pn2のスペクトル拡散信号は、伝送路5
の伝送速度の相違からpn符号pn1,pn2に対して
同期信号が時間tだけ遅れた状態で受信器2で受信され
る(図7の(b))。受信器2では、同期信号分離回路14
において受信した同期信号Sとpn符号pn1,pn2
のスペクトル拡散信号を分離すると共に、同期信号Sを
ゼロクロス検出回路15に、また、pn符号pn1,p
n2を乗算器18A,18Bにそれぞれ出力する。
The synchronization signals S and pn transmitted through the transmission line 5
The spread spectrum signals of codes pn1 and pn2 are transmitted through the transmission line 5
Due to the difference in the transmission speed of the above, the synchronization signal is received by the receiver 2 with a delay of time t with respect to the pn codes pn1 and pn2 ((b) of FIG. 7). In the receiver 2, the synchronization signal separation circuit 14
And the pn code pn1 and pn2 received at
Of the spread spectrum signal, the sync signal S to the zero-cross detection circuit 15, and the pn codes pn1 and p.
n2 is output to the multipliers 18A and 18B, respectively.

【0025】ゼロクロス検出回路15は同期信号のゼロ
クロス点を検出すると、検出信号を遅延時間保持回路1
6A,16Bに出力する。遅延時間保持回路16A,1
6Bは検出信号を入力してから保持している同期用遅延
時間に基づいて伝送されてきたpn符号pn1,pn2
に同期を取って符号発生器17A,17Bからpn符号
pn1,pn2を乗算器18A,18Bにそれぞれ出力
させる(図7の(c))。
When the zero-cross detection circuit 15 detects the zero-cross point of the synchronization signal, it outputs the detection signal to the delay time holding circuit 1.
Output to 6A and 16B. Delay time holding circuit 16A, 1
6B is a pn code pn1, pn2 transmitted based on the synchronization delay time held after the detection signal is input.
In synchronization with the above, the pn codes pn1 and pn2 are output from the code generators 17A and 17B to the multipliers 18A and 18B, respectively ((c) in FIG. 7).

【0026】このようにして乗算器18A,18Bに変
調されたpn符号のスペクトル拡散信号と符号発生器1
7A,17Bから所定のタイミングで発生したpn符号
が入力すると、変調されたpn符号と符号発生器17
A,17Bから出力されたpn符号の乗算が行われる。
The spread spectrum signal of the pn code thus modulated by the multipliers 18A and 18B and the code generator 1
When the pn code generated at a predetermined timing is input from 7A and 17B, the modulated pn code and the code generator 17 are input.
The pn code output from A and 17B is multiplied.

【0027】すなわち、符号発生器17Aは、図7の
(c) に示すようなpn符号pn1を出力し、これが乗算
器18Aでデータ用pn符号pn1,pn2と乗算され
ると、図7の(d) に示すように、pn1×pn1によっ
て直流成分Lが、また、pn2×pn1によって高周波
成分Hがそれぞれ得られる。この直流成分Lと高周波成
分Hがローパスフィルタ19に入力すると、高周波成分
Hが除去されて直流成分Lだけが出力される。一方、符
号発生器17Bにおいてはpn符号pn2が出力され、
pn1×pn2,pn2×pn2の乗算が乗算器18B
で行われる。従って、ローパスフィルタ19Bの出力
は、ローパスフィルタ19Aの直流成分Dの出力時には
出力がなく、高周波成分Hのカット時に直流成分(pn
2×pn2)が出力される。ローパスフィルタ19A,
19Bのこの出力が比較回路20に入力することにより
「1」(=pn1×pn1),「0」(=pn2×pn
2)のデータが再生される。
That is, the code generator 17A has a configuration shown in FIG.
When the pn code pn1 as shown in (c) is output and this is multiplied by the data pn codes pn1 and pn2 in the multiplier 18A, as shown in (d) of FIG. However, the high frequency component H is obtained by pn2 × pn1. When the DC component L and the high frequency component H are input to the low pass filter 19, the high frequency component H is removed and only the DC component L is output. On the other hand, the code generator 17B outputs the pn code pn2,
The multiplication of pn1 × pn2 and pn2 × pn2 is the multiplier 18B.
Done in. Therefore, the output of the low-pass filter 19B is not output when the DC component D of the low-pass filter 19A is output, and is not output when the high-frequency component H is cut.
2 × pn2) is output. Low-pass filter 19A,
By inputting this output of 19B to the comparison circuit 20, “1” (= pn1 × pn1), “0” (= pn2 × pn)
The data of 2) is reproduced.

