JPS6337718A - Analog/digital converter - Google Patents

Analog/digital converter

Info

Publication number
JPS6337718A
JPS6337718A JP18161086A JP18161086A JPS6337718A JP S6337718 A JPS6337718 A JP S6337718A JP 18161086 A JP18161086 A JP 18161086A JP 18161086 A JP18161086 A JP 18161086A JP S6337718 A JPS6337718 A JP S6337718A
Authority
JP
Japan
Prior art keywords
voltage
converter
switch
clock
switches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18161086A
Other languages
Japanese (ja)
Other versions
JPH0577218B2 (en
Inventor
Michio Yotsuyanagi
四柳 道夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18161086A priority Critical patent/JPS6337718A/en
Publication of JPS6337718A publication Critical patent/JPS6337718A/en
Publication of JPH0577218B2 publication Critical patent/JPH0577218B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Analogue/Digital Conversion (AREA)

Abstract

PURPOSE:To convert an analog voltage into a digital value with high accuracy even when an input voltage is close to the ground voltage as to a single power source by making a connection with a specific constant voltage source when the input voltage approximates the ground voltage. CONSTITUTION:When the input voltage is lower than 1/2<n+1>Vref, a switch SP is connected to V1 in a period T1, but connected to V2 in a period T2. Therefore, the output of an operational amplifier is Vref according to the charge of capacitor Cp since Sr is closed in the period T1. Then, V1> V2, so an increase by the difference between Qp2 and Qp1 is made in the period T2. Charges corresponding to (Qp2-Qp1 ; move from on the CF, and consequently the output voltage V0' of the operational amplifier rises by the difference V0 from a conventional value V0, so this quantity is selected properly to prevent the MOSFET of the output stage of the operational amplifier from deviating from its saturation area, so that high-accuracy A/D conversion is made possible even when the input voltage is almost the ground voltage.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はアナログ電圧をデジタル値へ変換するアナログ
/デジタル変換器(A/D変換器)に関するもので、さ
らには直並列型A/D変換器と呼ばれるA/D変換器に
関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an analog/digital converter (A/D converter) that converts an analog voltage into a digital value, and more particularly, to a series-parallel type A/D converter. This relates to an A/D converter called an A/D converter.

(従来の技術) 従来の直並列型A/D変換器として第3図に挙げるもの
が知られている(昭和60年度電子通信学会総合全国大
会予稿集437”直並列型A/D変換方式の検討“)。
(Prior art) The conventional serial-parallel A/D converter shown in Figure 3 is known (see Proceedings of the 1985 IEICE General National Conference 437 "Series-Parallel A/D Conversion System"). Consider").

第3図は1段目が4ビット並列型A/D変換器の例であ
り、以下この例で動作を説明する。
FIG. 3 shows an example in which the first stage is a 4-bit parallel type A/D converter, and the operation will be explained below using this example.

入力電圧VINはまず1段目の4ビット並列型A/D変
換器でA/D変換され上位4ピットが出力される。この
ときスイッチは閉じていてrA’R増幅器の出力電圧は
反転入力端子と接続されこの点は仮想接地となっている
ので基準電圧VrarになっておりキャパシタC2上に
は電荷は存在しない。
The input voltage VIN is first A/D converted by a 4-bit parallel type A/D converter in the first stage, and the upper 4 pits are output. At this time, the switch is closed and the output voltage of the rA'R amplifier is connected to the inverting input terminal, and this point is virtual ground, so it becomes the reference voltage Vrar and there is no charge on the capacitor C2.

またスイッチS、〜SiSは入力端子へ接続されており
、キャパシタC,〜C16にはC(V、−r  V’N
)の′電荷が蓄えられる。ここでキャパシタ00〜C1
,は等しい容量値Cをもつ。次にスイッチが開きその後
スイッチ80〜S18は入力電圧に応じた1段目の各コ
ンパレータの出力に応じて基準電圧か接地へ接続する。
In addition, the switches S and ~SiS are connected to the input terminals, and the capacitors C and ~C16 are connected to C(V, -r V'N
) is stored. Here capacitor 00~C1
, have equal capacitance values C. Next, the switches are opened and the switches 80 to S18 are connected to the reference voltage or ground depending on the output of each first stage comparator depending on the input voltage.

ただしS、とStはその時は常に基準電圧へ接続される
。入力電圧VINがOからVeerまでの間はS、〜S
 ISはすべて接地側へ接統しており、そのためC2に
は次式で与えられる電荷Q、が存在する。
However, S and St are then always connected to the reference voltage. S, ~S when input voltage VIN is from O to Veer
All ISs are connected to the ground side, so C2 has a charge Q given by the following equation.

