JPS6337142A - Production of electrically conductive resin composition - Google Patents

Production of electrically conductive resin composition

Info

Publication number
JPS6337142A
JPS6337142A JP18076486A JP18076486A JPS6337142A JP S6337142 A JPS6337142 A JP S6337142A JP 18076486 A JP18076486 A JP 18076486A JP 18076486 A JP18076486 A JP 18076486A JP S6337142 A JPS6337142 A JP S6337142A
Authority
JP
Japan
Prior art keywords
fibers
polymer
bundle
thermoplastic resin
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18076486A
Other languages
Japanese (ja)
Inventor
Hidekazu Kurihara
栗原 英一
Takehiko Kubo
窪 武彦
Haruhei Ono
小野 晴平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP18076486A priority Critical patent/JPS6337142A/en
Publication of JPS6337142A publication Critical patent/JPS6337142A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a composition having good appearance and containing dispersed fibers in well disentangled state, preventing the lowering of aspect ratio of the fiber, by impregnating a bundle of electrically conductive filaments with an impregnant produced by compounding short fibers and short particles in a thermoplastic polymer and coating the impregnated conductive filaments with other thermoplastic resin. CONSTITUTION:An impregnant containing shot fibers of an average diameter of <=1,000mum and/or particles having an average particle diameter of <=100mum and a thermoplastic polymer having a molecular weight of <=10,000 is impregnated in a bundle of electrically conductive filaments and, if necessary, the bundle is coated with a thermoplastic resin other than the above polymer. The thermoplastic polymer is preferably polyethylene, polypropylene, etc. The thermoplastic resin is an olefin resin when an ethylene polymer is used in the impregnant or a polystyrene, etc., when the polymer of the impregnant is styrene polymer.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は導電性繊維の分散が良好で、優れた導電性を有
する成形品が容易に得られるmW性樹脂組成物の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a mW resin composition in which conductive fibers are well dispersed and a molded article having excellent conductivity can be easily obtained.

(従来の技術および問題点) 電子工学的装置及びその構成部品には金属製に代り合成
樹脂製ハウジングを使用する事が多くなっている。しか
しながら合成樹脂ハウジングは電磁波を遮蔽する能力が
ないため雑電波による障害を受は易く、また他の合成樹
脂ハウジングを使用し九機器に障害を及ぼすおそれがち
、る。この念め電磁波遮蔽性能をもった導電性樹脂組成
物の研究が行われており、熱可塑性樹脂にカーゼンブラ
ック、カーゲン繊維、金属フレーク、金属繊維等の導電
性材料を混練したものが多い。しかしながら、カーゴン
ブラック、カー?ン繊維、金属フレーク、金属短繊維(
線径30〜100μm)等の導電性材料を用いた場合に
は、これらを10〜bと多fkK含有させる必要がある
ため、成形品外観不良、比重の増大などが生じるという
欠点があり念。
BACKGROUND OF THE INVENTION Electronic devices and their components are increasingly using plastic housings instead of metal housings. However, synthetic resin housings do not have the ability to shield electromagnetic waves, so they are susceptible to interference from radio waves, and there is a risk that other synthetic resin housings may cause interference to other equipment. Research is being carried out on conductive resin compositions with electromagnetic wave shielding properties, and many of these compositions are made by kneading conductive materials such as Kazen black, Kagen fiber, metal flakes, and metal fibers into thermoplastic resin. However, Cargon Black, Car? fibers, metal flakes, short metal fibers (
When using conductive materials such as wires with a wire diameter of 30 to 100 μm, it is necessary to contain a high fkK content of 10 to 100 μm, which may result in poor appearance of the molded product and an increase in specific gravity.

また、線径の小さいC線径4〜30μm)導電性長繊維
の束を導電性材料として用いた盛合、これをアスペクト
比が大きい状態で均一に分散させることができれば少食
の添加で十分な電磁波遮蔽性能を有し、しかも外観不良
、比重の増大などの欠点のない成形品が得られることは
知られているが、実際には繊維間のからみ、密着等によ
り繊維のほぐれが悪く、外観不良を生じ、電磁波遮蔽性
能も十分には得られないという問題があり、この対策と
して繊維をほぐし、均一に分散させようと強く混練する
と、繊維の切断が起り、アス(クト比が低下して、やは
り十分な電磁波遮蔽性能が得られないという現状にある
In addition, if a bundle of conductive long fibers (with a small wire diameter of 4 to 30 μm) is used as a conductive material, and if it can be uniformly dispersed with a large aspect ratio, the electromagnetic wave will be sufficient with the addition of a small amount. It is known that it is possible to obtain molded products that have shielding performance and are free from defects such as poor appearance and increased specific gravity, but in reality, the fibers are difficult to unravel due to entanglement and adhesion between the fibers, resulting in poor appearance. There is a problem that electromagnetic wave shielding performance cannot be obtained sufficiently.As a countermeasure to this problem, if the fibers are loosened and kneaded vigorously in order to disperse them uniformly, the fibers will be cut and the aspect ratio will decrease. The current situation is that sufficient electromagnetic wave shielding performance cannot be obtained.

