JPS6337598B2 - - Google Patents

Info

Publication number
JPS6337598B2
JPS6337598B2 JP57196052A JP19605282A JPS6337598B2 JP S6337598 B2 JPS6337598 B2 JP S6337598B2 JP 57196052 A JP57196052 A JP 57196052A JP 19605282 A JP19605282 A JP 19605282A JP S6337598 B2 JPS6337598 B2 JP S6337598B2
Authority
JP
Japan
Prior art keywords
speed
value
current
output
ripple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57196052A
Other languages
Japanese (ja)
Other versions
JPS5986492A (en
Inventor
Koichi Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP57196052A priority Critical patent/JPS5986492A/en
Publication of JPS5986492A publication Critical patent/JPS5986492A/en
Publication of JPS6337598B2 publication Critical patent/JPS6337598B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/292Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using static converters, e.g. AC to DC
    • H02P7/293Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using static converters, e.g. AC to DC using phase control

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、直流電動機の速度制御装置に関す
るものである。一般に、この種の制御装置は速度
実際値(検出値)が設定速度の変化にできるだけ
速く追従して設定値に一致するように制御される
こと、また負荷外乱トルクの変動に対しては速度
実際値が変動しないことが望ましい。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a speed control device for a DC motor. In general, this type of control device is controlled so that the actual speed value (detected value) follows changes in the set speed as quickly as possible and matches the set value, and the actual speed value (detected value) is controlled so that it matches the set value by following changes in the set speed as quickly as possible. It is desirable that the value does not fluctuate.

〔従来の技術〕[Conventional technology]

従来、この種の制御装置としては電機子電流制
御ループ(ACRループ)をマイナループとして
有する速度制御システムが知られている。しかし
ながら、かかるシステムは一般に負荷トルク変動
に対する対策は余りなされておらず、したがつ
て、例えば負荷トルクが急変すると電動機速度が
一時的に変動し、所定時間後に回復するという現
象が生じるが、この速度変動を或る値以内に抑え
ることは困難で、一定の限界があるため最適な制
御ができないという欠点があつた。これは、負荷
急変時の速度変動の修正は専ら速度調節器によつ
て行なわれるが、その修正速度は該速度調節器の
制御パラメータに依存するためである。そこで、
本出願人は負荷トルクを速度,電流からシユミレ
ート(模擬)し、その模擬値の電流換算値を速度
調節器出力に加算して、いわゆる外乱の先回り補
償を行なうことにより、負荷トルク変動による速
度の変動を抑止制御する方式を提案した。
Conventionally, as this type of control device, a speed control system having an armature current control loop (ACR loop) as a minor loop is known. However, such systems generally do not have many measures against load torque fluctuations, and therefore, for example, when the load torque suddenly changes, the motor speed temporarily fluctuates and recovers after a predetermined time. It is difficult to suppress fluctuations within a certain value, and there is a certain limit, which has the disadvantage that optimal control cannot be performed. This is because correction of speed fluctuations when the load suddenly changes is performed exclusively by the speed regulator, but the correction speed depends on the control parameters of the speed regulator. Therefore,
The present applicant simulates load torque from speed and current, and adds the simulated current value to the speed regulator output to perform so-called advance compensation for disturbances, thereby reducing speed due to load torque fluctuations. We proposed a method to inhibit and control fluctuations.

第1図はかかる制御装置の構成を示すブロツク
図である。同図において、1は速度調節器
(ASR)、2は電流調節器(ACR)、3は点弧角調
整器、4はサイリスタ変換器、5は直流電動機、
6は速度発電機、Dは電流検出器、7は界磁模擬
要素71,72、比例要素73,74および積分
要素75,76等よりなる状態観測器である。な
お、図中のSはラプラス演算子であり、TMは電
動機の起動時定数である。
FIG. 1 is a block diagram showing the configuration of such a control device. In the figure, 1 is a speed regulator (ASR), 2 is a current regulator (ACR), 3 is a firing angle regulator, 4 is a thyristor converter, 5 is a DC motor,
6 is a speed generator, D is a current detector, and 7 is a state observation device consisting of field simulating elements 71, 72, proportional elements 73, 74, integral elements 75, 76, and the like. Note that S in the figure is a Laplace operator, and T M is a starting time constant of the electric motor.

