JPS633740B2 - - Google Patents

Info

Publication number
JPS633740B2
JPS633740B2 JP55067879A JP6787980A JPS633740B2 JP S633740 B2 JPS633740 B2 JP S633740B2 JP 55067879 A JP55067879 A JP 55067879A JP 6787980 A JP6787980 A JP 6787980A JP S633740 B2 JPS633740 B2 JP S633740B2
Authority
JP
Japan
Prior art keywords
heat insulating
tubular body
vacuum
insulating structure
vacuum tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55067879A
Other languages
Japanese (ja)
Other versions
JPS56164845A (en
Inventor
Yoshe Kodera
Masayuki Tsukahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6787980A priority Critical patent/JPS56164845A/en
Publication of JPS56164845A publication Critical patent/JPS56164845A/en
Publication of JPS633740B2 publication Critical patent/JPS633740B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Refrigerator Housings (AREA)
  • Laminated Bodies (AREA)
  • Thermal Insulation (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は断熱構造体に係り、特に断熱特性の改
善を志向した、発泡部材を構成要素とする断熱構
造体に関するものである。 まず、従来の、保温、保冷に多く用いられてい
る、発泡部材を構成要素とする断熱構造体につい
て説明する。 第1図は、従来の、発泡ウレタンを用いた断熱
構造体の一例を示す斜視断面図である。 この第1図に示す断熱構造体は、たとえば電気
冷蔵庫などに用いられるものであり、断熱構造体
1は、庫外側に配設された、断熱壁に係る鋼板
2、発泡部材に係る発泡ウレタン3、プラスチツ
クシート4などの部材からなる複合一体断熱構造
体である。 かかる断熱構造体1は、発泡ウレタン3の熱伝
導率が低いという特徴を生かし、現状では最も優
れたものであるが、この低熱伝導率が得られる基
本的な要因である、発泡ウレタンの密度および発
泡ウレタンに内包されるフレオンガス自身の熱伝
導率は限界に来ており、これ以下に前記密度を小
さくすると強度が低下し、気泡が連続してしまう
ため、大幅な断熱特性の改善を見込むことが出来
ない。 また、かかる現状の問題点を解決すべく真空断
熱なる技術開発が一方では進められている。 第2図は、従来の、真空断熱に使用されている
真空袋状体を示す斜視図である。 第2図において5は、その内部を真空6にした
真空袋状体であつて、この真空袋状体5が、前記
した断熱構造体1の代りに所望個所に使用される
もものである。 しかし、第2図に示すような真空袋状体5を得
るには、内部減圧に耐え、形状維持しうる強度が
必要であるが、軽量で、このような要求を満たす
真空袋状体の製作が困難であつた。 本発明は、上記した従来技術の欠点をなくし、
断熱特性を改善した、発泡部材を構成要素とする
断熱構造体の提供をその目的とするものである。 本発明の断熱構造体の特徴は、低熱伝導率の発
泡部材を構成要素とする断熱構造体において、内
部が真空である管状体、すなわち真空管状体を、
発泡部材の内部に配設した断熱構造体にある。 さらに詳しくは、管状形状が最も内、外圧に抗
しうる形状であることに着目し、真空管状体と発
泡断熱部材を一体化することによつて高断熱特性
を得るようにした断熱構造体にある。 以下本発明を実施例によつて説明する。 第3図は、本発明の一実施例に係る断熱構造体
の斜視断面図、第4図は、第3図における真空管
状体の正面図である。 第3図において、第1図と同一番号を付したも
のは同一部分である。そして7は、発泡ウレタン
3の内部に、断熱構造体1Aの断熱壁に係る鋼板
2と平行に一列に配設された、内部が真空である
直管の管状体、すなわち真空管状体、8は、真空
管状体7の製作時に、真空を最後に封止する密封
部である。真空管状体7の材質はガラスである。
ガラスの真空管状体7は、従来の電子真空管、お
よび照明器具などを製造する技術がそのまま適用
できるので製作が容易であり、長期的に高真空度
が維持できるという利点もある。また比較的、熱
伝導率も低く、値段も安価である。 真空管状体7の形状は、第4図に示すように、
製作の容易な直管とし、肉厚は1mm、管外径は20
mmφとした。 なお、前記管外径は、10mmφ〜30mmφが適当
で、10mmφ以下では真空管状体7の比重量が大き
くなり、また30mmφ以上では断熱構造体1Aの厚
さが増し、得策でない。 真空管状体7の内部の真空度は10-4Torrとし
た。 なお、真空度が10-2Torrになると、熱伝導率
が空気の約1/10になるが、好ましくは10-4Torr
が望ましい。 つぎに、かかるようにして得た真空管状体7
を、鋼板2と平行に1列に配列にし、これをとり
かこむ状態で熱伝導率の小さな発泡部材に係る発
泡ウレタン3を成形した。 表は各種部材の熱伝導率を、その密度とともに
示す。また、実在気体のうちで最も熱伝導率の小
さいキセノンガス(Xe)も合せて示す。
The present invention relates to a heat insulating structure, and more particularly to a heat insulating structure having a foamed member as a component, which is intended to improve heat insulating properties. First, a conventional heat insulating structure having a foamed member as a component, which is often used for heat or cold insulation, will be described. FIG. 1 is a perspective sectional view showing an example of a conventional heat insulating structure using urethane foam. The heat insulating structure shown in FIG. 1 is used, for example, in an electric refrigerator, and the heat insulating structure 1 includes a steel plate 2 for a heat insulating wall and a urethane foam 3 for a foam member, which are disposed on the outside of the refrigerator. It is a composite integrated heat insulating structure made of members such as , plastic sheet 4, etc. This heat insulating structure 1 takes advantage of the low thermal conductivity of the urethane foam 3, and is the best at present. However, the density of the urethane foam and The thermal conductivity of the Freon gas itself contained in urethane foam has reached its limit, and if the density is reduced below this, the strength will decrease and the bubbles will become