JPS6337360B2 - - Google Patents

Info

Publication number
JPS6337360B2
JPS6337360B2 JP60031686A JP3168685A JPS6337360B2 JP S6337360 B2 JPS6337360 B2 JP S6337360B2 JP 60031686 A JP60031686 A JP 60031686A JP 3168685 A JP3168685 A JP 3168685A JP S6337360 B2 JPS6337360 B2 JP S6337360B2
Authority
JP
Japan
Prior art keywords
radioactive
ion exchange
volume
reaction
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60031686A
Other languages
Japanese (ja)
Other versions
JPS60233598A (en
Inventor
Horutsu Hansu
Kenmerinku Mihyaeru
Gyuntaa Kunatsukushutetsuto Hansu
Nooozeru Uorufuganku
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nukem GmbH
Original Assignee
Nukem GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nukem GmbH filed Critical Nukem GmbH
Publication of JPS60233598A publication Critical patent/JPS60233598A/en
Publication of JPS6337360B2 publication Critical patent/JPS6337360B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/32Processing by incineration

Description

【発明の詳細な説明】 本発明は放射性有機廃棄物の処理法に関する。[Detailed description of the invention] The present invention relates to a method for treating radioactive organic waste.

600〜1100℃で、閉じた炉内で過剰の水蒸気を
向流させて有機成分の灰化を行い、排ガスを後反
応のために再び800〜1100℃の温度帯域を通過さ
せる、放射能汚染イオン交換樹脂を熱分解によつ
て処理する方法はすでに提案されている。
At 600-1100 °C, excess water vapor is countercurrent in a closed furnace to ash the organic components, and the exhaust gas is passed through the temperature band 800-1100 °C again for post-reaction, radioactive contamination ions. Methods of treating exchange resins by pyrolysis have already been proposed.

原子力工業では多数の汚染された有機廃棄物
(紙、布切れ、プラスチツク、手袋など)が発生
し、これらはかさ張り、放射性物質を比較的少し
しか含まないにもかかわらず、常用法で処理する
ことができない。とくに非常に有毒なプルトニウ
ムまたは人工放射性核種を含む廃棄物が挙げられ
る。このような廃棄物を処理するすべての方法の
目的は汚染排ガスまたは放射性排水の発生なし
に、灰化によつて容積を減少し、灰化残渣を除去
することである。
The nuclear industry generates a large amount of contaminated organic waste (paper, rags, plastics, gloves, etc.) that, despite being bulky and containing relatively little radioactive material, cannot be disposed of using conventional methods. I can't. In particular, wastes containing highly toxic plutonium or artificial radionuclides are mentioned. The aim of all methods of treating such waste is to reduce the volume by ashing and remove the ash residue without generating contaminated exhaust gases or radioactive wastewater.

前記提案によれば放射能汚染有機廃棄物の処理
は閉鎖した炉装置内で有機成分を向流する過剰の
水蒸気によつて600〜1100℃でガス化することに
よつて達成され、その際排ガスを後反応のためも
う1度800〜1100℃の温度ゾーンを通過させる。
According to the proposal, the treatment of radioactively contaminated organic waste is achieved by gasification of the organic components in a closed furnace arrangement at 600-1100°C with an excess of water vapor flowing countercurrently, with the exhaust gases being For post-reaction, pass through the temperature zone of 800-1100℃ once more.

動力原子炉および再処理装置のような原子力工
業装置には水処理装置から1回または数回の負荷
で消耗した放射能汚染された多量のイオン交換樹
脂が発生し、これらは最終貯蔵場所に送らなけれ
ばならない。これらは放射性物質をとくに放射性
重金属イオンの形で含む。
Nuclear industrial equipment such as power reactors and reprocessing units generate large quantities of radioactively contaminated ion exchange resins from water treatment equipment that are depleted in one or more loads and sent to final storage. There must be. These contain radioactive substances, especially in the form of radioactive heavy metal ions.