速度調節器1は、速度発電機6にて検出される
速度実際値nが目標値n*となるような調節出力
を電流調節器2に対する電流指令値i*として与え
る。電流調節器2は電流検出器Dからの電流検出
値iが該電流指令値i*に等しくなるように調節演
算し、点弧パルス発生器3を介してサイリスタ変
換器4の位相制御を行なうことにより、直流電動
機5を所望の速度となるように制御する。状態観
測器7では要素71および75によつて界磁量お
よび電動機が模擬され、その出力からはそれぞれ
電動機発生トルクτM、速度推定値n^(なお、「∧」
印は推定値を表わす。)が得られる。この場合、
電動機発生トルクτMは電流検出値iに界磁磁束相
当のゲインφを乗算し、τM=iφとして取り出すよ
うにしている。速度推定値nは加算点P0におい
て速度実際値nと減算されてn−nなる量が得ら
れ、これが比例要素74を介して積分要素76に
与えられ、これによつて負荷トルクτLが推定演算
される。この負荷トルク推定値τ^Lは界磁模擬要素
72に与えられ、ここでτ^L/φなる量、すなわち
負荷トルク相当の電流値i^1が推定演算される。こ
の推定演算値i1は速度調節器1の出力に加算され
るため、速度調節器1の修正指令に先行して負荷
トルクτL相当の電流i1が流れ、これによつて負荷
トルクτLによる変動が抑制される。つまり、電流
制御ループをマイナループとして有する速度制御
ループにおいて、速度および伝流の各実際値から
負荷トルク相当の電流i^1を推定演算する状態観測
器を設け、該電流推定値i1を速度調節器出力に加
算して制御することにより負荷トルク変動による
速度変動を抑止するものである。なお、この場
合、電流実際値として電流調節器2の出力を利用
することができる。
The speed regulator 1 provides an adjustment output as a current command value i * to the current regulator 2 so that the actual speed value n detected by the speed generator 6 becomes the target value n * . The current regulator 2 adjusts and calculates the current detected value i from the current detector D to be equal to the current command value i * , and controls the phase of the thyristor converter 4 via the ignition pulse generator 3. Thus, the DC motor 5 is controlled to a desired speed. In the state observation device 7, the field quantity and the electric motor are simulated by elements 71 and 75, and from the output thereof, the electric motor generated torque τ M and the estimated speed value n^ (in addition, "∧"
Marks represent estimated values. ) is obtained. in this case,
The motor generated torque τ M is obtained by multiplying the detected current value i by a gain φ corresponding to the field magnetic flux, and is obtained as τ M =iφ. The estimated speed value n is subtracted from the actual speed value n at the summing point P0 to obtain a quantity n-n, which is applied to the integral element 76 via the proportional element 74, whereby the load torque τ L is Estimated calculation is performed. This load torque estimated value τ^ L is given to the field simulation element 72, where the amount τ^ L /φ, that is, the current value i^ 1 equivalent to the load torque is estimated and calculated. Since this estimated calculated value i 1 is added to the output of the speed regulator 1, a current i 1 corresponding to the load torque τ L flows prior to the correction command of the speed regulator 1, and thereby the load torque τ L Fluctuations caused by this are suppressed. In other words, in a speed control loop that has a current control loop as a minor loop, a state observation device is provided that estimates and calculates a current i^ 1 equivalent to the load torque from each actual value of speed and current, and the current estimated value i 1 is used to adjust the speed. This is to suppress speed fluctuations due to load torque fluctuations by adding this to the motor output and controlling it. In this case, the output of the current regulator 2 can be used as the actual current value.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このような方式において、速度
実際値を取り出す検出器、例えば速度発電機の出
力にリツプルが存在すると、このリツプルが状態
観測器内において増幅されるため、速度変動の抑
制効果を高めるべく推定トルクの応答を速めると
該リツプルは大幅に増大し、伝流もこのリツプル
に応じて変動してしまう。このため、電流検出値
に含まれるリツプルが無視出来ない場合は、上述
の如き状態観測器を用いる制御方式においても所
定の改善効果を上げることが出来ないという難点
があつた。
However, in such a method, if there is a ripple in the output of a detector that extracts the actual speed value, such as a speed generator, this ripple is amplified in the condition observation device, so estimation is performed to increase the effect of suppressing speed fluctuations. If the torque response is accelerated, the ripple increases significantly, and the current transmission also changes in accordance with this ripple. For this reason, if the ripples included in the current detection value cannot be ignored, there is a problem in that even the control method using the above-mentioned state observation device cannot achieve the desired improvement effect.