(問題点を解決する九めの手段) 本発明者等は、上記の如き現状に鑑み、鋭意研究した結
果、平均線径1.000 am以下の短繊維および/又
は平均粒径100μm以下の粒子と、分子t10,00
0以下の熱可塑性重合体とを含有してなる含浸剤を4電
性長繊維の束に含浸させ、次いで必要に応じて熱可塑性
樹脂で被覆しておくと、線径の小さい導電性繊維の束で
あっても繊維のほぐnが良好で、容易に均一に分散し、
アスペクト比の低下も少ないこと、また、ここで用いる
平均粒径100μm以下の粒子の使用量が含浸液中の粒
子濃度全調節することにより広い範囲で任意に選択でき
るため、該粒子として公知の添加剤、例えば顔料、充填
剤、難燃剤′i?を用いると、導1ル性長繊維による′
1磁波遮蔽性能の付与と同時に、樹脂組成物の着色、燃
焼熱の低下、難燃性の付与等が1度の処理で容易にでき
ることを見い出し、本発明を完成するに至っ九。
(Ninth Means to Solve the Problem) In view of the current situation as described above, the inventors of the present invention have conducted extensive research and found that short fibers with an average diameter of 1.000 am or less and/or particles with an average particle diameter of 100 μm or less have been developed. and the molecule t10,00
By impregnating a bundle of tetraelectric long fibers with an impregnating agent containing a thermoplastic polymer of 0 or less, and then coating the bundle with a thermoplastic resin as necessary, it is possible to form conductive fibers with a small wire diameter. Even if it is a bundle, the fibers loosen easily and are easily and uniformly dispersed.
The reduction in aspect ratio is small, and the amount of particles with an average particle diameter of 100 μm or less used here can be arbitrarily selected within a wide range by adjusting the total particle concentration in the impregnating liquid. agents, such as pigments, fillers, flame retardants'i? By using conductive long fibers,
1. We have discovered that, in addition to imparting magnetic wave shielding performance, it is possible to easily color a resin composition, reduce combustion heat, impart flame retardancy, etc. in a single treatment, and have completed the present invention.

すなわち本発明は、平均線径1.000 Jim ?)
、下の短繊維および/又は平均粒径100μm以下の粒
子と、分子[10,000以下の熱可塑性重合体(A)
とを含有してなる含浸剤を導電性長繊維の束に含浸させ
、次いで必要に応じて該重合体(A)以外の熱可塑性樹
脂(B)で被覆することを!徴とする導電性樹脂組成物
の製造方法を提供するものである。
That is, the present invention has an average wire diameter of 1.000 Jim? )
, short fibers and/or particles with an average particle size of 100 μm or less, and a thermoplastic polymer (A) with a molecular weight of 10,000 or less
A bundle of conductive long fibers is impregnated with an impregnating agent containing the following, and then, if necessary, coated with a thermoplastic resin (B) other than the polymer (A)! The present invention provides a method for producing a conductive resin composition having the following characteristics.

本発明で用いる導電性長繊維の束としては、従来公知の
導電性長繊維の束がいずれも使用でき、例えばステンレ
ススチール、鉄、鋼などの金属長繊維の束、カーゲン長
繊維の束、金属メツキを施したガラス長砿維の束等が挙
げられる。線維の平均線径としては、通常4〜100μ
mのものを用いるが、少量の添加でより有効な電磁波遮
蔽効果を得るためには、4〜30μmのものが好ましい
。尚、この様な導電性長繊維の束は、通常数百〜数万本
の繊維を一束としている。
As the bundle of conductive long fibers used in the present invention, any conventionally known bundle of conductive long fibers can be used, such as a bundle of metal long fibers such as stainless steel, iron, steel, a bundle of Kagen long fibers, a bundle of metal long fibers, etc. Examples include bundles of long glass fibers with plating. The average diameter of the fibers is usually 4 to 100μ.
In order to obtain a more effective electromagnetic wave shielding effect with a small amount of addition, a thickness of 4 to 30 μm is preferable. Incidentally, such a bundle of conductive long fibers is usually made up of several hundred to tens of thousands of fibers.

本発明で用いる平均線径1,000Am以下の短繊維と
しては、従来公知の短繊維が使用でき、例えばステンレ
ススチール、鉄、銅などの金属短繊維、カーゼン短繊維
、ガラス短繊維、金属メツキ音節したカーゲン短檀維、
金属メツキを施し九ガラス短繊維、その他の無機質短繊
維が旙げられるが、なかでも線維の分散性と作業性に優
れる点で線径4〜60μm、アスペクト比lO〜70の
短繊維が好ましい。
As the short fibers with an average diameter of 1,000 Am or less used in the present invention, conventionally known short fibers can be used, such as metal short fibers such as stainless steel, iron, and copper, carzen short fibers, glass short fibers, and metal-metallic short fibers. Kagen tandanwei,
Although metal-plated short glass fibers and other inorganic short fibers can be produced, short fibers having a wire diameter of 4 to 60 μm and an aspect ratio of 10 to 70 are particularly preferred because of their excellent fiber dispersibility and workability.

