JPS633777Y2 - - Google Patents

Info

Publication number
JPS633777Y2
JPS633777Y2 JP1983039980U JP3998083U JPS633777Y2 JP S633777 Y2 JPS633777 Y2 JP S633777Y2 JP 1983039980 U JP1983039980 U JP 1983039980U JP 3998083 U JP3998083 U JP 3998083U JP S633777 Y2 JPS633777 Y2 JP S633777Y2
Authority
JP
Japan
Prior art keywords
cutter blade
die
gap
drive shaft
zero point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983039980U
Other languages
Japanese (ja)
Other versions
JPS59146112U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1983039980U priority Critical patent/JPS59146112U/en
Publication of JPS59146112U publication Critical patent/JPS59146112U/en
Application granted granted Critical
Publication of JPS633777Y2 publication Critical patent/JPS633777Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • B29B9/065Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Crushing And Pulverization Processes (AREA)

Description

【考案の詳細な説明】 (考案の対象、産業上の利用分野) 本考案は、溶融合成樹脂をダイスから押出し、
空中または水中でカツタ刃により切断し、ペレツ
トを作る装置の分野で利用される。
[Detailed explanation of the invention] (Target of invention, industrial application field) This invention extrudes molten synthetic resin from a die,
It is used in the field of equipment that makes pellets by cutting with a cutter blade in the air or underwater.

本考案は、合成樹脂造粒装置のカツタ刃とダイ
スの間隙を調整する装置に関し、特に、カツタ刃
とダイスの間隙を直接測定できる装置に関する。
The present invention relates to a device for adjusting the gap between a cutter blade and a die in a synthetic resin granulation device, and more particularly to a device that can directly measure the gap between a cutter blade and a die.

(従来技術及びその問題点と技術的分析) ダイスとカツタ刃の関隙には最適値が存在す
る。カツタ刃とダイスを接触させ、カツタ刃が表
面硬化されたダイスで常に研磨される状態であれ
ば、切断形状の良いペレツトが得られるがカツタ
刃が早く摩耗し、ひんぱんにカツタ刃を交換しな
ければならなくなる。逆に、ダイスとカツタ刃と
の間隙が大きすぎると、ペレツトの切断形状が悪
くなる。良好な切断形状が得られるダイスとカツ
タ刃との間隙は合成樹脂の種類によつて異なる。
例えば、低密度ポリエチレンでは0.2mm程度の間
隙でもよいが(このような切断条件をクリアラン
スカツトという)、しかし、ポリプロピレンであ
れば0.02mm以内が望ましい(このような切断条件
をフエザータツチカツトという)。このように、
ダイスとカツタ刃との間隙は0〜0.2mm前後の微
少な範囲に保持する必要がある。
(Prior art, its problems, and technical analysis) There is an optimal value for the gap between the die and the cutter blade. If the cutter blade and the die are in contact and the cutter blade is constantly polished with a surface-hardened die, pellets with a good cut shape can be obtained, but the cutter blade will wear out quickly and the cutter blade will need to be replaced frequently. It will stop happening. On the other hand, if the gap between the die and the cutter blade is too large, the cut shape of the pellets will be poor. The gap between the die and the cutter blade that allows a good cutting shape to be obtained varies depending on the type of synthetic resin.
For example, for low-density polyethylene, a gap of about 0.2 mm may be sufficient (such cutting conditions are called clearance cuts), but for polypropylene, it is desirable to have a gap of 0.02 mm or less (such cutting conditions are called feather touch cuts). . in this way,
The gap between the die and the cutter blade must be kept within a very small range of about 0 to 0.2 mm.

また、ダイスとカツタ刃との間隙は一度設定す
ると不変となるものではない。ペレツトの切断に
よつてカツタ刃自体徐々に摩耗する。さらに、ダ
イスまわりの温度変化による各部熱膨張差に起因
して間隙が変化する等の運転環境の影響も受ける
し、カツタ刃の回転数変化に伴うカツタ刃のプロ
ペラ効果によるたわみ量で間隙が変化する等の運
転条件の影響も受ける。したがつて、定期的にダ
イスとカツタ刃の間隙は点検され再調整されらけ
ればならない。
Furthermore, once the gap between the die and the cutter blade is set, it does not remain unchanged. Cutting the pellets gradually wears out the cutter blade itself. Furthermore, it is also affected by the operating environment, such as the gap changing due to the difference in thermal expansion of each part due to temperature changes around the die, and the gap changes due to the amount of deflection due to the propeller effect of the cutter blade due to changes in the rotation speed of the cutter blade. It is also affected by operating conditions such as Therefore, the gap between the die and the cutter blade must be inspected and readjusted periodically.