continuous, so it is difficult to expect a significant improvement in the insulation properties. Can not. Further, in order to solve the current problems, the development of vacuum insulation technology is progressing. FIG. 2 is a perspective view showing a conventional vacuum bag-like body used for vacuum insulation. In FIG. 2, reference numeral 5 denotes a vacuum bag-like body whose interior is evacuated 6, and this vacuum bag-like body 5 is used in place of the above-described heat insulating structure 1 at a desired location. However, in order to obtain the vacuum bag-like body 5 shown in FIG. 2, it is necessary to have strength that can withstand internal decompression and maintain its shape, but it is difficult to manufacture a vacuum bag-like body that is lightweight and satisfies these requirements. was difficult. The present invention eliminates the above-mentioned drawbacks of the prior art,
The object of the present invention is to provide a heat insulating structure having improved heat insulating properties and having a foamed member as a component. The heat insulating structure of the present invention is characterized by having a tubular body with a vacuum inside, that is, a vacuum tubular body in the heat insulating structure having a foam member with low thermal conductivity as a component.
The heat insulating structure is located inside the foam member. More specifically, we focused on the fact that the tubular shape is the shape that can withstand the most internal and external pressure, and created a heat insulating structure that achieves high heat insulation properties by integrating the vacuum tubular body and the foam heat insulating material. be. The present invention will be explained below with reference to Examples. FIG. 3 is a perspective sectional view of a heat insulating structure according to an embodiment of the present invention, and FIG. 4 is a front view of the evacuated tubular body in FIG. 3. In FIG. 3, parts with the same numbers as in FIG. 1 are the same parts. 7 is a straight tubular body with a vacuum inside, which is arranged in a line inside the urethane foam 3 in parallel with the steel plate 2 related to the heat insulating wall of the heat insulating structure 1A; 8 is a vacuum tubular body; , is a sealing part that seals the vacuum at the end when manufacturing the vacuum tubular body 7. The material of the vacuum tubular body 7 is glass.
The glass vacuum tubular body 7 is easy to manufacture because the technology for manufacturing conventional electronic vacuum tubes, lighting equipment, etc. can be applied as is, and it also has the advantage of being able to maintain a high degree of vacuum over a long period of time. It also has relatively low thermal conductivity and is inexpensive. The shape of the vacuum tubular body 7 is as shown in FIG.
It is a straight pipe that is easy to manufacture, the wall thickness is 1mm, and the outside diameter is 20mm.
mmφ. The outer diameter of the tube is suitably 10 mmφ to 30 mmφ; if it is less than 10 mmφ, the specific weight of the evacuated tubular body 7 will increase, and if it is more than 30 mmφ, the thickness of the heat insulating structure 1A will increase, which is not a good idea. The degree of vacuum inside the vacuum tubular body 7 was set to 10 −4 Torr. Note that when the degree of vacuum is 10 -2 Torr, the thermal conductivity is approximately 1/10 that of air, but preferably 10 -4 Torr.
is desirable. Next, the vacuum tubular body 7 obtained in this manner
were arranged in a row parallel to the steel plate 2, and a urethane foam 3, which is a foamed member with a low thermal conductivity, was formed surrounding the steel plate 2. The table shows the thermal conductivity of various materials along with their densities. Also shown is xenon gas (Xe), which has the lowest thermal conductivity among real gases.