QF−16C(V、−r  VIN)  14CV1.
QF-16C (V, -r VIN) 14CV1.
.

−2C’/、−r−16CVIN          
  −(1)このとき演算増幅器の出力電圧V、は次式
を満たす。
-2C'/, -r-16CVIN
-(1) In this case, the output voltage V of the operational amplifier satisfies the following formula.

Qr−Ct(V2.、−V、)         ・・
・(りCF−2Cであるので(9式と(り式よりV、は
次のようになる。
Qr-Ct (V2., -V,)...
・(Since it is CF-2C, from equations (9 and (r), V is as follows.

基準’iff、、83〜S1.が接地へ接続されている
Criteria 'if, , 83-S1. is connected to ground.

従って(υ、(り式と同様に QF−3CV、、、−16CVIN−CF(V、、、−
V、)−(4)Ssが基準電圧、84〜S L&が接地
へ接続しく4)と同様な式をかくことによってVoは 紐するスイッチが1つずつ増え、入力電圧が↑圧V、は
次のようになる。
Therefore, (υ, (Similar to the equation, QF-3CV, , -16CVIN-CF(V, , -
V, ) - (4) Ss is the reference voltage, 84 ~ S L & is connected to ground, and by writing a formula similar to 4), the number of switches connected to Vo increases one by one, and the input voltage becomes ↑V, It will look like this:

てのスイッチが基d、71 ’C圧へ接続され、出力電
圧■。は次のようになる。
All switches are connected to base d, 71'C voltage, output voltage ■. becomes as follows.

0)式、(9式、(6)式、(7)式、(8)式から演
算増幅器の出力電圧V、の範囲は次のようになる。
0), (9), (6), (7), and (8), the range of the output voltage V of the operational amplifier is as follows.

・・・G(D 2段目の並列型A/D変換器はこの演算増幅器の出力電
圧を入力としてA/D変換する。
...G(D The second stage parallel type A/D converter inputs the output voltage of this operational amplifier and performs A/D conversion.

0)〜(8)式を書き換えると次のようになる。0) to (8) can be rewritten as follows.

Va−8V+s。Va-8V+s.

0≦V、N<にAV Vo”8V+N、           ’↓ (I  X)AV≦VINく(1+M) ΔVV *−
8(VIN  ” V ) 。
0≦V, N<AV Vo”8V+N, '↓ (I X) AV≦VIN (1+M) ΔVV *-
8 (VIN”V).

(2−,1()AV<VIN<(2+%)AV 1゜ま ただしAV −−V5.t 2段目のA/D変換も1段目と同じ基準電圧V1.。(2-,1()AV<VIN<(2+%)AV 1゜ However, AV --V5. t The second stage A/D conversion also uses the same reference voltage V1. .

を用いて接地とV + a tの範囲でA/D変換する
ので、(12)式をみるとわかるように1段目の2 L
SBの範囲で2段目のA/D変換を実行する。従って1
段目のA/D変換の出力のLSBと2段目のA/D変換
結果のMSBとは同じ桁となり1ビット重ねて変換する
ことになりそのため加箕器が必要となる。(12)式の
ような動作をするためにスイッチS、〜S 18を切替
えるのは1段目のコンパレータの出力であるが、1ビッ
ト重ねて変換することでコンパレータのオフセット電圧
として1段目の並列型A/D変換器の分解能の%LSB
まで許容できる。
Since A/D conversion is performed in the range of grounding and V + a t using
The second stage A/D conversion is executed within the range of SB. Therefore 1
The LSB of the output of the A/D conversion in the first stage and the MSB of the A/D conversion result in the second stage have the same digit and are converted by 1 bit overlapping each other, which requires a compensator. In order to operate as shown in equation (12), the switches S and ~S18 are switched using the output of the first stage comparator, but by converting one bit overlapping, the offset voltage of the comparator is used as the output of the first stage comparator. %LSB of parallel A/D converter resolution
It is acceptable up to

以上従来技術として2段構成の直並列型A/D変換器に
ついて述べたが演ユ増幅器とキャパシタ・アレイおよび
並列型A/D変換器の組を付加することによって3段構
成の直並列型A/D変換器を構成することも可能であり
、さらに多段の構成も原理的には可能である。
A two-stage series-parallel type A/D converter has been described above as a prior art, but by adding a set of an amplifier, a capacitor array, and a parallel type A/D converter, a three-stage series-parallel type A/D converter can be obtained. It is also possible to configure a /D converter, and a multi-stage configuration is also possible in principle.