この放射性樹脂を堆積物として最終貯蔵するこ
とは許可されない。これらは固定物質と混合して
容器に充てんしなければならない。このように得
た固体には強度と浸出安定性に対し高度の要求が
課される。
Terminal storage of this radioactive resin as a deposit is not permitted. These must be mixed with the fixative and filled into containers. The solids obtained in this way are subject to high demands on strength and leaching stability.

次第に厳しくなる貯蔵条件および将来予期され
る貯蔵費用の上昇のため廃棄物の量を減少するこ
とがどうしても必要である。これは固定物質へ導
入する前に廃棄材料の容積を減少することによら
なければ可能でない。
Due to increasingly demanding storage conditions and the anticipated increase in storage costs in the future, it is imperative to reduce the amount of waste. This is only possible by reducing the volume of waste material before introducing it into the fixation material.

放射性イオン交換樹脂の場合これは現在公知の
方法によれば、原子力工業装置から発生するよう
な膨潤した水に富む状態から出発して、この樹脂
を乾燥処理することによつて達成される。しかし
この方法で達成された容積減少は出発容積の約50
%にしか達しない。他の公知熱処理によつても容
積減少は前記程度にしかならない。しかもこの場
合その処理が困難な排ガス問題が生ずる。
In the case of radioactive ion exchange resins, this is achieved according to currently known methods by starting from a swollen, water-rich state, such as that generated from nuclear industrial equipment, and drying the resin. However, the volume reduction achieved with this method is approximately 50% of the starting volume.
It only reaches %. Even with other known heat treatments, the volume reduction is only to the above extent. Moreover, in this case, an exhaust gas problem arises which is difficult to treat.

原子炉の有機廃棄物を高熱加水分解により完全
に灰化する前記提案も放射能汚染イオン交換樹脂
の処理には最適ではない。それは完全灰化の際放
射能の大部分は排ガスまたは排ガスフイルタへ移
行し、これらを次に新たに灰化することが必要に
なるからである。
The above-mentioned proposal for completely ashing organic waste from nuclear reactors by high-temperature hydrolysis is also not optimal for treating radioactively contaminated ion exchange resins. This is because, during complete ashing, most of the radioactivity is transferred to the exhaust gas or exhaust gas filter, which then needs to be ashed anew.

それゆえ本発明の目的は放射性排ガスの問題が
発生しないように、放射能汚染イオン交換樹脂の
容積を減少する方法を得ることである。
It is therefore an object of the present invention to provide a method for reducing the volume of radioactively contaminated ion exchange resins so that radioactive exhaust gas problems do not occur.

この目的は前記提案によるイオン交換樹脂の高
熱加水分解処理を本発明により、水蒸気によるガ
ス化を600〜800℃で、装入イオン交換樹脂の容積
が出発容積の4〜10容量%になるまで行うことに
よつて解決される。
This purpose is to carry out the high-temperature hydrolysis treatment of the ion exchange resin according to the above-mentioned proposal according to the present invention, by gasifying it with steam at 600-800°C until the volume of the charged ion-exchange resin becomes 4-10% by volume of the starting volume. This is solved by

それゆえ出発容積の4〜10%がまだ装置内にあ
るときに高熱加水分解処理を中止する。この時点
は純光学的に決定し、または実験により1定の温
度および樹脂で時間を決定することができる。
The hyperthermal hydrolysis process is therefore stopped when 4-10% of the starting volume is still in the apparatus. This point can be determined purely optically or experimentally at a constant temperature and resin.

本発明の方法は放射能が炭化された樹脂に残
り、またはごく1部しか凝縮液へ移行せず、排ガ
スはほとんど放射能がないので、高価な排ガス処
理を必要としない重要な利点を有する。
The method of the invention has the important advantage that no expensive exhaust gas treatment is required, since the radioactivity remains in the carbonized resin or only a small portion is transferred to the condensate and the exhaust gas is almost radioactive.