また、平均粒径100μm以下の粒子としては、融点が
分子t1o、ooo以下の熱可塑性重合体(4)よりも
高い耐熱性のある粒子が挙げられ、例えばカーデンブラ
ック、チタンホワイト、ペンがう等の無機顔料、フタロ
シアニン、モノアゾ、ポリアゾ、キナクリドン等の有機
顔料、炭酸カルシウム、二酸化ケイ素、タルク、マイカ
等の充填剤があシ、なかでも粒子の分散性、作業性の点
で平均粒径0.01〜60μmの粒子が好ましい。
Further, examples of particles having an average particle diameter of 100 μm or less include particles having higher heat resistance than the thermoplastic polymer (4) having a melting point of molecule t1o, ooo or less, such as carden black, titanium white, penguin, etc. Inorganic pigments, organic pigments such as phthalocyanine, monoazo, polyazo, and quinacridone, and fillers such as calcium carbonate, silicon dioxide, talc, mica, etc. Particles of 01 to 60 μm are preferred.

本発明で用いる分子i1Q、000以下の熱可塑性重合
体fA]としては、数平均分子量がIQ、000以下の
エチレン系重合体、プロピレン系重合体、スチレン系重
合体、ポリアミド系重合体、石油樹脂、Iリヒドロキシ
オレフィン等の公知の熱可塑性重合体がいずれも使用で
きる。なかでも、ポリエチレン、ポリプロピレン、Iリ
スチレン、ポリα−メチルスチレン:エチレン又はプロ
ピレンと酢酸ビニル、(メタ)アクリル酸メチル、(メ
タ)アクリル酸エチル、(メタ)アクリル酸等との共重
合体;スチレン又はα−メチルスチレンとアクリロニト
リル、(メタ)アクリル酸メチル、(メタ)アクリル酸
エチル、無水マレイン酸、マレイン酸シブチル、フマー
ル酸ジプチル等との共重合体が、成形時の繊維のほぐれ
、アス(クト比の低下防止に好適である。
Molecules i1Q, thermoplastic polymer fA of 000 or less] used in the present invention include ethylene polymers, propylene polymers, styrene polymers, polyamide polymers, petroleum resins with number average molecular weights of IQ, 000 or less. Any known thermoplastic polymer such as , I-hydroxyolefin, etc. can be used. Among them, polyethylene, polypropylene, I-listyrene, polyα-methylstyrene: a copolymer of ethylene or propylene with vinyl acetate, methyl (meth)acrylate, ethyl (meth)acrylate, (meth)acrylic acid, etc.; styrene Alternatively, copolymers of α-methylstyrene and acrylonitrile, methyl (meth)acrylate, ethyl (meth)acrylate, maleic anhydride, sibutyl maleate, diptyl fumarate, etc. may cause fiber loosening during molding, as This is suitable for preventing a decrease in the ect ratio.

分子量としては数平均分子量が通常200〜10.00
0のものを用いるが、なかでも600〜6.000のも
のが、含浸作業性、含浸後の繊維束の形くずれ等の強度
、成形時の繊維のほぐれ等が良好な点で好ましい。
As for the molecular weight, the number average molecular weight is usually 200 to 10.00.
Among them, those with a molecular weight of 600 to 6,000 are preferred in terms of impregnating workability, strength against deformation of fiber bundles after impregnation, and good loosening of fibers during molding.

本発明で用いる含浸剤としては、平均線径1,000μ
m以下の短繊維および/又は平均粒径100μm以下の
粒子と、分子−1110,000以下の熱可塑性重合体
(A)とを混合して用いるが、必要に応じて各種の添加
剤、該重合体(A)より高分子量の熱可塑性樹脂等を添
加することもできる。
The impregnating agent used in the present invention has an average wire diameter of 1,000μ.
A mixture of short fibers with a diameter of 100 μm or less and/or particles with an average particle size of 100 μm or less and a thermoplastic polymer (A) with a molecular size of −1110,000 or less is used, but various additives and the polymer may be added as necessary. A thermoplastic resin or the like having a higher molecular weight than the composite (A) may also be added.

ここで用いる添加剤としては、高級脂肪族モノカルボン
酸およびこれらの金属塩、モノアミド、アルキレンジア
ミンとの縮合物;芳香族多価カルメン酸のエステル;高
級脂肪族アルコール;フェノール系、ヒンダードフェノ
ール系、ヒンダードアミン系等の酸化防止剤; ベンゾフェノン系、ベンゾトリアゾール系等の紫外線防
止剤;ヒドラノン誘導体等の銅害防止剤などが挙げられ
る。
The additives used here include higher aliphatic monocarboxylic acids and their metal salts, monoamides, condensates with alkylene diamines; esters of aromatic polyhydric carmenic acids; higher aliphatic alcohols; phenolics, hindered phenols. , hindered amine type antioxidants; ultraviolet ray inhibitors such as benzophenone type and benzotriazole type; and copper damage inhibitors such as hydranone derivatives.