(発明が解決しようとする問題点) 前に(従来の技術)の項で述べた直並列型A/D変換器
をCMO5技術でIC化するには他のデバイスとの整合
性を考えると単一5V’?J源が有利である。
(Problems to be Solved by the Invention) In order to convert the series-parallel type A/D converter mentioned in the section (prior art) into an IC using CMO5 technology, it is easy to use it in terms of compatibility with other devices. 15V'? J source is advantageous.

一方、2段目のA/D変換器の入力は演算増幅器の出力
電圧であり、この値は(従来の技術)の項で述べた1段
目が4ビット並列型A/D変換器の例では(9)〜(1
1)式のような範囲をとる。入カ電(10)式、(11
)式で与えられるように%Vrmfである増幅器の出力
電圧V、は0)式、(9)式で与えられるようにV、−
8V、NとなってOからX V r * rの範囲とな
る。これを−船釣にすると、1段目が01ビット並列型
A/D変換器の場合、入力1圧V+s&演算増幅器の出
力電圧■。の範囲には次のような関係が成り立つ。
On the other hand, the input of the second-stage A/D converter is the output voltage of the operational amplifier, and this value is the same as the example in which the first stage is a 4-bit parallel type A/D converter described in the section (Prior art). Then (9) to (1
1) Take a range as shown in the formula. Input power formula (10), (11
) The output voltage of the amplifier, V, is %Vrmf as given by equation 0), and V, − as given by equation (9).
8V and N, which ranges from O to X V r * r. If we change this to -boat fishing, if the first stage is a 01-bit parallel type A/D converter, the input voltage is V+s & the output voltage of the operational amplifier is ■. The following relationship holds true within the range.

V o −2” ’ −’ V Is (13)このよ
うな直並列型A/D変換器をMO5技術を用い5■単一
電源でIC化しようとすると次のような問題が存在する
。すなわち、入力電圧VINが0に近い場合、演算増幅
器の出力電圧V、もOに近くなり、演算増幅器の出力段
を構成するMOSFETが飽和領域からはずれ、(13
)式が正確に成り立たなくなる。
V o -2"'-' V Is (13) When trying to convert such a series-parallel type A/D converter into an IC with a single power supply using MO5 technology, the following problem exists. Namely, the following problem exists. , when the input voltage VIN is close to 0, the output voltage V of the operational amplifier is also close to 0, and the MOSFETs forming the output stage of the operational amplifier are out of the saturation region, and (13
) formula no longer holds true.

このことを具体的な例で考えてみる。Let's consider this with a concrete example.

演算増幅器として第4図に示すものを考えると、出力段
のMO5FETMが飽和領域であるためには出力電圧は
V、≧V、  Vtでなくてはならない。ここでV、は
Mのゲート電圧、vlはMOSFETのしきい値電圧で
ある。一方、8ピットの直並列型A/D変換器で1段目
が4ビット並列型A/D変換器の例で基準電圧が2.5
6 V 、入力電圧が0.02Vであれば演算増幅器の
出力電圧は(13〉式から0.16Vとなる。したがっ
て、MのV、−VT≦0.16Vとなるようにしなけれ
ばならない、この場合では、注意深く設計すれば可能と
思われるが、より高粘度なA/D変換器では■。≧V、
V?とするのが困ガになる。たとえば1段目の4ピット
並列型A/D変換器を用いて3段構成にした10ビット
直並列型A/D変換器の場合、基準電圧を2.56Vに
すればI LSBは0.0025V (!: すり入力
電圧力0.005vノトキに演算増幅器の出力電圧は0
.04Vでなくてはならない、V、−V、r≦0.04
Vとするのは実際にはかなり困難である。さらに高精度
なものを考えると不可能になる。このように、従来技術
のままでは、単−M、源を用いて接地電圧に近い入力電
圧を高精度にA/D変換するのは不可能である。
Considering the operational amplifier shown in FIG. 4, the output voltage must be V, ≧V, Vt in order for the MO5FETM in the output stage to be in the saturation region. Here, V is the gate voltage of M, and vl is the threshold voltage of the MOSFET. On the other hand, in an example of an 8-pit series-parallel A/D converter where the first stage is a 4-bit parallel A/D converter, the reference voltage is 2.5.
6 V, and if the input voltage is 0.02 V, the output voltage of the operational amplifier will be 0.16 V from equation (13). Therefore, the V of M must be set so that -VT≦0.16 V. In some cases, it may be possible with careful design, but with higher viscosity A/D converters ■.≧V,
V? It becomes difficult to do so. For example, in the case of a 10-bit series-parallel A/D converter configured in three stages using a 4-pit parallel A/D converter in the first stage, if the reference voltage is set to 2.56V, the I LSB will be 0.0025V. (!: When the input voltage is 0.005V, the output voltage of the operational amplifier is 0.
.. Must be 04V, V, -V, r≦0.04
It is actually quite difficult to set the value to V. If we consider something with even higher precision, it becomes impossible. As described above, with the conventional technology, it is impossible to A/D convert an input voltage close to the ground voltage with high accuracy using a single-M, source.