【表】 表からわかるように、発泡部材としては発泡ウ
レタン、発泡スチロール等が代表的なものであ
り、本実施例では断熱構造体1Aの強度、および
高断熱が得られる発泡ウレタンを用いた。 また、発泡ウレタン3は、他の部材とともに発
泡すると、その部材、本実施例における真空管状
体7と容易に接着し、また、せん断強度、曲げ強
度ともに優れているという特徴がある。 このように構成した本実施例の断熱構造体1A
においては、鋼板2側からの熱流は、真空管状体
7の配設されている部分で、発泡ウレタン3→真
空管状体7のガラス→真空管状体7の真空部分→
真空管状体7のガラス→発泡ウレタン3を経由す
るので、発泡ウレタンのみを断熱部材とした従来
の断熱構造体に比べ、断熱特性が20〜40%向上す
る。 なお、本実施例は、真空管状体7の材質として
ガラスを使用したが、ガラスの代りにプラスチツ
ク、もしくは金属(たとえば、アルミニウム)を
用いてもよい。 プラスチツクは、ガラスよりも熱伝導率が低
く、且つ軽量であるという利点がある。金属を使
用する場合には、真空管状体の肉厚を1mm以下に
すれば、全体の断熱構造体の断熱特性に影響する
ことは少なく、ガラス製の真空管状体を使用した
ものとほぼ同等の断熱特性が得られる。 さらに、ガラス製もしくはプラスチツク製の真
空管状体の内壁もしくは外壁、あるいは両壁に、
金属(たとえば、アルミニウム)を薄膜形成すれ
ば、ふく射率が高くなり、断熱特性がさらに向上
する。 第5図は、本発明に係る真空管状体の種々の例
を示す正面図である。 真空管状体の形状は、第4図に示し直管の真空
管状体7の他に、断熱構造体の用途に応じて、第
5図1の円型の真空管状体7A(8Aは密封部、
以下同様)、第5図2のコ字型の真空管状体7B、
第5図3のロ字型の真空管状体7C、第5図4の
L字型の真空管状体7Dなどが使用される。 第6図は、本発明の他の実施例に係る断熱構造
体の断面図である。 この第6図において、第3図と同一番号を付し
たものは同一部分である。本実施例においては、
真空管状体7が、断熱構造体1Bの断熱壁に係る
鋼板2と平行に2列に配設されている。 このように、真空管状体7を2列に配設するこ
とにより、1列に配列するよりも、断熱特性はさ
らに向上する。 ただし、2列以上、複数列に配設すると、断熱
構造体の見掛けの比重が大きくなるので、このよ
うな断熱構造体の用途は限定されることがある。 第7図は、本発明のさらに他の実施例に係る断
熱構造体の斜視図である。 この第7図において、第3図と同一番号を付し
たものは同一部分である。そして9は、断熱構造
体1Cの外表面に形成された、硬い表皮層であ
る。この表皮層9は、従来のスキン層を形成させ
る成形方法によつて形成されるものである。 本実施例は、発泡ウレタン3と表皮層9とが同
一の材料であり、また真空管状体7とともに同時
に成形されるので、従来、発泡ウレタンの両側面
に配設していた鋼板、プラスチツクシートが不要
になり、製作工数を低減することができる。 以上の各実施例で説明した断熱構造体は、従来
の発泡ウレタンのみを断熱部材として用いている
ものに比べて、断熱特性が20〜40%向上し、且つ
せん断強度、曲げ強度等が10%以上向上するとい
う効果もある。 さらに、真空管状体を、目的とする断熱性能に
応じて重点的に配列することにより、コストパー
フオーマンスの優れた断熱構造体を得ることがで
きる。 以上詳細に説明したように本発明によれば、内
部が真空である真空管状体を、発泡部材の内部へ
配設することにより断熱構造体を構成するように
したので、次の効果がある。 ○イ 管状体は内部減圧に対して最も対抗しうる形
状であるので、前記真空管状体は、袋状体など
では得られない高い真空度(たとえば、
10-4Torr)にすることができ、その熱伝導率
がきわめて小さい。 ○ロ 前記真空管状体の内部は高真空であるので、
気体を吸着するための吸収物質をその内部へ封
入する必要がない。 ○ハ 前記真空管状体は断面形状が円形であるの
で、製作が容易で安価である。たとえば、ガラ
スの真空管状体は、従来の電子真空管、照明器
具などの技術をそのまま適用して、容易に製作
をすることができる。 ○ニ 前記断熱構造体は、真空管状体と発泡部材と
により伝熱を防止することができるので、従来
の保冷材(たとえば、炭化コルクなど)を充填
した保冷材断熱壁に比べてはもちろんのこと、
発泡部材のみの断熱構造体に比べても、断熱特
性が20〜40%向上する。 ○ホ 前記断熱構造体は、発泡部材と真空管状体と
が強固に接着されたものであるので、真空管状
体が強度部材となつて該断熱構造体の剛性が大
きくなり、せん断強度、曲げ強度が向上する。 ○ヘ 発泡部材の内部に真空管状体を配設した前記
断熱構造体は、真空管状体をインサートして発
泡材料と一体成形により発泡成形することがで
きるので、その製作がきわめて容易である。
[Table] As can be seen from the table, urethane foam, styrene foam, etc. are typical foam members, and in this example, urethane foam was used because it can provide the strength and high heat insulation of the heat insulating structure 1A. Moreover, when the foamed urethane 3 is foamed together with other members, it easily adheres to the other member, the vacuum tubular body 7 in this embodiment, and is characterized in that it has excellent shear strength and bending strength. The heat insulating structure 1A of this example configured in this way
In this case, the heat flow from the steel plate 2 side is in the part where the vacuum tubular body 7 is disposed, and flows from the urethane foam 3 → the glass of the vacuum tubular body 7 → the vacuum part of the vacuum tubular body 7 →
Since the process passes from the glass of the vacuum tubular body 7 to the urethane foam 3, the heat insulation properties are improved by 20 to 40% compared to a conventional heat insulating structure using only the urethane foam as a heat insulating member. Although glass was used as the material for the vacuum tubular body 7 in this embodiment, plastic or metal (for example, aluminum) may be used instead of glass. Plastic has the advantage of having lower thermal conductivity than glass and being lighter. When using metal, if the wall thickness of the evacuated tubular body is 1 mm or less, it will have little effect on the insulation properties of the overall insulation structure, and it will be almost equivalent to using a glass evacuated tubular body. Provides insulation properties. Furthermore, on the inner wall, outer wall, or both walls of the vacuum tubular body made of glass or plastic,
Forming a thin film of metal (for example, aluminum) increases the radiation rate and further improves the heat insulation properties. FIG. 5 is a front view showing various examples of the vacuum tubular body according to the present invention. In addition to the straight vacuum tubular body 7 shown in FIG. 4, the shape of the vacuum tubular body may be a circular vacuum tubular body 7A (8A is a sealing part,
The same applies hereafter), the U-shaped vacuum tubular body 7B in FIG.
The square-shaped vacuum tubular body 7C shown in FIG. 5, the L-shaped vacuum tubular body 7D shown in FIG. 5, and the like are used. FIG. 6 is a sectional view of a heat insulating structure according to another embodiment of the present invention. In FIG. 6, the same parts as those in FIG. 3 are denoted by the same numbers. In this example,