従来、ダイスとカツタ刃の間隙の調整はベテラ
ンオペレータの経験によるところが大であり、こ
の間隙を検知し調整できる装置が望まれるに至つ
た。
Conventionally, adjustment of the gap between the die and the cutter blade has largely depended on the experience of experienced operators, and there has been a desire for a device that can detect and adjust this gap.

この様な装置が、特公昭56−46966号公報に示
されている。すなわち、ダイスに絶縁された電極
をその先端がダイスと同一平面となるように埋め
込み、カツタ刃とダイスが接触したことを検知し
て間隙が0となる位置を確認し、その位置から所
定量カツタ刃を後退せしめて必要間隙を確保する
接触確認式のものがある。しかし、この接触確認
方式では(イ)ダイスとカツタ刃が接触したポイント
からのカツタ刃の機械的後退量で間隙を調整する
ため、カツタ刃の摩耗や運転環境と運転条件の変
化による間隙の変化は直接確認できない。そのた
め、しばしばカツタ刃をダイスに接触させなけれ
ばならない。(ロ)フエザータツチカツトのように間
隙が小さい場合、カツタ刃とダイスをひんぱんに
接触させないと最適間隙を維持できないため、カ
ツタ刃の摩耗が早くなるという問題がある。この
理由は、カツタ刃とダイスの接触点しか直接確認
できないということにある。
Such a device is shown in Japanese Patent Publication No. 56-46966. In other words, an insulated electrode is embedded in the die so that its tip is flush with the die, the contact between the cutter blade and the die is detected, the position where the gap becomes 0 is confirmed, and the cutter is cut by a predetermined amount from that position. There is a contact confirmation type in which the blade is moved back to ensure the necessary clearance. However, in this contact confirmation method, (a) the gap is adjusted by the amount of mechanical retraction of the cutter blade from the point where the die and the cutter blade contact, so the gap changes due to wear of the cutter blade or changes in the operating environment and operating conditions. cannot be directly confirmed. Therefore, it is often necessary to bring the cutter blade into contact with the die. (b) When the gap is small, such as in a feather tatsuchi cut, the optimal gap cannot be maintained unless the cutter blade and die are brought into frequent contact, which causes the problem that the cutter blade wears out more quickly. The reason for this is that only the point of contact between the cutter blade and the die can be directly confirmed.

そこで、出願人自身の先願である実願昭56−
168640では、変位センサを利用してセンサとカツ
タ刃の間隙を直接測定する直接確認式のものを提
案している。しかし、この直接確認式のもので
も、次のような実用上の問題点が残つている。ダ
イス表面とセンサ端(又はセンサ内に埋め込まれ
た検出端)間には一定間隔lがあり(第1図参
照)、このlを差し引かないとカツタ刃とダイス
の間隙とならないが、この場合、このlを百分の
数ミリの単位で調整し確認する操作が必要とな
る。これをダイヤルゲージのような一般計器で行
なうことは困難であるという問題点がある。又、
ダイス表面もわずかではあるが摩耗するのでlが
変化するという問題点もある。この理由は、ダイ
スとセンサ検出端を厳密に同一表面にセツトでき
ないということにある。
Therefore, the applicant's own earlier application, Jitsugan No. 56-
168640 proposes a direct confirmation type that uses a displacement sensor to directly measure the gap between the sensor and the cutter blade. However, even with this direct confirmation type, the following practical problems remain. There is a certain distance l between the die surface and the sensor end (or the detection end embedded in the sensor) (see Figure 1), and if this l is not subtracted, there will be no gap between the cutter blade and the die, but in this case, It is necessary to adjust and confirm this l in units of several hundredths of a millimeter. There is a problem in that it is difficult to do this with a general meter such as a dial gauge. or,
There is also the problem that l changes because the die surface also wears, albeit slightly. The reason for this is that the die and the sensor detection end cannot be set exactly on the same surface.

(本考案の技術的課題) 本考案の技術的課題は、カツタ刃の位置を直接
測定できるセンサを利用して、カツタ刃とダイス
表面の相対間隙を測定できる装置を提供すること
にある。
(Technical Problem of the Present Invention) A technical problem of the present invention is to provide a device that can measure the relative gap between the cutter blade and the die surface using a sensor that can directly measure the position of the cutter blade.