(発明の目的) 以上の点に鑑み、本発明の目的は、単一電源において接
地電圧に近い入力電圧でも高い粘度でアナログ電圧をデ
ジタル値へ変換できる直並列型A/D変換器を提供する
ことである。
(Objective of the Invention) In view of the above points, an object of the present invention is to provide a series-parallel type A/D converter that can convert an analog voltage into a digital value with high viscosity even with an input voltage close to the ground voltage using a single power supply. That's true.

(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供する手段は
二人力電圧をアナログからデジタルへ変換する第1の並
列型A/D変換器と、前記第1の並列型A/D変換器の
変換結果を再びアナログ値に変換して入力電圧から差し
引きその値をある定められた値だけ倍増して出力する演
算部分と、前記演算部分の出力電圧をアナログからデジ
タルへ変換する第2の並列型A/D変換器と、前記第1
の並列型A/D変換器の出力結果と前記第2の並列型A
/D変換器の出力結果を加ユあるいは減箕する処理部と
を備えた直並列型A/D変換器において: 前記1・寅箕部分が、正転入力端子が基(′!」電圧に
接続され反転入力端子が第1の節点に接続許れ前記第1
の節点と出力端子との間に並列に第10スインチと第1
のキャパシタが接続された演算増幅器と、前記第1の並
列型A/D変換器の分解能をn、ビットとすると一端が
共通に前記第1の節点に接続され他端がそれぞれ入力端
子と前記基準電圧と接地とを切替える第2から第(2n
1+1)の2 a 1個のスイッチに接続された第2か
ら第(2n1+1)の2n1個のキャパシタと、一端が
前記第1の節点に接続され他端が前記基準電圧と接地と
を切替える第(2n1+2)のスイッチに接続された第
(2n1+2)のキャパシタとからなり、前記第1のキ
ャパシタの値を2ごとすると前記第2から第(2n1+
1)の2n1個のキャパシタの値はそれぞれCであり; 前記演算部分の動作は”1“の部分が重なり合わない第
1と第2のクロックで制御され、前記第1のスイッチは
前記第1のクロックが“1“の期間開じて”O“の期間
開き、前記第2と第3のスイッチは前記第2のクロック
が”0”の期間前記入力端子へ接続し”1″の期間前記
基準電圧へ接続され、前記第4から第2n1+1までC
F)(2” −2)個ノスイッチは前記第2のクロック
が”0”の期間前記入力端子へ接続し”1″の期間では
前記第1の並列型A/D変換器を構成する比較器の出力
に応じてスイッチが切替えられ前記基準電圧Vlorと
すると入続され残り(2“−3)個のスイッチは接地へ
接では2個のスイッチが基準電圧へ接続され残り(2”
−4)個のスイッチは接地へ接続され、以接続されるス
イッチが一つずつ増加し、入力電圧され前記第(2n1
+2)のスイッチは入力電圧が1のクロックが“1”で
あれば前記第1の定電圧源に接J5!され前記第2のク
ロックが“l“であれば第2の定電圧源に接続されるこ
とを特徴とする。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides means that includes a first parallel type A/D converter that converts the voltage from analog to digital, and a A calculation part that converts the conversion result of the parallel A/D converter 1 into an analog value again, subtracts it from the input voltage, doubles that value by a certain value, and outputs it, and converts the output voltage of the calculation part to an analog value. a second parallel type A/D converter for converting from
The output result of the parallel type A/D converter and the second parallel type A
In a series/parallel type A/D converter equipped with a processing unit that adds or subtracts the output result of the /D converter: and the inverting input terminal is connected to the first node.
The 10th switch and the 1st switch are connected in parallel between the node and the output terminal.
If the resolution of the operational amplifier connected to the capacitor and the first parallel A/D converter is n bits, one end is commonly connected to the first node, and the other end is connected to the input terminal and the reference, respectively. 2nd to 2nd (2n
1+1) of 2n1 capacitors from the second to (2n1+1) connected to one switch, and a capacitor (2n1) with one end connected to the first node and the other end switching between the reference voltage and ground. (2n1+2) switch connected to the (2n1+2) switch, and if the value of the first capacitor is multiplied by 2, the second to (2n1+2)
The value of each of the 2n1 capacitors in 1) is C; the operation of the calculation part is controlled by first and second clocks whose "1" parts do not overlap, and the first switch is controlled by the first clock. The second and third switches are connected to the input terminals while the second clock is "0" and open for the period "O", and the second and third switches are connected to the input terminals while the second clock is "0", and the second and third switches are connected to the input terminals while the second clock is "0". connected to a reference voltage, and from the fourth to the second n1+1 C
F) (2" - 2) switches are connected to the input terminal while the second clock is "0" and constitute the first parallel A/D converter when the second clock is "1"; The switches are switched according to the output of the device, and when the reference voltage Vlor is set, the remaining (2"-3) switches are connected to the ground, and when the two switches are connected to the reference voltage, the remaining (2"-3) switches are connected to the reference voltage.
-4) switches are connected to ground, and each connected switch increases one by one, and the input voltage is applied to the (2n1)th switch.
+2) switch is connected to the first constant voltage source if the clock whose input voltage is 1 is "1". If the second clock is "1", the second clock is connected to a second constant voltage source.