凝縮液の蒸発の際残る蒸発残液は有利に炭化さ
れた樹脂と混合し、いつしよに固化することがで
きる。樹脂の膨潤力は炭化によつて失われている
ので、蒸発残液との混合によつて容積は増大しな
い。それゆえ最終容積はこの場合使用したイオン
交換樹脂の出発容積の10%より小さい。
The evaporation residue remaining during evaporation of the condensate can advantageously be mixed with the carbonized resin and solidified at any time. Since the swelling power of the resin is lost due to carbonization, the volume does not increase by mixing with the evaporation residue. The final volume is therefore less than 10% of the starting volume of the ion exchange resin used in this case.

次に図面により本発明の方法を説明する。 Next, the method of the present invention will be explained with reference to the drawings.

装置はたとえば加熱装置1を備える流動床反応
器2を有し、この中で放射性イオン交換樹脂に過
熱水蒸気が送られる。水蒸気は蒸発器3でつくら
れ、過熱器4で反応温度に加熱される。流動床反
応器2を去つた後、水蒸気は凝縮性および非凝縮
性反応生成物とともに2段スプレー凝縮器5に送
られる。そこで水蒸気および凝縮性反応生成物が
凝縮する。非凝縮性反応生成物は吸着フイルタ6
を介して排ガス系に送られ、場合により後処理さ
れる。
The device has, for example, a fluidized bed reactor 2 with a heating device 1, in which superheated steam is fed to the radioactive ion exchange resin. Steam is produced in an evaporator 3 and heated to a reaction temperature in a superheater 4. After leaving the fluidized bed reactor 2, the water vapor is sent to a two-stage spray condenser 5 together with condensable and non-condensable reaction products. Water vapor and condensable reaction products condense there. Non-condensable reaction products are filtered through adsorption filter 6.
is sent to the exhaust gas system via the gas and optionally processed.

凝縮液は蒸発器3へ送り戻し、新たに蒸発させ
る。その際発生する水蒸気は再びプロセスに送
る。水蒸気の1つの分流は過熱器4を介して再び
流動床反応器に達し、第2の分流は凝縮器7で凝
縮し、続いてポンプ8およびノズル9を介してス
プレー凝縮器5へスプレーされる。それによつて
プロセス媒体である水または水蒸気の閉鎖回路が
できる。
The condensed liquid is sent back to the evaporator 3 and evaporated again. The water vapor generated during this process is sent back to the process. One substream of water vapor reaches the fluidized bed reactor again via superheater 4, the second substream is condensed in condenser 7 and subsequently sprayed via pump 8 and nozzle 9 into spray condenser 5. . This creates a closed circuit for the process medium water or steam.

蒸発器3の残液はイオン交換樹脂炭化の際発生
した凝縮性の放射性反応生成物からなる。これは
不連続的に貯蔵タンク10へ抜取り、そこからポ
ンプ11により炭化されたイオン交換樹脂と混合
するために送られる。
The residual liquid in the evaporator 3 consists of condensable radioactive reaction products generated during carbonization of the ion exchange resin. This is withdrawn discontinuously into a storage tank 10 from where it is sent by pump 11 for mixing with the carbonized ion exchange resin.

次に本発明の方法を例により説明する。 The method of the invention will now be explained by way of example.

例 1 固定床反応器へイオン交換樹脂粒を装入し、反
応器を閉鎖する。水蒸気導入時に反応器内で水蒸
気が凝縮しないように器壁の直接加熱により反応
器を150℃の温度に加熱する。次に650℃の過熱水
蒸気を導入する。炭化反応は約3時間続き、その
後になお出発容積の8%が存在する。次に反応器
を外壁から冷却する。冷却した反応生成物を取出
すことができる。排ガスの放射能は装入イオン交
換樹脂の放射能の少なくとも1000分の1に減少し
たので、特殊な後処理を必要とせず、吸着フイル
タを介して大気へ放出することができた。
Example 1 Charge ion exchange resin particles into a fixed bed reactor and close the reactor. The reactor is heated to a temperature of 150°C by direct heating of the vessel wall to prevent condensation of water vapor within the reactor when steam is introduced. Next, superheated steam at 650℃ is introduced. The carbonization reaction lasts approximately 3 hours, after which time 8% of the starting volume is still present. The reactor is then cooled from the outer wall. The cooled reaction product can be removed. Since the radioactivity of the exhaust gas was reduced to at least 1/1000 of the radioactivity of the charged ion exchange resin, it could be released into the atmosphere through an adsorption filter without requiring any special post-treatment.