(技術的手段) 上記課題を解決するために講じた本考案の手段
は次の通りである。(イ)ダイス表面の一部にカツタ
刃の位置を感知する非接触センサを内設する(ロ)カ
ツタ刃を駆動軸に弾性的に保持する手段を有する
こと(ハ)カツタ刃がダイス面に接触し駆動軸の移動
にもかかわらず非接触センサとカツタ刃の間隙が
変化しない非接触センサの信号を零点位置として
検出する零点検出器を有すること(ニ)該零点位置か
らの任意の間隙に相当する設定信号を発する位置
設定器を有すること(ホ)該設定信号と零点位置から
カツタ刃の間隙を検出する距離検出器からの信号
を比較しカツタ刃を設定位置に移動させる手段を
有すること。
(Technical means) The means of the present invention taken to solve the above problems are as follows. (b) A non-contact sensor that detects the position of the cutter blade is installed in a part of the die surface (b) A means for elastically holding the cutter blade on the drive shaft (c) The cutter blade is placed on the die surface It has a zero point detector that detects the signal of the non-contact sensor as the zero point position, in which the gap between the non-contact sensor and the cutter blade does not change despite the movement of the drive shaft. (d) Any gap from the zero point position. It has a position setting device that emits a corresponding setting signal (e) It has means for comparing the setting signal with a signal from a distance detector that detects the gap between the cutter blades from the zero point position and moves the cutter blades to the set position. .

(技術的手段の作用) 上記技術的手段は次のように作用する(第3図
参照)。すなわち、駆動軸を前進させカツタ刃と
ダイスが接触すると、カツタ刃を駆動軸に弾性的
に保持する手段によつて、駆動軸の前進にもかか
わらずカツタ刃と非接触センサの間隙が変わらな
いことにより零点位置を確認することができる。
次に、前記検出された零点位置を起点にダイスと
カツタ刃の位置が演算され、カツタ刃を任意位置
に保持できる。
(Operation of technical means) The above technical means operates as follows (see Figure 3). In other words, when the drive shaft is advanced and the cutter blade and die come into contact, the gap between the cutter blade and the non-contact sensor does not change despite the drive shaft moving forward due to the means that elastically holds the cutter blade on the drive shaft. This allows the zero point position to be confirmed.
Next, the positions of the die and the cutter blade are calculated using the detected zero point position as a starting point, and the cutter blade can be held at an arbitrary position.

(本発明の特有の効果) カツタ刃とダイスの接触されることにより、零
点位置を確実に検出することができると共に、こ
の零点位置よりのカツタ刃の位置(カツタ刃とダ
イスの相対位置)を検出することによつて、カツ
タ刃の摩耗や運転環境・運転条件の変動による位
置調整をカツタ刃とダイスを接触させることなく
調整きる。
(Special effects of the present invention) By making contact between the cutter blade and the die, the zero point position can be reliably detected, and the position of the cutter blade (relative position between the cutter blade and the die) from this zero point position can be detected. By detecting the cutter blade, the position can be adjusted due to wear of the cutter blade or changes in the operating environment/conditions without the cutter blade coming into contact with the die.

(実施例) 次に、上記技術的手段の具体例を示す図示の実
施例を説明する。
(Example) Next, an illustrated example showing a specific example of the above technical means will be described.

第1図に示す実施例に於いて、1はダイスであ
り、ダイス1はこの種合成樹脂造粒装置における
混練押出スコリユシヤフト2等を有する押出機3
の押出前端に付設され、4はこのダイス1と正対
して回転する切断用のカツタ刃を示しており、こ
のカツタ刃4は既知のように水室5内に位置して
おり、ダイス1の押出孔1aを出る混練材料はカ
ツタ刃4により切断されて、ペレツト形状に造形
されることになる。このような造粒装置におい
て、本考案ではこのようなカツタ刃4を回転させ
る駆動軸6を前記水室5と水封遮断されるハウジ
ング7に可回動に貫挿させると共に、同駆動軸6
の他端には駆動用モータ8を連結してなり、該駆
動軸を回転させ、もつて切断カツタ刃4を回転さ
せるものである。
In the embodiment shown in FIG. 1, 1 is a die, and the die 1 is an extruder 3 having a kneading and extruding scouring shaft 2, etc. in this type of synthetic resin granulation apparatus.
The cutter blade 4 is attached to the extrusion front end of the die 1 and rotates directly opposite the die 1 for cutting. The kneaded material exiting the extrusion hole 1a is cut by the cutter blade 4 and shaped into pellets. In such a granulation device, the present invention has a drive shaft 6 for rotating the cutter blade 4 rotatably inserted into a housing 7 which is water-sealed from the water chamber 5.
A drive motor 8 is connected to the other end, and the drive shaft is rotated to rotate the cutter blade 4.