(発明の原理および実施例) 第1図は本発明の一実施例を示すブロック図である。こ
れは1段目と2段目に4ピット並列型A/D変換器を用
いた例である。第2図は第1図実施例を動作させるクロ
ックを示すダfミング図である。以下第1図と第2図に
基づいて説明する。第1図において従来技術と異なる本
実施例の特徴はキャパシタCpとスイッチS、である。
(Principle and Embodiments of the Invention) FIG. 1 is a block diagram showing an embodiment of the invention. This is an example in which 4-pit parallel type A/D converters are used in the first and second stages. FIG. 2 is a damping diagram showing a clock for operating the embodiment of FIG. 1. The following description will be made based on FIGS. 1 and 2. In FIG. 1, the features of this embodiment that are different from the prior art are a capacitor Cp and a switch S.

スイッチSPは2つの電圧端子vIと■、を切替わる。The switch SP switches between two voltage terminals vI and ■.

■、とV、は定電圧でV + > V xであれば任意
の値に選べる。S、とCp以外のスイッチおよびキャパ
シタは従来技術と同様の動作をする。即ち第1のクロッ
クφ1が“1“になる期間T1ではS、が閉じS、〜5
llBは入力端子へ接続される。φ1が“O“になると
S、は開く、第2のクロック−2が”1“になる期間T
、ではS、とS ssは(従来の技術)の項で説明した
のと同じ条件で基準電圧Veorと接地とを切替わる。
(2) and V are constant voltages and can be selected to any value as long as V + > V x. The switches and capacitors other than S and Cp operate as in the prior art. That is, during the period T1 in which the first clock φ1 is "1", S is closed and S, ~5
llB is connected to the input terminal. When φ1 becomes "O", S opens, and the period T when the second clock -2 becomes "1"
, S, and Sss are switched between the reference voltage Veor and ground under the same conditions as described in the (Prior Art) section.

きい場合には(n、は1段目のA/D変換器の分解能で
あり、第1図の例ではnl−4である)φ1、≠、の”
1”、”0”にかかわらず常にvlに接続されきい場合
にはキャパシタC2上の電荷は常に変わらないので、演
算増幅器の出力電圧V、には影響を与えず、(従来の技
術)で示した0式、(11)式、(12)式の第2番目
以下の式、また(発明が解決しようとする問題点)で示
した(14)式、(15)式が成り立つ。
(n is the resolution of the first-stage A/D converter, which is nl-4 in the example of FIG. 1), then φ1, ≠.
Regardless of whether it is 1" or 0, if it is always connected to vl, the charge on capacitor C2 will always remain the same, so it will not affect the output voltage V of the operational amplifier, as shown in (prior art). The second and subsequent equations of Equation 0, Equation (11), and Equation (12), as well as Equation (14) and Equation (15) shown in (Problems to be Solved by the Invention) hold true.

より小さい場合スイッチSPは期間T、ではvIへ接続
きれているが期間T、では右へ接続される。
If it is smaller, switch SP is not connected to vI in period T, but is connected to the right in period T.

従ってキャパシタC2上の1荷は期間T、及びT。Therefore, one load on capacitor C2 is for periods T and T.