この発明はかかる点に鑑みてなされたもので、
上述の如き状態観測器を用いた電動機の負荷トル
クの補償制御方式において、速度検出値に含まれ
るリツプルの影響をなくして負荷トルク変動に対
する速度変動を抑制しうる制御装置を提供するこ
とを目的とする。
This invention was made in view of these points,
An object of the present invention is to provide a control device capable of suppressing speed fluctuations in response to load torque fluctuations by eliminating the influence of ripples included in speed detection values in a motor load torque compensation control method using a state observation device as described above. do.

〔問題点を解決するための手段〕[Means for solving problems]

速度調節ループ内に電流調節ループをマイナル
ープとしてもつ電動機の速度制御装置に対し、電
動機速度を推定する第1の積分要素と、速度リツ
プルを含む速度検出値から速度推定値と速度リツ
プル推定値とを減じた偏差をそれぞれ所定係数倍
する第1,第2の係数要素と、速度目標値とリツ
プル推定値とを乗算したものに該第1係数要素の
出力を加算して積分する第2の積分要素と、該第
2積分要素の出力に速度目標値を乗じたものと前
記第2係数要素の出力とを加算して積分すること
により速度リツプルを推定する第3の積分要素
と、前記偏差を所定係数倍したのち積分して負荷
トルクを推定する負荷トルク推定要素と、電流検
出値から電動機発生トルクを演算する演算要素
と、該演算要素の出力と前記負荷トルク推定要素
の出力と前記偏差を所定係数倍したものとを加減
算して前記第1積分要素に与える加減算要素と、
前記負荷トルク推定要素の出力を電流量に換算す
る換算要素と、該換算要素の出力と電流目標値
(速度調節ループの出力)および検出値とを加算
して前記電流調節ループに与える加算要素と、を
設ける。
For a speed control device for a motor having a current regulation loop as a minor loop within the speed regulation loop, a first integral element for estimating the motor speed and a velocity estimated value and a velocity ripple estimated value are calculated from a detected velocity value including velocity ripple. first and second coefficient elements that multiply the reduced deviation by a predetermined coefficient, and a second integral element that adds and integrates the output of the first coefficient element to the product obtained by multiplying the speed target value and the estimated ripple value. a third integral element that estimates a speed ripple by adding and integrating the output of the second integral element multiplied by the speed target value and the output of the second coefficient element; a load torque estimating element that estimates the load torque by multiplying it by a coefficient and then integrating it; a calculation element that calculates the motor generated torque from the detected current value; and a predetermined difference between the output of the calculation element, the output of the load torque estimation element, and the deviation. an addition/subtraction element that adds and subtracts the multiplied coefficient and supplies the result to the first integral element;
a conversion element that converts the output of the load torque estimation element into a current amount; and an addition element that adds the output of the conversion element, a current target value (output of the speed adjustment loop), and a detected value to the current adjustment loop. , will be established.

〔作用〕[Effect]

電動機の電流,速度の各実際値(検出値)から
負荷外乱トルクを推定演算し、該推定トルクを電
流量に換算して負荷外乱の補償制御を行なうに当
たり、速度検出値に含まれるリツプルを推定し、
これを含まない速度推定値および負荷トルク推定
値が得られるようにする。
Estimating the load disturbance torque from the actual values (detected values) of the motor's current and speed, converting the estimated torque into a current amount, and estimating the ripple included in the detected speed value when performing load disturbance compensation control. death,
A speed estimation value and a load torque estimation value that do not include this are obtained.

〔実施例〕〔Example〕

以下、この発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

第2図はこの発明の実施例を示すブロツク図で
ある。同図からも明らかなように、速度発電機6
の出力に存在するリツプルγを推定演算するリツ
プル観測器8を設け、該推定リツプルγ^を状態観
測器7で推定される速度n^に加算するとともに、
速度制御のための実際値信号としてこのn^を用い
るようにした点が特徴である。なお、その他の点
は第1図と全く同様であるので、説明は省略す
る。
FIG. 2 is a block diagram showing an embodiment of the invention. As is clear from the figure, the speed generator 6
A ripple observer 8 is provided to estimate and calculate the ripple γ present in the output of
The feature is that this n^ is used as the actual value signal for speed control. Note that other points are exactly the same as those in FIG. 1, so explanations will be omitted.