【0028】以上の実施例から明らかなように、データ
通信前にpn符号のスペクトル拡散信号に対する同期信
号の遅延時間から遅延時間保持回路16A,16Bの同
期遅延時間を探索して保持させておき、予め変調された
pn符号と復調用のpn符号の同期点を確保しているた
め、伝送遅延時間の大きい10kHz以下の同期信号を
用いても確実な同期が得られ、伝送の信頼性を高めるこ
とができる。また、信号が減衰した条件下でも同期用の
正弦波信号さえ検出できれば、同期を確保することがで
きる。
As is apparent from the above embodiments, the synchronization delay time of the delay time holding circuits 16A and 16B is searched and held from the delay time of the synchronization signal with respect to the spread spectrum signal of the pn code before the data communication. Since the synchronization point of the pre-modulated pn code and the pn code for demodulation is secured, reliable synchronization can be obtained even if a synchronization signal with a large transmission delay time of 10 kHz or less is used, and transmission reliability is improved. You can Further, even if the sine wave signal for synchronization can be detected even under the condition where the signal is attenuated, the synchronization can be secured.

【0029】[0029]

【発明の効果】以上説明したように、本発明の基準信号
同期形スペクトル拡散通信方式によると、10kHz以
下の正弦波信号を同期信号として発生して低圧配電線を
介して伝送させる同期信号発生手段と、低圧配電線を伝
送されるデータによって変調され、所定の帯域幅にスペ
クトル拡散されると共に、同期信号のゼロクロス点に同
期したデータ用pn符号を発生して低圧配電線を介して
伝送させる送信側符号発生手段と、低圧配電線を伝送す
るデータ用pn符号に対する同期信号の遅延時間を保持
した遅延時間保持手段と、同期信号のゼロクロス点と遅
延時間に基づいてデータ用pn符号に同期したデータを
復調するための復調用pn符号を発生する受信側符号発
生手段と、データ用pn符号と復調用pn符号を乗算し
てデータを復調するデータ再生手段を備えているため、
伝送遅延時間の大きい周波数帯の同期信号を使用しても
確実な同期を確保することができ、伝送の信頼性を高め
ることができる。
As described above, according to the reference signal synchronizing type spread spectrum communication system of the present invention, the synchronizing signal generating means for generating the sine wave signal of 10 kHz or less as the synchronizing signal and transmitting it through the low voltage distribution line. And the data transmitted through the low-voltage distribution line are modulated by the data transmitted through the low-voltage distribution line, spectrum-spread to a predetermined bandwidth, and a data pn code synchronized with the zero-cross point of the synchronization signal is generated and transmitted through the low-voltage distribution line. Side code generating means, delay time holding means for holding the delay time of the synchronization signal with respect to the data pn code transmitted through the low voltage distribution line, and data synchronized with the data pn code based on the zero-cross point and the delay time of the synchronization signal. Receiving side code generating means for generating a demodulating pn code for demodulating the data, and the data is demodulated by multiplying the data pn code by the demodulating pn code. Due to the provision of a data reproducing unit,
Even if a synchronization signal in a frequency band with a large transmission delay time is used, reliable synchronization can be ensured and transmission reliability can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す説明図。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【図2】図1の通信システムの回路構成を示す説明図。FIG. 2 is an explanatory diagram showing a circuit configuration of the communication system of FIG.

【図3】一実施例に係る送信局と受信局の回路構成を示
すブロック図。
FIG. 3 is a block diagram showing a circuit configuration of a transmitting station and a receiving station according to an embodiment.

【図4】一実施例に係る遅延時間保持回路の同期遅延時
間を探索保持する場合の動作フローを示す説明図。
FIG. 4 is an explanatory diagram showing an operation flow when searching and holding a synchronous delay time of the delay time holding circuit according to the embodiment.

【図5】雑音が存在しない伝送路による受信条件の変化
を表すグラフ。
FIG. 5 is a graph showing changes in reception conditions due to a transmission line in which noise does not exist.

【図6】雑音存在下の伝送路による受信条件の変化を表
すグラフ
FIG. 6 is a graph showing changes in reception conditions due to a transmission line in the presence of noise.

【図7】一実施例に係る各信号を示すタイミングチャー
ト。
FIG. 7 is a timing chart showing each signal according to one embodiment.