含浸剤を導電性長繊維の束に含浸させる方法としては、
含浸剤が繊維束の表面に付着するだけではなく、繊維間
に浸透する方法であればよく、特に限定されるものでは
ないが、例えば含浸剤中の熱可塑性重合体囚が含浸温度
において液状である烏合は必要に応じて溶剤で希釈し九
含浸剤液中に、含浸剤中の熱可塑性重合体(A)が含浸
量1度において固体である場合はこれを加熱溶融させた
含浸剤液中にあるいは必要に応じて加熱してこれを溶剤
に溶解させた含浸剤液中に、導電性長繊維を束状で、好
ましくはほぐしながら連続的に浸漬し、含浸剤を該礒維
間に含浸させた後、ダイス、ロール等を用いて含浸it
−調整し、必要に応じて溶剤を乾燥除去する方法等があ
る。
The method of impregnating a bundle of conductive long fibers with an impregnating agent is as follows:
The impregnating agent may not only adhere to the surface of the fiber bundle but also penetrate between the fibers, and is not particularly limited. In some cases, the thermoplastic polymer (A) in the impregnating agent is diluted with a solvent if necessary, and if the thermoplastic polymer (A) in the impregnating agent is solid at one degree of impregnation, it is added to the impregnating agent liquid in which it is heated and melted. Conductive long fibers are continuously immersed in a bundle, preferably in an impregnating agent solution in a solvent by heating or as necessary, while being loosened, and the impregnating agent is impregnated between the fibers. After that, impregnate it using a die, roll, etc.
- There are methods such as adjusting and drying and removing the solvent as necessary.

ここで含浸剤を溶解、希釈するために用いる溶剤は、使
用する含浸剤の!g類によって異なるが、例、tばトル
エン、キシレン等の芳香族系浴剤;テトラヒドロフラン
、トリクロルエチレン、メタノール、エタノール、プロ
パツール等ノアルコール類ニジクロヘキサン等が挙げら
れる。
Here, the solvent used to dissolve and dilute the impregnating agent is the same as the impregnating agent used! Examples include aromatic bath agents such as toluene and xylene; alcohols such as tetrahydrofuran, trichlorethylene, methanol, ethanol, and propatool; and dichlorohexane, although they vary depending on the type.

含浸剤の含浸量としては、含浸終了後の4肛性長繊維中
に占める繊維量が、0.5〜60容!6−チとなる様に
調整するのが通常であり、なかでも含浸後の繊維の形く
ずれ等の強度、成形時の繊維のほぐれ、成形品の電磁波
遮蔽能力の点で5〜40容食チが好ま−しい。
The amount of impregnating agent is 0.5 to 60 volumes in the four-ring long fibers after impregnation! Normally, it is adjusted to 6-chi, and in particular, it is adjusted to 5-40 yen in terms of strength such as fiber deformation after impregnation, fiber loosening during molding, and electromagnetic wave shielding ability of the molded product. is preferable.

マ次、含浸剤中に含有される短繊維および/又は粒子の
量は、使用する短繊維および/又は粒子の種類、その使
用目的等により大きくnなり一定ではないが、通常10
〜80容量チである。
The amount of short fibers and/or particles contained in the impregnating agent varies depending on the type of short fibers and/or particles used, the purpose of use, etc., but is usually 10
~80 capacity.

尚、容t%とは、繊維と含浸剤の真の密度に基いて、そ
れぞれの重量割合から算出した容量百分率であり、以下
も同様である。
Note that the volume t% is a volume percentage calculated from the weight proportions of the fibers and the impregnating agent, based on the true densities of the fibers and the impregnating agent, and the same applies below.

この様にして得られ友含浸剤の含浸された導電性長繊維
の束(以下、収束繊維と略す)は、切断してペレット状
とし、そのまま使用することもできるが、次いで収束繊
維を分子量10,000以下の熱可塑性重合体囚以外の
熱可塑性樹脂(B)で被覆し念後、ペレット化すると、
ペレットの形のくずれ、ペレット表面の粘着等がなく、
作業性が向上すると共ニヘレット外観も改善できる点で
より好ましい。
The bundle of conductive long fibers (hereinafter abbreviated as convergent fibers) obtained in this manner and impregnated with the impregnating agent can be cut into pellets and used as is, but then the convergent fibers with a molecular weight of 10 ,000 or less and is coated with a thermoplastic resin (B) other than a thermoplastic polymer, and then pelletized,
There is no deformation of the pellet shape, no stickiness on the pellet surface, etc.
It is more preferable because the improvement in workability also improves the appearance.