The evacuated tubular bodies 7 are arranged in two rows in parallel with the steel plates 2 that form the heat insulating walls of the heat insulating structure 1B. Thus, by arranging the vacuum tubular bodies 7 in two rows, the heat insulation properties are further improved than when arranging them in one row. However, if they are arranged in two or more rows or in a plurality of rows, the apparent specific gravity of the heat insulating structure becomes large, so the use of such a heat insulating structure may be limited. FIG. 7 is a perspective view of a heat insulating structure according to still another embodiment of the present invention. In FIG. 7, the same parts as those in FIG. 3 are denoted by the same numbers. And 9 is a hard skin layer formed on the outer surface of the heat insulating structure 1C. This skin layer 9 is formed by a conventional molding method for forming a skin layer. In this embodiment, the urethane foam 3 and the skin layer 9 are made of the same material and are molded together with the vacuum tubular body 7, so the steel plates and plastic sheets that were conventionally placed on both sides of the urethane foam are replaced. This is no longer necessary, and the number of manufacturing steps can be reduced. The heat insulating structures described in each of the above examples have 20 to 40% better heat insulating properties and 10% higher shear strength, bending strength, etc., than conventional ones that use only foamed urethane as a heat insulating member. There is also the effect of further improvement. Furthermore, by arranging the evacuated tubular bodies in a focused manner according to the desired heat insulation performance, a heat insulation structure with excellent cost performance can be obtained. As explained in detail above, according to the present invention, a heat insulating structure is constructed by disposing a vacuum tubular body having a vacuum inside a foamed member, so that the following effects can be obtained. ○B Since the tubular body has a shape that can best resist internal depressurization, the vacuum tubular body has a high degree of vacuum that cannot be obtained with a bag-like body (for example,
10 -4 Torr), and its thermal conductivity is extremely low. ○B Since the inside of the vacuum tubular body is under high vacuum,
There is no need to encapsulate an absorbent substance for adsorbing gas inside it. ○C Since the vacuum tubular body has a circular cross-sectional shape, it is easy to manufacture and inexpensive. For example, a glass evacuated tubular body can be easily manufactured by directly applying the technology for conventional electronic vacuum tubes, lighting equipment, and the like. ○D The above-mentioned heat insulating structure can prevent heat transfer by using the vacuum tubular body and the foam member, so it is of course better than a cold insulation wall filled with a conventional cold insulation material (for example, carbonized cork). thing,
The insulation properties are improved by 20 to 40% compared to an insulation structure made only of foam members. ○E Since the heat insulating structure is made by firmly adhering the foam member and the vacuum tubular body, the vacuum tubular body acts as a strength member, increasing the rigidity of the heat insulating structure, and increasing the shear strength and bending strength. will improve. (F) The heat insulating structure in which a vacuum tubular body is disposed inside a foamed member is extremely easy to manufacture because the vacuum tubular body can be inserted and integrally formed with a foam material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の、発泡ウレタンを用いた断熱
構造体の一例を示す斜視断面図、第2図は、従来
の、真空断熱に使用されている真空袋状体を示す
斜視図、第3図は、本発明の一実施例に係る断熱
構造体の斜視断面図、第4図は、第3図における
真空管状体の正面図、第5図は、本発明に係る真
空管状体の種々の例を示す正面図、第6図は、本
発明の他の実施例に係る断熱構造体の断面図、第
7図は、本発明のさらに他の実施例に係る断熱構
造体の斜視断面図である。 1A,1B,1C…断熱構造体、2…鋼板、3
…発泡ウレタン、7,7A,7B,7C,7D…
真空管状体、9…表皮層。
FIG. 1 is a perspective cross-sectional view showing an example of a conventional heat insulating structure using foamed urethane, FIG. 2 is a perspective view showing a conventional vacuum bag-like body used for vacuum insulation, and FIG. The figure is a perspective sectional view of a heat insulating structure according to an embodiment of the present invention, FIG. 4 is a front view of the evacuated tubular body in FIG. 3, and FIG. FIG. 6 is a front view showing an example, FIG. 6 is a cross-sectional view of a heat-insulating structure according to another embodiment of the present invention, and FIG. 7 is a perspective cross-sectional view of a heat-insulating structure according to still another embodiment of the present invention. be. 1A, 1B, 1C...insulating structure, 2...steel plate, 3
...Urethane foam, 7, 7A, 7B, 7C, 7D...
Vacuum tubular body, 9...epidermal layer.