【図8】低圧配電線の伝送特性を表すグラフ。FIG. 8 is a graph showing transmission characteristics of a low voltage distribution line.

【図9】低圧配電線の伝送特性を表すグラフ。FIG. 9 is a graph showing transmission characteristics of a low voltage distribution line.

【符号の説明】[Explanation of symbols]

1 送信局 2
受信局 3 電力量計 4
負荷 5 低圧配電線(伝送路) 5A
共同地線 5B,5C 配電線 6
架空地線 7 需要家 10
データ出力部 11 同期信号発生部 12
符号発生器 13 拡散変調回路 14
同期信号分離回路 15 ゼロクロス検出回路 16A,16B 遅延時間保持回路 17A,
17B 符号発生器 18A,18B 乗算器 19A,19B ローパスフィルタ 20
比較回路
1 transmitting station 2
Receiving station 3 Electricity meter 4
Load 5 Low-voltage distribution line (transmission line) 5A
Common ground line 5B, 5C Distribution line 6
Aerial ground wire 7 Customer 10
Data output unit 11 Synchronous signal generation unit 12
Code generator 13 Spreading modulation circuit 14
Sync signal separation circuit 15 Zero cross detection circuit 16A, 16B Delay time holding circuit 17A,
17B Code Generator 18A, 18B Multiplier 19A, 19B Low-pass Filter 20
Comparison circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 低圧配電線の大地帰路回路を用いたスペ
クトル拡散通信方式において、 10kHz以下の正弦波信号を同期信号として発生して
前記低圧配電線を介して伝送させる同期信号発生手段
と、 前記低圧配電線を伝送されるデータによって変調され、
所定の帯域幅にスペクトル拡散されると共に、前記同期
信号のゼロクロス点に同期したデータ用pn符号を発生
して前記低圧配電線を介して伝送させる送信側符号発生
手段と、 前記低圧配電線を伝送する前記データ用pn符号に対す
る前記同期信号の遅延時間を保持した遅延時間保持手段
と、 前記同期信号のゼロクロス点と前記遅延時間に基づいて
前記データ用pn符号に同期した前記データを復調する
ための復調用pn符号を発生する受信側符号発生手段
と、 前記データ用pn符号と前記復調用pn符号を乗算して
前記データを復調するデータ再生手段を備えていること
を特徴とする基準信号同期形スペクトル拡散通信方式。
1. A spread spectrum communication system using a ground return circuit of a low-voltage distribution line, a synchronization signal generating means for generating a sine wave signal of 10 kHz or less as a synchronization signal and transmitting it through the low-voltage distribution line, Modulated by the data transmitted on the low voltage distribution line,
Transmitting side code generating means for generating a data pn code synchronized with the zero-cross point of the synchronization signal and transmitting it through the low-voltage distribution line, and spectrum-spreading to a predetermined bandwidth, and transmitting the low-voltage distribution line A delay time holding means for holding a delay time of the synchronization signal with respect to the data pn code, and for demodulating the data synchronized with the data pn code based on the zero cross point of the synchronization signal and the delay time. A reference signal synchronizing type, comprising: a receiving side code generating means for generating a demodulating pn code; and a data reproducing means for multiplying the data pn code by the demodulating pn code to demodulate the data. Spread spectrum communication system.
【請求項2】 前記送信側符号発生手段は、2値データ
に対応した第1,及び第2データ用pn符号を発生し、 前記データ再生手段は、前記第1データ用pn符号に前
記第1データ用pn符号に等しい復調用pn符号を乗ず
る第1の乗算器と、前記第2データ用pn符号に前記第
2データ用pn符号に等しい復調用pn符号を乗ずる第
2の乗算器と、前記第1,及び第2の乗算器の出力の低
域成分を通す第1,及び第2の低域濾波器と、前記第
1,及び第2の低域濾波器の出力を比較して前記2値デ
ータを再生する比較手段を含む請求項1の基準信号同期
形スペクトル拡散通信方式。
2. The transmission side code generating means generates first and second data pn codes corresponding to binary data, and the data reproducing means converts the first data pn code into the first data pn code. A first multiplier that multiplies a demodulating pn code equal to the data pn code; a second multiplier that multiplies the second data pn code by a demodulating pn code equal to the second data pn code; The outputs of the first and second low-pass filters are compared with those of the first and second low-pass filters, which pass low-frequency components of the outputs of the first and second multipliers. The reference signal synchronous type spread spectrum communication system according to claim 1, further comprising a comparing means for reproducing the value data.
【請求項3】 前記遅延時間保持手段は、データ通信を
行う前に前記同期信号発生手段から前記同期信号を発生
させると共に、前記送信側符号発生手段から前記同期信
号のゼロクロス点に同期したデータによって変調されて
いない非変調pn符号を出力させ、前記受信側符号発生
手段から前記非変調用pn符号に等しいpn符号をその
発生タイミングを変化させながら発生させ、前記データ
再生手段の受信電力が最大となる時間を前記遅延時間と
して保持している構成の請求項1の基準信号同期形スペ
クトル拡散通信方式。
3. The delay time holding means generates the synchronization signal from the synchronization signal generating means before performing data communication, and uses the data synchronized with the zero-cross point of the synchronization signal from the transmission side code generating means. A non-modulated pn code that is not modulated is output, and a pn code equal to the non-modulating pn code is generated from the reception side code generation means while changing its generation timing, and the received power of the data reproduction means becomes maximum. The reference signal synchronization type spread spectrum communication system according to claim 1, wherein the delay time is held as follows.
JP5303504A 1993-11-09 1993-11-09 Reference signal synchronization form spread spectrum communication system Pending JPH07135481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5303504A JPH07135481A (en) 1993-11-09 1993-11-09 Reference signal synchronization form spread spectrum communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5303504A JPH07135481A (en) 1993-11-09 1993-11-09 Reference signal synchronization form spread spectrum communication system