例 2 流動床反応器へイオン交換樹脂を装入する。反
応器を壁の直接加熱によつて180℃の温度に加熱
する。反応器温度が十分上がつたとき、700℃の
過熱蒸気を送る。水蒸気はイオン交換樹脂の流動
化ガスおよび反応ガスとして役立つ。反応成分が
十分接触するので炭化時間は残存容積7%で約1
時間に短縮される。固体粒子は個々の粒子として
得られる。この構造は放射性凝縮液との混合およ
び固定物質内への結合を容易にする。
Example 2 Charge ion exchange resin to a fluidized bed reactor. The reactor is heated to a temperature of 180° C. by direct wall heating. When the reactor temperature has risen sufficiently, superheated steam at 700℃ is sent. Water vapor serves as a fluidizing gas and a reactant gas for the ion exchange resin. Since the reaction components are in sufficient contact, the carbonization time is approximately 1 at a residual volume of 7%.
time is reduced. Solid particles are obtained as individual particles. This structure facilitates mixing with the radioactive condensate and binding into the immobilized material.

反応生成物を炭化過程終了後、ガス流で冷却
し、ついで反応器から取出すことができる。排ガ
スは例1の場合と同様に処理することができた。
After the carbonization process has ended, the reaction product can be cooled with a gas stream and then removed from the reactor. The exhaust gas could be treated in the same way as in Example 1.

酸性またはアルカリ性イオン交換樹脂を炭化す
る際とくにスプレー凝縮器5内で反応ガスを中和
し、またはイオン交換樹脂は中性反応ガスが発生
するように混合しなければならない。
When carbonizing acidic or alkaline ion exchange resins, the reaction gas must be neutralized, especially in the spray condenser 5, or the ion exchange resin must be mixed in such a way that a neutral reaction gas is generated.

例 3 異なる性質のイオン交換樹脂たとえば酸性樹脂
とアルカリ性樹脂を互いに混合する。混合物を装
置内で例1または2の反応条件下に炭化する。そ
の際たとえば1つはSO3、他はアミンが発生す
る。イオン交換樹脂の混合を適当に調節すれば、
化学的に中性の反応生成物が発生する。
Example 3 Ion exchange resins of different nature, for example acidic and alkaline resins, are mixed together. The mixture is carbonized in an apparatus under the reaction conditions of Example 1 or 2. In this case, for example, one generates SO 3 and the other generates amine. If you adjust the mixture of ion exchange resin appropriately,
Chemically neutral reaction products are generated.

例 4 酸性イオン交換樹脂または酸性に反応する酸性
およびアルカリ性イオン交換樹脂の混合物を反応
器に装入し、例1または2のように炭化する。
Example 4 An acidic ion exchange resin or a mixture of acidically reactive acidic and alkaline ion exchange resins is charged to a reactor and carbonized as in Example 1 or 2.

しかしプロセス蒸気に反応器へ入る前に反応生
成物を中和するため石灰乳、粉末石灰またはCa
(OH)2水溶液を供給する。
However, to neutralize the reaction products before the process vapor enters the reactor, use lime milk, powdered lime or Ca.
Supply (OH) 2 aqueous solution.

例 5 酸性イオン交換樹脂または酸性に反応する酸性
およびアルカリ性イオン交換樹脂の混合物を反応
器へ装入する。
Example 5 An acidic ion exchange resin or a mixture of acid-reactive acidic and alkaline ion exchange resins is charged to a reactor.