ここで必要に応じて収束繊維の被覆に用いる熱可塑性樹
脂(Blとしては、前記熱可塑性重合体囚以外の、好ま
しくは通常成形用、押出被覆用等に用いられる比較的高
分子量の公知の熱可塑性樹脂がいずれも使用でき、例え
ば、ポリエチレン、ポリゾロピレン、エチレン−酢酸ビ
ニル共重合体、エチレン−エチルアクリレート共重合体
等のオレフィン系樹脂;肩すスチレン、耐衝撃用ポリス
チレン、アクリロニトリル−スチレン共重合体、アクリ
ロニトリループタゾエンースチレン共重合体等のスチレ
ン系樹脂;ポリメチルメタアクリレート等のアクリル系
樹脂;6−ナイロン、66−1−イロン、12−ナイロ
ン、6・12−fイロン等のポリアミド樹脂;ポリエチ
レンテレフタレート、ポリブチレンテレフタレート等の
ポリエステル系樹脂;ポリ塩化ビニル、ポリカーゴネー
ト5.jf リフエニレンオキサイドおよびこれらの混
合物等が挙げられる。
Here, if necessary, the thermoplastic resin (Bl) used for coating the convergent fibers is preferably a known thermoplastic resin with a relatively high molecular weight used for ordinary molding, extrusion coating, etc., other than the above-mentioned thermoplastic polymer. Any plastic resin can be used; for example, olefin resins such as polyethylene, polyzolopyrene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer; shoulder styrene, impact-resistant polystyrene, acrylonitrile-styrene copolymer. , styrenic resins such as acrylonitriloptazoene-styrene copolymer; acrylic resins such as polymethyl methacrylate; polyamide resins such as 6-nylon, 66-1-ylon, 12-nylon, 6,12-fylon, etc. ; polyester resins such as polyethylene terephthalate and polybutylene terephthalate; polyvinyl chloride, polycargonate, rifhenylene oxide, and mixtures thereof.

なかでも熱可塑性樹脂(B)としては、収束繊維中の含
浸剤と相溶性の良いものを選択して用いることが好まし
く、例えばエチレン系重合体、プロピレン系重合体を含
浸剤に用いた場合、ポリエチレン等ノオレフィ7 系m
 脂を、またスチレン系重合体を含浸剤に用いた場合、
ポリスチレン、アクリロニトリル−ブタジェン−スチレ
ン共重合体等のスチレン系樹脂をそれぞれ用いると好ま
しい。
Among these, as the thermoplastic resin (B), it is preferable to select and use one that has good compatibility with the impregnating agent in the convergent fibers. For example, when an ethylene polymer or a propylene polymer is used as the impregnating agent, Polyethylene etc. olefin 7 series m
When fat or styrene polymer is used as an impregnating agent,
It is preferable to use styrenic resins such as polystyrene and acrylonitrile-butadiene-styrene copolymer.

収束繊維を熱可塑性樹脂(B)で被覆する方法としては
、公知の被覆方法がいずれも適用できる。例えば、電線
の押出被覆の如く収束繊維を芯線としてクロスへラドダ
イを用いて熱可塑性樹脂(B)を押出被1する方法、加
熱溶融又は溶剤で溶解し念熱可塑性樹脂(B)を収束繊
維に塗布するかあるいは該樹脂(B)中に収束q1.!
を通過させる方法、収束繊維を熱可塑性樹脂(B)から
なるシートではさんでブレスする方法等が挙げられるが
、被覆量の管理が容易で安定した被覆ができる点でクロ
スへラドダイを用いて押出被覆する方法が好ましい。
Any known coating method can be used to coat the convergent fibers with the thermoplastic resin (B). For example, as in the extrusion coating of electric wires, thermoplastic resin (B) is extruded onto a cross using convergent fibers as a core wire using a rad die, and thermoplastic resin (B) is converted into convergent fibers by heating and melting or melting with a solvent. coating or convergence in the resin (B) q1. !
There are methods such as passing the convergent fibers through sheets of thermoplastic resin (B) and pressing them together, but extrusion using a RAD die into a cloth is preferred because it is easy to control the amount of coverage and provides stable coverage. A coating method is preferred.

熱可塑性樹脂(B)の被覆量は、被覆後の導電性樹脂組
成物をマスターパッチとし7て用いる場合には比較的少
ないことが好ましく、また、そのまま成形材料として用
いる場合には最終成形品中の導電性繊維含有itを考慮
して比較的多くなる様に調整するなど、使用目的により
て大きく異シ、特に限定されないが、通常の場合収束繊
維2〜90容量チに対して被覆熱可塑性樹脂(B) 9
8〜10容量慢の範囲である。
The coating amount of the thermoplastic resin (B) is preferably relatively small when the conductive resin composition after coating is used as a master patch 7, and when used as a molding material as it is, it is preferable that the coating amount is relatively small. It varies greatly depending on the purpose of use, such as adjusting the conductive fiber content so that it is relatively large, but it is not particularly limited, but in general, the thermoplastic resin coating is applied to 2 to 90 capacitance fibers of convergent fibers. (B) 9
It is in the range of 8 to 10 volumes.