で、Qpt−cp(v、、r−vI)  (’r+) 
  ・(,16)Qpt−Cp(v、、r−vn)  
(’rn)    ・ (17)となる0期間T、では
Srが閉じているので演算増幅器の出力はV+atであ
る− vs > Vaであるので期間T、ではQp、と
Qptの差 Qpt−Qpt−Cp(V+  Va)       
=(18)だけCp上に増加する。C0〜C1&に接続
されているスイッチS、〜SI&は従来と同様に動作す
るのでC0〜C1,上の電荷は、従来の場合と変化がな
い、したがって(Qpx−Qpt)の電荷はC7上から
移動し、それによって演算増幅器の出力電圧v、゛は従
来の値とは異なり(13)式で表わされる従来の値V、
との差(V、−V、’)をΔV、とすると次式が成り立
つ。
Then, Qpt-cp(v,,r-vI) ('r+)
・(,16)Qpt-Cp(v,,r-vn)
('rn) ・ (17) In the 0 period T, since Sr is closed, the output of the operational amplifier is V + at - vs > Va, so in the period T, the difference between Qp and Qpt is Qpt - Qpt - Cp(V+Va)
= (18) increases on Cp. The switches S, ~SI& connected to C0~C1& operate in the same way as before, so the charges on C0~C1 are unchanged from the conventional case, so the charge of (Qpx - Qpt) is from on C7. As a result, the output voltage v, ゛ of the operational amplifier is different from the conventional value and becomes the conventional value V, expressed by equation (13).
If the difference (V, -V,') from .DELTA.V is .DELTA.V, then the following equation holds true.

Qpt  Qpt −CFΔV、          
−(19)(21)式をみるとわかるように演算増幅器
の出力電圧はく2c)式で表わされる量だけ上昇するの
でこの量を適当に選べば演算増幅器の出力段のMOSF
ETが飽和領域からはずれるという事は起こらなくなり
入力電圧が接地重圧付近でも高精度なA/D変換が可能
となる。ただし、2段目のA/D変換器は(21)式で
表わされる電圧を入力電圧とするのでA/D変換した結
果からはく2c)式に相当するデジタル値を減算しなけ
ればならない。これは、1段目のコンパレータの出力を
用いてデジタル処理部で実行する。具体的な数字をあて
はめてみる。
Qpt Qpt −CFΔV,
- As can be seen from equations (19) and (21), the output voltage of the operational amplifier increases by the amount expressed by equation 2c), so if this amount is selected appropriately, the MOSF of the output stage of the operational amplifier
ET will not deviate from the saturation region, and highly accurate A/D conversion is possible even when the input voltage is close to the ground pressure. However, since the second-stage A/D converter uses the voltage expressed by equation (21) as the input voltage, a digital value corresponding to equation 2c) must be subtracted from the A/D conversion result. This is executed by the digital processing section using the output of the first stage comparator. Try applying specific numbers.

余分な電源を付加する必要のないように、V 、 −V
1@rx■よ−0とし、C,−2cとするe cpとし
てこのシステムでの単位容量Cを選ぶとり2c)弐〜(
22)式は次のようになる。
V, -V so that there is no need to add an extra power supply
1@rx■ Let -0 and C, -2c e Select the unit capacity C in this system as cp 2c) 2~(
22) The formula is as follows.

このようにすると演算増幅器の出力電圧は(25)式の
ようになり入力電圧の値にかかわらず高精度なA/D変
換が可能となる。ただしこの場合、2段減算しなくては
ならない。
In this way, the output voltage of the operational amplifier becomes as shown in equation (25), allowing highly accurate A/D conversion regardless of the value of the input voltage. However, in this case, two stages of subtraction must be performed.

(発明の効果) 以上述べたように、本発明を用いることにより、従来技
術では実現困難な、0に近いような低いアナログ電圧で
も高い精度でデジタル値へ変換できる直並列型A/D変
換器を提供できる。
(Effects of the Invention) As described above, by using the present invention, a series-parallel type A/D converter that can convert a low analog voltage close to 0 into a digital value with high precision, which is difficult to realize with conventional technology, can be realized. can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図、第2図は
第1図実施例に用いるクロックを示すタイミング図、第
3図は従来の直並列型A/D変換器を示すブロック図、
第4図は直並列型A/D変換器で用いられる演算増幅器
の一例を示す回路図である。
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a timing diagram showing a clock used in the embodiment shown in Fig. 1, and Fig. 3 is a block diagram showing a conventional serial-parallel type A/D converter. ,
FIG. 4 is a circuit diagram showing an example of an operational amplifier used in a series-parallel type A/D converter.