Claims (1)

【特許請求の範囲】 1 低熱伝導率の発泡部材を構成要素とする断熱
構造体において、内部が真空である管状体、すな
わち真空管状体を、発泡部材の内部に配設したこ
とを特徴とする断熱構造体。 2 真空管状体の材質をガラス、もしくはプラス
チツクにしたものである特許請求の範囲第1項記
載の断熱構造体。 3 真空管状体の内壁、もしくは外壁に金属を薄
膜形成したものである特許請求の範囲第2項記載
の断熱構造体。 4 真空管状体の形成を、直管、円型管、コ字型
管、ロ字型管もしくはL字型管にしたものである
特許請求の範囲第1項記載の断熱構造体。 5 発泡部材の外表面に、硬い表皮層を形成した
ものである特許請求の範囲第1項記載の断熱構造
体。 6 真空管状体を、断熱構造体の断熱壁と平行
に、一列もしくは複数列に配設したものである特
許請求の範囲第1項記載の断熱構造体。
[Scope of Claims] 1. A heat insulating structure comprising a foamed member with low thermal conductivity as a component, characterized in that a tubular body having a vacuum inside, that is, a vacuum tubular body is disposed inside the foamed member. Insulated structure. 2. The heat insulating structure according to claim 1, wherein the vacuum tubular body is made of glass or plastic. 3. The heat insulating structure according to claim 2, wherein a thin metal film is formed on the inner wall or outer wall of a vacuum tubular body. 4. The heat insulating structure according to claim 1, wherein the vacuum tubular body is formed into a straight tube, circular tube, U-shaped tube, R-shaped tube, or L-shaped tube. 5. The heat insulating structure according to claim 1, wherein a hard skin layer is formed on the outer surface of the foam member. 6. The heat insulating structure according to claim 1, wherein the vacuum tubular bodies are arranged in one or more rows parallel to the heat insulating wall of the heat insulating structure.
JP6787980A 1980-05-23 1980-05-23 Heat insulating structure Granted JPS56164845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6787980A JPS56164845A (en) 1980-05-23 1980-05-23 Heat insulating structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6787980A JPS56164845A (en) 1980-05-23 1980-05-23 Heat insulating structure