Publications (1)

Publication Number Publication Date
JPH07135481A true JPH07135481A (en) 1995-05-23

Family

ID=17921774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5303504A Pending JPH07135481A (en) 1993-11-09 1993-11-09 Reference signal synchronization form spread spectrum communication system

Country Status (1)

Country Link
JP (1) JPH07135481A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000009140A (en) * 1998-07-21 2000-02-15 윤종용 Apparatus and method for initial capture and frame synchronization of spread spectrum communication system
WO2002015426A1 (en) * 2000-08-10 2002-02-21 Neix, Inc. Wire communication device, wire communication apparatus, wire communication method, and wire communication system
US6856850B2 (en) 1998-07-03 2005-02-15 Kimberly Clark Worldwide, Inc. Controlling web tension, and accumulating lengths of web, using a festoon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6856850B2 (en) 1998-07-03 2005-02-15 Kimberly Clark Worldwide, Inc. Controlling web tension, and accumulating lengths of web, using a festoon
KR20000009140A (en) * 1998-07-21 2000-02-15 윤종용 Apparatus and method for initial capture and frame synchronization of spread spectrum communication system
WO2002015426A1 (en) * 2000-08-10 2002-02-21 Neix, Inc. Wire communication device, wire communication apparatus, wire communication method, and wire communication system

Similar Documents

Publication Publication Date Title
US4835517A (en) Modem for pseudo noise communication on A.C. lines
US4922506A (en) Compensating for distortion in a communication channel
US20030007570A1 (en) Apparatus for modulating and demodulating multiple channel FSK in power line communication system
HU215320B (en) Power distribution line communication method and system for reducing effects of signal cancellation
US4953178A (en) Spread spectrum communication system
US6498568B1 (en) Pipeline communication system
CN103036594B (en) Electric line communication system
JPH07135481A (en) Reference signal synchronization form spread spectrum communication system
JPH11163807A (en) Communication system, transmitter and receiver
JPH06291700A (en) Line quality measuring instrument
JPS6083444A (en) Power line communication device
JP2805542B2 (en) Spread spectrum signal demodulation method and apparatus
KR200294000Y1 (en) Power line communication modem
JPS6193745A (en) Spread spectrum transceiver
KR100518968B1 (en) Power line communication modem
JP2804233B2 (en) Multiplexing method in spread spectrum communication.
JPH0446422A (en) Distribution line carrying communication system for spread spectrum signal
JPH09172391A (en) Spread spectrum communication system
JP2864930B2 (en) Synchronization holding device in spread spectrum communication system
JP3152781B2 (en) Communication device
JPH0213978B2 (en)
JPS63187822A (en) Spread spectral communication system for lighting line carrier
JP3280197B2 (en) Spread spectrum communication equipment
JPS6086935A (en) Communication system for spread spectrum power line
JP2667895B2 (en) Spread spectrum communication equipment