リツプル観測器8は、2個の乗算器83,84
と2個の積分器85,86とを縦続接続し、その
発振周波数を電圧制御することができる、いわゆ
る電圧制御発振器(VCO)から構成されている。
乗算器83,84の各一方の入力には、速度発電
機6の出力リツプル周波数が速度に比例して変化
するのを模擬するために、速度設定値n*を与え
るようにしている。また、積分器85,86の入
力には、状態観測器7における加算点P0の出力
から得られる速度実際値nと推定値n^との偏差
e、実際には(n−n^)+(γ−γ^)をゲインg3,g4
で増幅した量をそれぞれ加えることにより、リツ
プルの振幅,周波数を制御するとともにリツプル
推定値γ^をその実際値γに一致させるようにして
いる。したがつて、リツプルγがリツプル観測器
8によつて正しく推定されゝば、速度推定値n^は
リツプルを含まない信号となり、また、トルクの
推定値信号もリツプルを含まないものとなるの
で、リツプルの影響を受けない安定な電流制御が
可能となるものである。
The ripple observer 8 includes two multipliers 83 and 84.
and two integrators 85 and 86 are connected in cascade, and the oscillation frequency can be controlled by voltage, which is a so-called voltage controlled oscillator (VCO).
A speed setting value n * is given to one input of each of the multipliers 83 and 84 in order to simulate that the output ripple frequency of the speed generator 6 changes in proportion to the speed. In addition, the inputs of the integrators 85 and 86 contain the deviation e between the actual speed value n obtained from the output of the addition point P0 in the state observation device 7 and the estimated value n^, which is actually (n-n^) + (γ−γ^) with gains g 3 , g 4
By adding the amplified amounts respectively, the ripple amplitude and frequency are controlled and the estimated ripple value γ^ is made to match its actual value γ. Therefore, if the ripple γ is correctly estimated by the ripple observer 8, the estimated speed value n^ will be a signal that does not include ripples, and the estimated torque signal will also not include ripples, so This enables stable current control that is not affected by ripple.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、状態観測器
を用いて直流電動機の負荷外乱トルク補償制御を
行なう場合に、速度検出値に含まれるリツプル外
乱をリツプル観測器により推定し、該推定値γ^を
状態観測器で推定される速度推定値n^に加算して
速度検出回路を模擬するとともに、速度実際値と
しては速度検出器(速度発電機)出力信号のかわ
りに上記速度推定値n^を用いることにより、電流
制御ループに速度リツプルの影響を与えることな
く負荷トルク変動による速度変動を抑制すること
ができるものである。
As described above, according to the present invention, when performing load disturbance torque compensation control of a DC motor using a state observation device, the ripple disturbance included in the detected speed value is estimated by the ripple observation device, and the estimated value γ The speed detection circuit is simulated by adding ^ to the speed estimate n^ estimated by the state observation device, and the above speed estimate n^ is used as the actual speed value instead of the speed detector (speed generator) output signal. By using this, it is possible to suppress speed fluctuations due to load torque fluctuations without affecting the current control loop due to speed ripples.

なお、この発明は、上述の如き直流電動機の速
度制御ばかりでなく、外乱リツプルが存在する場
合に該リツプルを除去して制御をしたり、リツプ
ルを除く真の値の測定を行なう場合等に適用する
ことができる。
This invention is applicable not only to speed control of a DC motor as described above, but also to control by removing ripples when disturbance ripples exist, and to measurement of true values excluding ripples. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の速度制御装置の構成を示すブロ
ツク図、第2図はこの発明の実施例を示すブロツ
ク図である。 符号説明、1……速度調節器、2……電流調節
器、3……点弧角調整器、4……サイリスタ変換
器、5……直流電動機、6……速度発電機、7…
…状態観測器、8……リツプル観測器、71,7
2……界磁模擬要素、73,74,81,82…
…比例要素、75,76,85,86……積分要
素、83,84……乗算器、D……電流検出器。
FIG. 1 is a block diagram showing the configuration of a conventional speed control device, and FIG. 2 is a block diagram showing an embodiment of the present invention. Description of symbols, 1... Speed regulator, 2... Current regulator, 3... Firing angle regulator, 4... Thyristor converter, 5... DC motor, 6... Speed generator, 7...
...State observation device, 8...Ripple observation device, 71,7
2... Field simulation element, 73, 74, 81, 82...
...Proportional element, 75, 76, 85, 86... Integral element, 83, 84... Multiplier, D... Current detector.