この様にして得られた被覆された、あるいは被覆されな
い収束線維は、通常ペレット状に切断した後、そのまま
使用してもよいが、通常の場合マスター・マツチとして
熱可塑性樹脂と混合して成形に使用される。また熱可塑
性樹脂と混合して混線、押出、ペレット化して成形材料
とした後、成形に使用してもよい。成形品中に含有させ
る繊維量は通常0.3〜5容量チ、好ましくは、0.7
〜3容量チの範囲である。
The coated or uncoated convergent fibers obtained in this way can be used as they are after being cut into pellets, but they are usually mixed with a thermoplastic resin as a master match and molded. used. Alternatively, it may be used for molding after being mixed with a thermoplastic resin, cross-wired, extruded, and pelletized to form a molding material. The amount of fiber contained in the molded product is usually 0.3 to 5 by volume, preferably 0.7
It is in the range of ~3 capacitance.

(発明の効果) 本発明の製法で得られ九導電性樹脂組成物は、導電性繊
維のほぐnが良好で容易に均一に分散し、しかもアス(
クト比の低下も少ないため、少量の導′IΣ性瑣維の添
加で十分な電磁波遮蔽性能を実現でき、外観が良好な成
形品が容易に得られるという利点を有する。
(Effects of the Invention) The conductive resin composition obtained by the production method of the present invention has good loosening of conductive fibers, is easily and uniformly dispersed, and has a
Since the decrease in the duct ratio is small, sufficient electromagnetic wave shielding performance can be achieved with the addition of a small amount of conductive fiber, and a molded product with a good appearance can be easily obtained.

しかも、粒子として顔料、充填剤、難燃剤等の公知の添
加剤を用いると、上記の様な電磁波遮蔽性能の付与と共
に該樹脂組成物の着色、燃焼熱の低下難燃性の付与等が
同時に一度の処理で容易にできるという利点も有する。
Moreover, when known additives such as pigments, fillers, flame retardants, etc. are used as particles, in addition to imparting electromagnetic wave shielding performance as described above, coloring of the resin composition, reduction of combustion heat, and imparting flame retardancy are simultaneously achieved. It also has the advantage that it can be easily done in one treatment.

(実施例) 以下に実施例、比較例を示して本発明を具体的に説明す
る。尚、例中の部はすべて重量基準である。
(Example) The present invention will be specifically described below with reference to Examples and Comparative Examples. All parts in the examples are based on weight.

実施例1 平均線径8μmの長繊#15.000本からなるステン
レススチール長繊維束(2,29部m)を十分にほぐし
て、ポリエチレンワックス(分子jilt、50Q、密
度0.911/1x3) 30部と平均粒径IQμmの
重質炭酸カルシウム(比重2.7)70部とを混合し、
120℃に加熱してなる含浸剤中に浸漬した後、収束さ
せなから含浸量を訓整して、ステンレススチール長Mj
、維13.75重童チ(131容量チ)、ポリエチレン
ワックス25.88重量1%(54,12容量%)およ
び炭酸カルシウム60.37重fjk%(42,57容
量%)からなる収束繊維(It (161部m )を得
、3 mx長に切断してペレット(11を得た。
Example 1 A stainless steel long fiber bundle (2,29 parts m) consisting of #15,000 long fibers with an average diameter of 8 μm was thoroughly loosened, and polyethylene wax (molecular jilt, 50Q, density 0.911/1x3) was prepared. 30 parts and 70 parts of heavy calcium carbonate (specific gravity 2.7) with an average particle size of IQμm,
After immersing it in an impregnating agent heated to 120°C, the amount of impregnation is adjusted without convergence, and the stainless steel length Mj
, a convergent fiber consisting of 13.75% by weight (131% by volume) of fiber, 25.88% by weight (54,12% by volume) of polyethylene wax and 60.37% by weight (42,57% by volume) of calcium carbonate ( It (161 parts m) was obtained and cut into 3 mx lengths to obtain pellets (11).

このペレット(1146,16部と高密度ポリエチレン
〔密度0.961 /cm3sメルトフローレシオ(以
下、MFRと略す)6.0g/l□碩153.84部と
を混合して220℃に設定した3オンスのインラインス
クリ為−型射出成形機を用いて150X80X2mの平
板を成形した。
This pellet (1146.16 parts) and 153.84 parts of high-density polyethylene [density 0.961/cm3s melt flow ratio (hereinafter abbreviated as MFR) 6.0 g/l square were mixed and heated to 220°C. A flat plate of 150 x 80 x 2 m was molded using an in-line screw type injection molding machine.

この平板は、ステンレススチール繊維6.3 s重量’
% (1,00容量%)、ポリエチレンワックス11.
94重t%(16,34容itチ)、炭酸カルシウム2
7.87重量%(12,85容f%)および高密度ポリ
エチレン5&84重憧%(69,81容蛍チ)からなる
ものであり、外観が良好で体積固有抵抗値が低く、’e
t磁波遮蔽能力に特に優れるものであった。
This flat plate is made of stainless steel fiber 6.3s' weight
% (1,00% by volume), polyethylene wax 11.
94 wt% (16.34 liters), calcium carbonate 2
It is composed of 7.87% by weight (12.85% by volume) and 5% and 84% by weight of high-density polyethylene (69.81% by volume), and has a good appearance and low volume resistivity.
It was particularly excellent in magnetic wave shielding ability.