炭化法は例1または2のとおり行う。酸性のガ
ス状反応生成物をスプレー凝縮器内で中和する。
そのため冷却水にスプレーノズル9へ入る前に適
当な計量装置を介して石灰乳またはCa(OH)2
供給する。
The carbonization process is carried out as in Example 1 or 2. The acidic gaseous reaction products are neutralized in a spray condenser.
For this purpose, milk of lime or Ca(OH) 2 is supplied to the cooling water via a suitable metering device before it enters the spray nozzle 9.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の方法を実施する装置の配置を示
す図である。 2……反応器、3……蒸発器、5,7……凝縮
器。
The drawing shows the arrangement of equipment for carrying out the method of the invention. 2... Reactor, 3... Evaporator, 5, 7... Condenser.

Claims (1)

【特許請求の範囲】 1 600〜1100℃で、閉じた炉内で過剰の水蒸気
を向流させて有機成分の灰化を行い、排ガスを後
反応のために再び800〜1100℃の温度帯域を通過
させる、放射性有機廃棄物の処理法において、放
射性有機廃棄物として放射性イオン交換樹脂を処
理する場合、水蒸気による灰化を600〜800℃で、
装入した放射性イオン交換樹脂の容積が出発容積
の40〜10容量%になるまで行い、排ガスを高温の
後処理なしで大気に放出することを特徴とする放
射性有機廃棄物の処理法。 2 閉鎖回路内に発生した放射性凝縮残液を炭化
した樹脂と混合し、最終貯蔵所に送る特許請求の
範囲第1項記載の方法。 3 反応生成物を反応の間または後に中和する特
許請求の範囲第1項または第2項記載の方法。
[Claims] 1. At 600 to 1100°C, excess water vapor is countercurrently flowed in a closed furnace to incinerate organic components, and the exhaust gas is heated again to a temperature range of 800 to 1100°C for post-reaction. In the radioactive organic waste treatment method, when treating radioactive ion exchange resin as radioactive organic waste, ashing with steam at 600 to 800 ° C.
A method for treating radioactive organic waste, characterized in that the volume of the charged radioactive ion exchange resin is 40 to 10% by volume of the starting volume, and the exhaust gas is discharged into the atmosphere without high-temperature post-treatment. 2. The method according to claim 1, wherein the radioactive condensed residual liquid generated in the closed circuit is mixed with carbonized resin and sent to a final storage facility. 3. The method according to claim 1 or 2, wherein the reaction product is neutralized during or after the reaction.
JP60031686A 1977-02-26 1985-02-21 Method of treating radioactive organic waste Granted JPS60233598A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2708492.0 1977-02-26
DE2708492A DE2708492C2 (en) 1977-02-26 1977-02-26 Process for the treatment of radioactively contaminated ion exchange resins

Publications (2)

Publication Number Publication Date
JPS60233598A JPS60233598A (en) 1985-11-20
JPS6337360B2 true JPS6337360B2 (en) 1988-07-25

Family

ID=6002301

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2080378A Pending JPS53107600A (en) 1977-02-26 1978-02-24 Method of disposing of radioactive organic waste
JP60031686A Granted JPS60233598A (en) 1977-02-26 1985-02-21 Method of treating radioactive organic waste

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2080378A Pending JPS53107600A (en) 1977-02-26 1978-02-24 Method of disposing of radioactive organic waste

Country Status (7)

Country Link
JP (2) JPS53107600A (en)
BR (1) BR7800508A (en)
DE (1) DE2708492C2 (en)
ES (1) ES465452A2 (en)
FR (1) FR2382076A2 (en)
GB (1) GB1577383A (en)
IT (1) IT1156446B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417589U (en) * 1987-07-20 1989-01-27
JPH027693U (en) * 1988-06-27 1990-01-18