符号9はカツタ刃4を保持するカツタ刃ホルダ
である。
Reference numeral 9 denotes a cutter blade holder that holds the cutter blade 4.

10は、前記ハウジング内へ摺動自在にして内
嵌されるベアリングハウジングであり、前記駆動
軸6が回転自在とする如く軸受11,11により
枢支してなる他、その後端側には前記ハウジング
7の周面2箇所(実施例では上下2箇所)に取付
けたエヤシリンダ12,12のロツド13,13
に接続する連結板14を一体的に取付けてなる。
Reference numeral 10 denotes a bearing housing that is slidably fitted into the housing, in which the drive shaft 6 is rotatably supported by bearings 11, 11, and the housing is attached to the rear end side of the housing. The rods 13, 13 of the air cylinders 12, 12 are attached to two places on the circumferential surface of the air cylinder 7 (in the example, two places on the top and bottom).
A connecting plate 14 is integrally attached to the connecting plate 14.

17はウオームホイールであつて、前記ハウジ
ング7内面のねじ部15と噛合するねじ部16を
もち、かつ同ハウジング内に設けられたウオーム
軸18と噛合し、該ウオーム軸の回転によりウオ
ームホイール17が回転させられて、前記ダイス
1に向う方向へ前後進する如く構成されている。
Reference numeral 17 denotes a worm wheel, which has a threaded portion 16 that meshes with the threaded portion 15 on the inner surface of the housing 7, and meshes with a worm shaft 18 provided within the housing, and the worm wheel 17 is rotated by rotation of the worm shaft. It is configured to be rotated and move back and forth in the direction toward the die 1.

19は、前記ウオーム軸18を駆動するパイロ
ツトモータであり、モータの回転は制御盤21に
よつて制御される。ダイス1のカツタ刃4に対向
する位置に非接触センサ取付穴24が設けられ、
非接触センサ25の先端はダイス表面から一定距
離lを保つようにして非接触センサ25は埋設さ
れる。非接触センサ25には端子26が接続され
ており、該非接触センサにより得られた号はアン
プ23を介して、位置制御機能を有する制御盤2
1に入力される。位置設定器20の信号は制御盤
21を介してパイロツトモータ19を駆動し、ウ
オーム軸18を介してウオールホイール17を回
転させ、もつてカツタ刃4の位置を調整する。第
2図はカツタ刃ホルダ9の断面図を示す。カツタ
ホルダ9は駆動軸6の穴に軸方向にしゆう動可能
に取り付けられ、駆動軸6の穴とカツタホルダ9
の中空部に装入された圧縮バネ9″によつて、常
にダイス1の方向に弾性的に押圧されている。第
3図は制御盤21、位置設定器20、パイロツト
モータ19、アンプ23及び非接触センサ25の
典型的なブロツクダイヤフラムを示すものであ
る。非接触センサ25からの信号は、アンプを介
して自動零点検出器32に入る。次に、ダイス面
とカツタ刃の間隔を検出する〓零点からの移動距
離検出器″33からの信号と置設定器20との信
号は比較器33で比較され、パイロツトモータ1
9によつてカツタ刃は設定位置に保持・調整され
る。
A pilot motor 19 drives the worm shaft 18, and the rotation of the motor is controlled by a control panel 21. A non-contact sensor mounting hole 24 is provided at a position facing the cutter blade 4 of the die 1,
The non-contact sensor 25 is buried such that the tip of the non-contact sensor 25 maintains a constant distance l from the die surface. A terminal 26 is connected to the non-contact sensor 25, and the signal obtained by the non-contact sensor is sent via an amplifier 23 to a control panel 2 having a position control function.
1 is input. The signal from the position setting device 20 drives the pilot motor 19 via the control panel 21, which rotates the wall wheel 17 via the worm shaft 18, thereby adjusting the position of the cutter blade 4. FIG. 2 shows a sectional view of the cutter blade holder 9. The cutter holder 9 is attached to a hole in the drive shaft 6 so as to be able to move in the axial direction.
The die 1 is always elastically pressed in the direction of the die 1 by a compression spring 9'' inserted into the hollow part. FIG. This shows a typical block diaphragm of the non-contact sensor 25. The signal from the non-contact sensor 25 enters the automatic zero point detector 32 via an amplifier. Next, the distance between the die surface and the cutter blade is detected. The signal from the moving distance detector "33 from the zero point and the signal from the position setting device 20 are compared by the comparator 33, and the pilot motor 1
9 holds and adjusts the cutter blade at the set position.