比較例1 含a剤中への炭酸カルシウムの添加を省略した以外り実
施例1と同様にしてステンレススチール長繊維34.6
9重量チ(5,76容量%)およびポリエチレンワック
ス65.31重t%(94,24容t%)からなる収束
繊維(1’) (6,34,!i’/m)を得、3朋長
に切断してペレット(Iうを得た。
Comparative Example 1 Stainless steel long fiber 34.6 was prepared in the same manner as in Example 1 except that the addition of calcium carbonate to the astringent agent was omitted.
A convergent fiber (1') (6,34,!i'/m) consisting of 9 wt. Tomocho cut it and obtained pellets.

次いで、このペレッ) (1)18.29部と平均粒径
10μmの重質炭酸カルシウム27.87部とB)密度
ポリエチレン5184部とを混合して用いた以外に実施
例1と同様にして150X80X2mmの平板を成形し
た。
Next, this pellet was prepared in the same manner as in Example 1 except that (1) 18.29 parts and 27.87 parts of heavy calcium carbonate with an average particle size of 10 μm were mixed and B) 5184 parts of density polyethylene were used. A flat plate was formed.

この平板は実施例1の平板と同様の組成を有するもので
あるが、炭酸カルシウムの分散が悪く、外観が不良で、
成形性も良くなかった。
This flat plate had the same composition as the flat plate of Example 1, but the dispersion of calcium carbonate was poor and the appearance was poor.
The moldability was also not good.

比較例2 実施例1で用いた長繊維束を3 mm長に切断したもの
6.35部とポリエチレンワックス11.94部とis
炭酸カルシウム27.87部と高密度ポリエチレン53
.84部とを混合した後、230°Cに設定した40)
のベント付押出機で混練した後、ペレット化して3龍長
のペレット(11)を得、このペレット(Il)を用い
た以外は実施例1と同様にして150×80×2順の平
板を成形した。
Comparative Example 2 6.35 parts of the long fiber bundle used in Example 1 cut into 3 mm length, 11.94 parts of polyethylene wax, and IS
27.87 parts of calcium carbonate and 53 parts of high-density polyethylene
.. After mixing with 84 parts, the temperature was set at 230°C (40)
After kneading in a vented extruder, pellets were obtained to obtain pellets (11) with a length of 3 dragons, and flat plates in the order of 150 x 80 x 2 were prepared in the same manner as in Example 1 except that this pellet (Il) was used. Molded.

この平板は実施例1の平板と同様の組成を封するもので
あり、外観ハ良好であるが、混練による繊維の切断が激
しいため体積固有抵抗値が高く、電磁波遮蔽能力に劣る
ものでありた。
This flat plate had the same composition as the flat plate of Example 1 and had a good appearance, but the volume resistivity was high because the fibers were severely cut during kneading, and the electromagnetic wave shielding ability was poor. .

実施例2 平均線径15μmの長繊維1,400本からなるステン
レススチール長繊維束(2,OF/m)を十分にほぐし
て、ポリプロピレンワックス(分子i3,000゜密度
0.9011/cnL”) 80部と平均線径14μm
 、平均長0.7fl、密度1.81 /cm3のカー
ボン短繊維20部とを混合し、170℃に加熱してなる
含浸剤中に浸漬した後、収束させなから含浸蓋をvI4
整して、ステンレススチール長繊維80重f%(33,
61容量*)、ポリプロピレンワックス16重ff%(
59,01容量チ)およびカーピン短繊維4重量%(7
,38容量%)からなる収束繊維(II) (2,5#
/m >を得、3fi長に切断してペレッ)(IIIを
得た。
Example 2 A stainless steel long fiber bundle (2, OF/m) consisting of 1,400 long fibers with an average diameter of 15 μm was thoroughly loosened and made into polypropylene wax (molecule i: 3,000° density: 0.9011/cnL”) 80 parts and average wire diameter 14μm
, 20 parts of short carbon fibers having an average length of 0.7fl and a density of 1.81/cm3 are mixed and immersed in an impregnating agent prepared by heating to 170°C.
Stainless steel long fibers 80w/f% (33,
61 capacity *), polypropylene wax 16w ff% (
59.01% by weight) and 4% by weight of carpin short fibers (7% by weight)
, 38 volume%) convergent fiber (II) (2,5#
/m> was obtained and cut into 3fi lengths to obtain Pellet) (III).

次いでこのペレット(n) 10.06部とポリプロピ
レン(密度0.911/crIL3. MFR6,O9
/ 10M) 89.94部とを混合して用いた以外は
実施例1と同様にして150X80X2mの平板を成形
した。
Next, 10.06 parts of this pellet (n) and polypropylene (density 0.911/crIL3. MFR6, O9
A flat plate of 150 x 80 x 2 m was molded in the same manner as in Example 1, except that 89.94 parts of the following were used.