Publications (2)

Publication Number Publication Date
JPS56164845A JPS56164845A (en) 1981-12-18
JPS633740B2 true JPS633740B2 (en) 1988-01-26

Family

ID=13357627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6787980A Granted JPS56164845A (en) 1980-05-23 1980-05-23 Heat insulating structure

Country Status (1)

Country Link
JP (1) JPS56164845A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518423Y2 (en) * 1988-09-07 1993-05-17

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164024U (en) * 1984-04-10 1985-10-31 タキロン株式会社 composite board
JPH08238700A (en) * 1995-12-26 1996-09-17 Rikiou:Kk Heat-insulating sheet and heat-insulating powder used therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS388678Y1 (en) * 1959-09-07 1963-05-09
US3769770A (en) * 1969-01-23 1973-11-06 Sanders Nuclear Corp Thermal super insulation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895252U (en) * 1972-02-16 1973-11-13
JPS56153793U (en) * 1980-04-17 1981-11-17

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS388678Y1 (en) * 1959-09-07 1963-05-09
US3769770A (en) * 1969-01-23 1973-11-06 Sanders Nuclear Corp Thermal super insulation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518423Y2 (en) * 1988-09-07 1993-05-17

Also Published As

Publication number Publication date
JPS56164845A (en) 1981-12-18

Similar Documents

Publication Publication Date Title
US2989156A (en) Heat insulating panels
JP4303674B2 (en) Insulation block and cold storage
JP3045543B2 (en) Improved compact vacuum insulation
US4513041A (en) Tubular vacuum-tight enclosures for thermal and acoustical insulating panels
JPS63187084A (en) Vacuum heat-insulating panel
WO1991002856A1 (en) Thermal insulations using vacuum panels
WO2002052208A1 (en) An insulated unit
JPH11159693A (en) Vacuum heat insulating panel and manufacture therefor and heat insulating box body using it
JPH04503701A (en) Concise vacuum insulation
KR20150112434A (en) vacuum insulation panel
GB2087135A (en) Thermal insulation for eg sodium-sulphur cells
JPS633740B2 (en)
KR20100119939A (en) Vacuum insulator and envelope for vacuum insulator
JP3876551B2 (en) Insulation and refrigerator
KR20030011934A (en) Evacuated panel for thermal insulation of cylindrical bodies
JP2003269687A (en) Evacuated heat insulating panel
JPS6392897A (en) Isothermal structure
JP4750709B2 (en) Reduction of PEM fuel cell complete freezing cycle
JPH08159373A (en) Vacuum heat insulating material
JP2004286252A (en) Heat insulation panel
JP2006090423A (en) Vacuum heat insulating panel
JPH0128310B2 (en)
JPH01150098A (en) Heat insulator
JP2000018485A (en) Evacuated insulation panel
JPS6356858B2 (en)