Claims (1)

【特許請求の範囲】 1 電動機の速度検出値をその目標値に一致させ
るべく速度調節を行なう速度調節ループ内に該ル
ープの出力を電流指令値として電機子電流もしく
はこれに相当する電動機電流成分を調節する電流
調節ループを有してなる電動機の速度制御装置に
おいて、 電動機速度を推定する第1の積分要素と、 速度リツプルを含む速度検出値から速度推定値
と速度リツプル推定値とを減じた偏差をそれぞれ
所定係数倍する第1、第2の係数要素と、 速度目標値とリツプル推定値とを乗算したもの
に該第1係数要素の出力を加算して積分する第2
の積分要素と、 該第2積分要素の出力に速度目標値を乗じたも
のと前記第2係数要素の出力とを加算して積分す
ることにより速度リツプルを推定する第3の積分
要素と、 前記偏差を所定係数倍したのち積分して負荷ト
ルクを推定する負荷トルク推定要素と、 電流検出値から電動機発生トルクを演算する演
算要素と、 該演算要素の出力と前記負荷トルク推定要素の
出力と前記偏差を所定係数倍したものとを加減算
して前記第1積分要素に与える加減算要素と、 前記負荷トルク推定要素の出力を電流量に換算
する換算要素と、 該換算要素の出力と電流目標値(速度調節ルー
プの出力)および検出値とを加算して前記電流調
節ループに与える加算要素と、 を設けたことを特徴とする電動機の速度制御装
置。
[Claims] 1. An armature current or a motor current component equivalent to this is set as a current command value in a speed adjustment loop that adjusts the speed so that the detected speed value of the motor matches its target value. A speed control device for an electric motor having a current regulation loop that adjusts a first integral element for estimating the motor speed; and a deviation obtained by subtracting the estimated speed value and the estimated speed ripple value from the detected speed value including the speed ripple. first and second coefficient elements that multiply by a predetermined coefficient, and a second coefficient element that adds and integrates the output of the first coefficient element to the product obtained by multiplying the target speed value and the estimated ripple value.
a third integral element that estimates a speed ripple by adding and integrating the output of the second integral element multiplied by the speed target value and the output of the second coefficient element; a load torque estimating element that estimates load torque by integrating the deviation after multiplying it by a predetermined coefficient; a calculation element that calculates the motor generated torque from the detected current value; an output of the calculation element, an output of the load torque estimation element, and the an addition/subtraction element that adds or subtracts the deviation multiplied by a predetermined coefficient and provides the result to the first integral element; a conversion element that converts the output of the load torque estimation element into an amount of current; and a conversion element that converts the output of the conversion element and the current target value ( A speed control device for an electric motor, comprising: an addition element that adds the output of the speed control loop) and the detected value and provides the result to the current control loop.
JP57196052A 1982-11-10 1982-11-10 Speed controller for dc motor Granted JPS5986492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57196052A JPS5986492A (en) 1982-11-10 1982-11-10 Speed controller for dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57196052A JPS5986492A (en) 1982-11-10 1982-11-10 Speed controller for dc motor

Publications (2)

Publication Number Publication Date
JPS5986492A JPS5986492A (en) 1984-05-18
JPS6337598B2 true JPS6337598B2 (en) 1988-07-26

Family

ID=16351391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57196052A Granted JPS5986492A (en) 1982-11-10 1982-11-10 Speed controller for dc motor

Country Status (1)

Country Link
JP (1) JPS5986492A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2585518B2 (en) * 1985-11-20 1997-02-26 株式会社日立製作所 Motor load torque estimation device
JPS63310390A (en) * 1987-06-09 1988-12-19 Fuji Electric Co Ltd Motor controller

Also Published As

Publication number Publication date
JPS5986492A (en) 1984-05-18

Similar Documents

Publication Publication Date Title
US5698968A (en) Power system stabilizer for generator
JP3227000B2 (en) Motor speed control device
KR100223393B1 (en) A motor speed control apparatus
US5256944A (en) Motor speed control method and apparatus with drooping compensation independent of acceleration or deceleration current and time constant of motor
JPS6337598B2 (en)
JPH026308B2 (en)
JPS6337599B2 (en)
JP3129173B2 (en) AC motor control device
JPS633556B2 (en)
JPS6338959B2 (en)
JPH10295092A (en) Speed controller of motor
JPS6334712B2 (en)
JPH0998600A (en) Excitation controller for generator
JPS6338957B2 (en)
JPS6334711B2 (en)
JP2923993B2 (en) Motor control device
JP3305899B2 (en) Generator power stabilizer
JP2663387B2 (en) Stabilization feedback control method
JP2997278B2 (en) Motor control device
JP2001290504A (en) Controller
JPH0524756B2 (en)
JP2850076B2 (en) Control device
JPS61132089A (en) Speed controller for motor
JPH1127995A (en) Excitation controller for brushless exciter
JP3304669B2 (en) Control compensator