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4410126A (en) * 1978-10-12 1983-10-18 Cooper Industries, Inc. Mass soldering system
GB2082376B (en) * 1980-08-12 1984-02-22 British Nuclear Fuels Ltd Waste disposal
CA1163431A (en) * 1982-08-20 1984-03-13 Atomic Energy Of Canada Limited - Energie Atomique Du Canada, Limitee Method of reducing the volume of radioactive waste
JP5961044B2 (en) * 2012-06-01 2016-08-02 日本碍子株式会社 Volume reduction treatment method and volume reduction treatment apparatus for persistent degradable waste
EP3246924A4 (en) * 2015-01-15 2018-09-05 Hankook Technology Inc. System for reducing volume of low-level radioactive wastes by using superheated vapor
BE1026747B1 (en) 2018-10-31 2020-06-04 Montair Process Tech System for the thermal oxidation of a waste gas with hydrocarbon compounds to an oxidized gas and the use thereof
BE1026748B1 (en) 2018-10-31 2020-06-04 Montair Process Tech System and method for pyrolysing organic waste

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1958464A1 (en) * 1969-11-21 1971-06-03 Alkem Gmbh Process for wet chemical combustion of organic material
DE2251007C2 (en) * 1972-10-18 1984-09-27 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Incineration furnace for radioactive waste
AT338388B (en) * 1975-06-26 1977-08-25 Oesterr Studien Atomenergie METHOD AND DEVICE FOR TRANSFERRING RADIOACTIVE ION EXCHANGE RESINS INTO A STORAGE FORM

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417589U (en) * 1987-07-20 1989-01-27
JPH027693U (en) * 1988-06-27 1990-01-18

Also Published As

Publication number Publication date
JPS60233598A (en) 1985-11-20
DE2708492C2 (en) 1983-01-20
FR2382076A2 (en) 1978-09-22
ES465452A2 (en) 1979-05-16
IT1156446B (en) 1987-02-04
FR2382076B2 (en) 1983-05-27
JPS53107600A (en) 1978-09-19
IT7867323A0 (en) 1978-02-16
DE2708492A1 (en) 1978-08-31
GB1577383A (en) 1980-10-22
BR7800508A (en) 1978-10-03

Similar Documents

Publication Publication Date Title
US4710318A (en) Method of processing radioactive waste
US4499833A (en) Thermal conversion of wastes
JPH0452437B2 (en)
JPS6337360B2 (en)
EP0179994B1 (en) Process for drying a chelating agent
JPH1123793A (en) Method for treating ion exchange resin
JP7095130B2 (en) Wet decomposition of waste ion exchange resin A method of preparing a curable slurry with waste liquid and using it to solidify / fix other waste, and an improved wet oxidation method of waste ion exchange resin and organic matter.
US4981616A (en) Spent fuel treatment method
JP4301992B2 (en) Decontamination waste liquid processing method and processing apparatus
JPS63315998A (en) Treatment of radioactive waste liquid
CN220731197U (en) Radioactive waste filter element purifying treatment system
WO2023019563A1 (en) Optimization of wet oxidation of waste resin and method for treating waste with oxidation waste liquid
JPS6219796A (en) Method of solidifying and treating radioactive liquid
JPS6133480B2 (en)
JP2728335B2 (en) Decomposition method of organic matter in radioactive liquid waste
Mozes Volume reduction of spent ion-exchange resin by acid digestion
JP3006078B2 (en) Processing method and equipment for activated carbon
JPH0564319B2 (en)
JPS62165197A (en) Method of processing radioactive waste liquor
JPS63100400A (en) Hydrothermal processing method of waste solvent
JPS58114723A (en) Fluidized bed reacting device by microwave heating
Abrams et al. Spray drying of liquid radioactive wastes
JPS59184900A (en) Method of decomposing and volume-decreasing radioactive organic waste containing sulfur
JPH04339299A (en) Treatment of radioactive ion exchange resin
JPS59104597A (en) Method of processing radioactive waste