Claims (1)

【特許請求の範囲】 入力電圧をアナログからデジタルへ変換する第1の並列
型A/D変換器と、前記第1の並列型A/D変換器の変
換結果を再びアナログ値に変換して入力電圧から差し引
きその値をある定められた値だけ倍増して出力する演算
部分と、前記演算部分の出力電圧をアナログからデジタ
ルへ変換する第2の並列型A/D変換器と、前記第1の
並列型A/D変換器の出力結果と前記第2の並列型A/
D変換器の出力結果を加算あるいは減算する処理部とを
備えた直並列型アナログ/デジタル変換器において: 前記演算部分が、正転入力端子が基準電圧に接続され反
転入力端子が第1の節点に接続され前記第1の節点と出
力端子との間に並列に第1のスイッチと第1のキャパシ
タが接続された演算増幅器と、前記第1の並列型A/D
変換器の分解能をn_1ピットとすると一端が共通に前
記第1の節点に接続され他端がそれぞれ入力端子と前記
基準電圧と接地とを切替える第2から第(2^n^1+
1)の2^n^1個のスイッチに接続された第2から第
(2^n^1+1)の2^n^1個のキャパシタと、一
端が前記第1の節点に接続され他端が前記基準電圧と接
地とを切替える第(2^n^1+2)のスイッチに接続
された第(2^n^1+2)のキャパシタとからなり、
前記第1のキャパシタの値を2cとすると前記第2から
第(2^n^1+1)の2−1個のキャパシタの値はそ
れぞれCであり; 前記演算部分の動作は“1”の部分が重なり合わない第
1と第2のクロックで制御され、前記第1のスイッチは
前記第1のクロックが“1”の期間閉じて“0”の期間
開き、前記第2と第3のスイッチは前記第2のクロック
が“0”の期間前記入力端子へ接続し“1”の期間前記
基準電圧へ接続され、前記第4から第2^n^1+1ま
での(2^n^1−2)個のスイッチは前記第2のクロ
ックが“0”の期間前記入力端子へ接続し“1”の期間
では前記第1の並列型A/D変換器を構成する比較器の
出力に応じてスイッチが切替えられ前記基準電圧をV_
r_e_fとすると入力電圧が接地電圧から(3/2^
n^1^+^1)V_r_e_fまではすべて接地へ接
続され、入力電圧が(3/2^n^1^+^1)V_r
_e_fから(5/2^n^1^+^1)V_r_e_
fまでは1個のスイッチが基準電圧へ接続され残り(2
^n^1−3)個のスイッチは接地へ接続され、入力電
圧が(5/2^n^1^+^1)V_r_e_fから(
7/2^n^1^+^1)V_r_e_fまでは2個の
スイッチが基準電圧へ接続され残り(2^n^1−4)
個のスイッチは接地へ接続され、以下入力電圧が(1/
2^n^1)V_r_e_f大きくなる毎に基準電圧へ
接続されるスイッチが一つずつ増加し、入力電圧が(2
^n^1^+^1−3/2^n^1^+^1)V_r_
e_f以上ではすべて基準電圧へ接続され、前記第(2
^n^1+2)のスイッチは入力電圧が(1/2^n^
1^+^1)V_r_e_f以上では常に第1の定電圧
源へ接続され入力電圧が接地から(1/2^n^1^+
^1)V_r_e_fの間では前記第1のクロックが“
1”であれば前記第1の定電圧源に接続され前記第2の
クロックが“1”であれば第2の定電圧源に接続される
ことを特徴とする直並列型アナログ/デジタル変換器。
[Claims] A first parallel A/D converter that converts an input voltage from analog to digital, and a conversion result of the first parallel A/D converter that is converted back into an analog value and inputted. an arithmetic section that subtracts the voltage from the voltage, doubles the value by a predetermined value, and outputs the result; a second parallel A/D converter that converts the output voltage of the arithmetic section from analog to digital; The output result of the parallel type A/D converter and the second parallel type A/D converter
In a series-parallel analog/digital converter comprising a processing section that adds or subtracts the output results of the D converter: The calculation section has a non-inverting input terminal connected to a reference voltage and an inverting input terminal connected to a first node. an operational amplifier connected to the first node and having a first switch and a first capacitor connected in parallel between the first node and the output terminal; and the first parallel type A/D.
If the resolution of the converter is n_1 pits, one end is commonly connected to the first node, and the other end is connected to the second to (2^n^1+
1) 2^n^1 capacitors from the second to (2^n^1+1) connected to the 2^n^1 switch, and one end connected to the first node and the other end a (2^n^1+2)-th capacitor connected to a (2^n^1+2)-th switch that switches between the reference voltage and ground;
If the value of the first capacitor is 2c, the values of the 2-1 capacitors from the second to (2^n^1+1) are each C; the operation of the calculation part is as follows: The first switch is controlled by non-overlapping first and second clocks, the first switch is closed when the first clock is "1" and is open when the first clock is "0", and the second and third switches are controlled by the second clock. The second clock is connected to the input terminal during the period of "0" and connected to the reference voltage during the period of "1", and the (2^n^1-2) clocks from the fourth to the second^n^1+1 are connected to the input terminal. The switch is connected to the input terminal during the period when the second clock is "0", and during the period when the second clock is "1", the switch changes according to the output of the comparator constituting the first parallel type A/D converter. and set the reference voltage to V_
If r_e_f, the input voltage is from the ground voltage (3/2^
All up to n^1^+^1)V_r_e_f are connected to ground, and the input voltage is (3/2^n^1^+^1)V_r
From _e_f (5/2^n^1^+^1)V_r_e_
Up to f, one switch is connected to the reference voltage and the remaining (2
The ^n^1-3) switches are connected to ground, and the input voltage varies from (5/2^n^1^+^1)V_r_e_f to (
7/2^n^1^+^1) Up to V_r_e_f, two switches are connected to the reference voltage and the rest (2^n^1-4)
The switches are connected to ground and the input voltage is below (1/
2^n^1) Each time V_r_e_f increases, the number of switches connected to the reference voltage increases one by one, and the input voltage becomes (2
^n^1^+^1-3/2^n^1^+^1) V_r_
Everything above e_f is connected to the reference voltage, and the
^n^1+2) switch has an input voltage of (1/2^n^)
1^+^1) Above V_r_e_f, it is always connected to the first constant voltage source and the input voltage changes from ground to (1/2^n^1^+
^1) During V_r_e_f, the first clock is “
If the second clock is "1", it is connected to the first constant voltage source, and if the second clock is "1", it is connected to the second constant voltage source. .
JP18161086A 1986-07-31 1986-07-31 Analog/digital converter Granted JPS6337718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18161086A JPS6337718A (en) 1986-07-31 1986-07-31 Analog/digital converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18161086A JPS6337718A (en) 1986-07-31 1986-07-31 Analog/digital converter