上記実施例は次の様に作動する(第4図参照)。
カツタ刃4は円周上何枚も取付けられており、非
接触センサからの信号はパルス信号50となる。
このパルス信号の最小値51がカツタ刃4とダイ
スの間隙を示す。カツタ刃4をダイス面に対し、
高速次に低速で近ずけると信号はa→b→cとな
つてあらわれる。ところが、カツタ刃がダイス面
に接触しかつ駆動軸6をさらに前進されると、信
号が変化しない区間c→dが検出される。これに
よつて、ダイス面と非接触センサ面の間隙lがい
くらの距離であつてもダイス面とカツタ刃間の零
点として検出できる。この零点から一定距離離れ
た設定位置を基準としてカツタ刃の位置がコント
ロールされる。図示の例ではこの設定位置に対し
上下限不感帯を設けこれからはみでた場合カツタ
位置を動かす場合が例示されている。
The above embodiment operates as follows (see Figure 4).
A number of cutter blades 4 are attached on the circumference, and the signal from the non-contact sensor becomes a pulse signal 50.
The minimum value 51 of this pulse signal indicates the gap between the cutter blade 4 and the die. Place the cutter blade 4 against the die surface,
When approaching at high speed and then at low speed, the signal appears in the order a→b→c. However, when the cutter blade comes into contact with the die surface and is further advanced on the drive shaft 6, a section c→d in which the signal does not change is detected. Thereby, no matter how long the gap l between the die surface and the non-contact sensor surface is, it can be detected as a zero point between the die surface and the cutter blade. The position of the cutter blade is controlled based on a set position a certain distance away from this zero point. In the illustrated example, an upper and lower dead zone is provided for this set position, and the cutter position is moved when the dead zone exceeds this limit.

なお、非接触センサは一個で零点を確認する場
合のみ示されているが、非接触センサをダイス面
上に2個所以上埋設することによりダイスとカツ
タ刃の平行度の確認にも用いられることはもちろ
んである。
Note that one non-contact sensor is shown only for checking the zero point, but by embedding two or more non-contact sensors on the die surface, it can also be used to check the parallelism of the die and cutter blade. Of course.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本考案の1実施例の合成樹脂造粒装
置を示す正断面図、第2図は駆動軸とカツタホル
ダの結合部を示す断面図、第3図はカツタ刃位置
設定のブロツクダイヤフラムを示す図面、第4図
は非接触センサによる変位変換信号が時間ととも
にどのように変化するかを示す作動図である。 1:ダイス、4:カツタ刃、6:駆動軸、2
5:非接触センサ。
Fig. 1 is a front cross-sectional view showing a synthetic resin granulation device according to an embodiment of the present invention, Fig. 2 is a cross-sectional view showing the joint between the drive shaft and the cutter holder, and Fig. 3 is a block diaphragm for setting the cutter blade position. FIG. 4 is an operation diagram showing how the displacement conversion signal by the non-contact sensor changes over time. 1: Dice, 4: Cutting blade, 6: Drive shaft, 2
5: Non-contact sensor.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ダイスとその前面に回転自在に配置されたカツ
タ刃と該カツタ刃を弾性的に保持する進退自在な
駆動軸から構成させる合成樹脂造粒装置におい
て、ダイス表面の一部にカツタ刃からの絶対間隙
を検出する非接触センサを内設し、駆動軸の前進
によりカツタ刃がダイス表面に接触した後、駆動
軸の前進にもかかわらずカツタ刃と非接触センサ
との間隙が一定となる非接触センサの信号を零点
位置として検出する零点検出器、該零点位置から
カツタ刃の間隙を検出する距離検出器、零点位置
からカツタ刃の間隙を任意に設定する位置設定
器、該位置設定器と距離検出器からの信号を比較
し、その差に応じて駆動軸を進退させる信号を発
する比較器を設けたことを特徴とする合成樹脂造
粒装置におけるカツタ刃位置調整装置。
In a synthetic resin granulation device consisting of a die, a cutter blade rotatably arranged in front of the die, and a drive shaft that elastically holds the cutter blade and can move forward and backward, an absolute gap from the cutter blade is formed on a part of the die surface. This non-contact sensor has a built-in non-contact sensor that detects this, and after the cutter blade contacts the die surface as the drive shaft moves forward, the gap between the cutter blade and the non-contact sensor remains constant despite the drive shaft moving forward. A zero point detector that detects the signal as the zero point position, a distance detector that detects the gap between the cutter blades from the zero point position, a position setter that arbitrarily sets the gap between the cutter blades from the zero point position, and the position setter and distance detector. 1. A cutter blade position adjustment device for a synthetic resin granulation device, characterized in that a comparator is provided for comparing signals from the containers and emitting a signal for moving a drive shaft forward or backward according to the difference.
JP1983039980U 1983-03-18 1983-03-18 Cutter blade position adjustment device in synthetic resin granulation equipment Granted JPS59146112U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1983039980U JPS59146112U (en) 1983-03-18 1983-03-18 Cutter blade position adjustment device in synthetic resin granulation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1983039980U JPS59146112U (en) 1983-03-18 1983-03-18 Cutter blade position adjustment device in synthetic resin granulation equipment