Publications (2)

Publication Number Publication Date
JPS6337718A true JPS6337718A (en) 1988-02-18
JPH0577218B2 JPH0577218B2 (en) 1993-10-26

Family

ID=16103813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18161086A Granted JPS6337718A (en) 1986-07-31 1986-07-31 Analog/digital converter

Country Status (1)

Country Link
JP (1) JPS6337718A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739782A (en) * 1996-07-26 1998-04-14 Mitsubishi Denki Kabushiki Kaisha Resistance ladder, D/A converter and A/D converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739782A (en) * 1996-07-26 1998-04-14 Mitsubishi Denki Kabushiki Kaisha Resistance ladder, D/A converter and A/D converter

Also Published As

Publication number Publication date
JPH0577218B2 (en) 1993-10-26

Similar Documents

Publication Publication Date Title
US5574457A (en) Switched capacitor gain stage
US5710563A (en) Pipeline analog to digital converter architecture with reduced mismatch error
JP3143567B2 (en) Delta-sigma modulator
JPS6035830A (en) Capaciotr circuit analog-digital converter with switch
EP0591868A2 (en) Analog-to-digital converter
KR20000028902A (en) Analog to digital converter
US5212486A (en) Cyclic analog-to-digital converter
US6404376B1 (en) Capacitor array having reduced voltage coefficient induced non-linearities
US4325055A (en) Analog-to-digital converter
US5719576A (en) Capacitor array digital/analog converter with compensation array for stray capacitance
JPS6337718A (en) Analog/digital converter
JPH088465B2 (en) Switched capacitor circuit
US20100164779A1 (en) Charge-domain pipelined charge-redistribution analog-to-digital converter
US6157672A (en) Pulse modulation operation circuit
CN112994699A (en) Offset calibration device, successive approximation type analog-to-digital conversion device and offset calibration method
JPH06268522A (en) Capacitor array type d/a converter circuit
JPS6322647B2 (en)
JPS59135926A (en) Analog-digital converter
JPS59153324A (en) Analog-digital converter
JPH09266446A (en) Analog-digital converter and single-chip microcomputer incorporating the same
JPS59133729A (en) Analog/digital converter
JPH0149055B2 (en)
JPS62277819A (en) Analog-digital converter
JPS62136130A (en) Digital-analog converter
JPS59156019A (en) Interface circuit