Publications (2)

Publication Number Publication Date
JPS59146112U JPS59146112U (en) 1984-09-29
JPS633777Y2 true JPS633777Y2 (en) 1988-01-29

Family

ID=30170615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1983039980U Granted JPS59146112U (en) 1983-03-18 1983-03-18 Cutter blade position adjustment device in synthetic resin granulation equipment

Country Status (1)

Country Link
JP (1) JPS59146112U (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5235729B2 (en) * 2009-03-10 2013-07-10 株式会社神戸製鋼所 Resin granulator
DE102010015776A1 (en) * 2010-04-21 2011-10-27 Automatik Plastics Machinery Gmbh Apparatus and process for the production of granules
AU2011301211B2 (en) * 2010-09-09 2015-06-11 Hugo Vogelsang Maschinenbau Gmbh Comminution device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51986A (en) * 1974-06-21 1976-01-07 Nippon Kogaku Kk JIDOZOFUKU SEIGIYOSOCHIOJUSURU HENKOKAISEKISOCHI
JPS5646966A (en) * 1979-09-12 1981-04-28 Carrier Corp Purging apparatus for refrigerating system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698417U (en) * 1979-12-28 1981-08-04

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51986A (en) * 1974-06-21 1976-01-07 Nippon Kogaku Kk JIDOZOFUKU SEIGIYOSOCHIOJUSURU HENKOKAISEKISOCHI
JPS5646966A (en) * 1979-09-12 1981-04-28 Carrier Corp Purging apparatus for refrigerating system

Also Published As

Publication number Publication date
JPS59146112U (en) 1984-09-29

Similar Documents

Publication Publication Date Title
JP5562941B2 (en) Granulator cutter spindle alignment method and granulator to produce synthetic resin particles
US3912434A (en) Method and apparatus for adjusting the position of cutter blades relative to a die in a plastic resin pelletizing apparatus
US5120212A (en) Thickness-adjusting system for tubing extruder
JPS59199230A (en) Method and extruding processing device for manufacturing shape from one kind or various different rubber mixture or synthetic substance mixture
EP1091814B1 (en) Continuous extrusion using dynamic shoe positioning
JPS633777Y2 (en)
GB1300110A (en) Improvements in or relating to machines for granulating thermoplastics materials
US4445837A (en) Foam extrusion die and monitoring apparatus
JPH0217850Y2 (en)
US8602762B2 (en) Resin granulating apparatus
US4494588A (en) Veneer lathe
JP3819318B2 (en) Screw runout measuring method of screw type extruder and screw type extruder
JPH08174320A (en) Device and method for machining up to fixed depth
JP4213523B2 (en) Pelletizer equipment
US4337021A (en) Apparatus for molding fixed-dimensional spherical bodies from a semisolid stick
JPH068304A (en) Method and device for keeping extruded material from screw extruder at a fixed temperature and processor therefor
CN210689529U (en) Pipe outer diameter detection device
JP2008302509A (en) Underwater-cut pelletizing method and underwater-cut pelletization apparatus
CN110465242A (en) A kind of combined type flaker operator chip architecture
CN211306428U (en) Weight induction cutting machine
JPH06297451A (en) Feed control device of cutter edge in underwater cutting and granulating device
JPH0777715B2 (en) Flat material cutting device
SU634959A1 (en) Apparatus for granulating polymeric materials in water medium
JPS6126024Y2 (en)
JPH069823B2 (en) Quantitative material cutting device for rubbers