この平板はステンレススチール繊維8.05重量%c1
.oos量%)、ポリプロピレンワックス1.61重量
%(1,76容量%)、カーデフ繊維0.4重量%(0
,22容量%)およびポリプロピレン89、94重量%
(97,02容量%)からなるものであり、外観が良好
で体積固有抵抗値が低く、宵、磁波遮蔽能力に特に優れ
るものであった。
This flat plate is stainless steel fiber 8.05% by weight C1
.. oos amount%), polypropylene wax 1.61% by weight (1,76% by volume), cardiff fiber 0.4% by weight (0
, 22% by volume) and polypropylene 89, 94% by weight
(97.02% by volume), had a good appearance, had a low volume resistivity value, and had particularly excellent magnetic wave shielding ability.

比較例3 実施例2で用いた長繊維束を3n長に切断したもの8,
05部とポリプロピレンワックス1.61部とカーピン
短繊維0.40部とポリプロピレン89.94部とを混
練して用いた以外は比較例2と同様にしてペレット(■
のを得、次いで同様にして150×80X2mi+の平
板を成形した。
Comparative Example 3 The long fiber bundle used in Example 2 was cut into 3n length 8,
Pellets (■
was obtained, and then a flat plate of 150 x 80 x 2 mi+ was molded in the same manner.

この平板は実施例2の平板と同様の組成を有するもので
あり、外観は良好であるが、混練による繊維の切断が激
しいため体積固有抵抗値が高く、′電磁波遮蔽能力に劣
るものであった。
This flat plate had the same composition as the flat plate of Example 2, and had a good appearance, but because the fibers were severely cut during kneading, the volume resistivity was high, and the electromagnetic wave shielding ability was poor. .

実施例3 平均線径8μmの長線410,000本からなるステン
レススチール長繊維束(4,211/m)を十分にほぐ
して、ポリエチレンワックス(分子ii 1.500、
密度0.9117cm” ) 90部と平均粒径0.0
1μmのカーピンブラック(密度1.8#/CrIL3
) 10部とを混合し、120℃に加熱してなる含浸剤
中に浸漬した後、収束させなから宮浸曾を調整して、ス
テンレススチール長繊維70重蚕%(22,04容に%
)、ポリエチレンワックス27重量%(73,81容量
チ)およびカーメンブラック31t%(4,15容t%
)からなる収束繊維(III)(6,OJF/m )を
得た。
Example 3 A stainless steel long fiber bundle (4,211/m) consisting of 410,000 long wires with an average wire diameter of 8 μm was thoroughly loosened, and polyethylene wax (molecule II 1.500,
Density 0.9117cm”) 90 parts and average particle size 0.0
1μm carpin black (density 1.8#/CrIL3
) and immersed in an impregnating agent prepared by heating to 120°C, and adjusting the impregnating temperature after convergence.
), polyethylene wax 27% by weight (73,81% by volume) and carmen black 31t% (4,15% by volume)
) convergent fibers (III) (6, OJF/m 2 ) were obtained.

次いでこの収束繊維(II)に樹脂被覆用クロスへラド
ダイを設けた220℃の押出機を用いて高密度ポリエチ
レン(密度0.9611 /crn” 、 MFR6,
0,9/10騙)を被覆して被接繊維(I[I) (1
3g/m)を得、3絹長に切断してペレット(III)
を得た。
Next, high-density polyethylene (density 0.9611/crn", MFR6,
0,9/10) and coated fibers (I [I) (1
3g/m) was obtained, cut into 3 silk lengths and pelleted (III).
I got it.

このペレット(I[I)23.76部と高密度ポリエナ
レン76.24部とを混合して用いた以外は笑2111
!li例1と同様にして150X80X2mmの平板を
成形した。
Except for using a mixture of 23.76 parts of this pellet (I[I) and 76.24 parts of high-density polyenalene lol2111
! A flat plate of 150 x 80 x 2 mm was molded in the same manner as in Example 1.

この平板はステンレススチール繊維7.68重量%(1
,00容量%)、ポリエチレンワックス2.96重量%
(3,35容i%)、カーボンブラック0.33重fチ
(0,198鎗%)および高密度ポリエチレン89.0
3重fチ(95,46容i%)からなるものであり、外
観が良好で体積固有抵抗値が世<、’を磁波遮蔽能力に
特に優れるものであった。
This flat plate has 7.68% by weight of stainless steel fiber (1
,00% by volume), polyethylene wax 2.96% by weight
(3,35 volume i%), carbon black 0.33 weight percent (0,198 volume percent) and high density polyethylene 89.0
It was made of triple f-chi (95.46 volume i%), had a good appearance, had a volume resistivity value of 1, and was particularly excellent in magnetic wave shielding ability.

実施例4 ポリエチレンワックスとカーボンブラックの使用量をそ
れぞれ40部と60部に変更した以外は実施例3と同様
にして、ステンレススチール長IR雄26.25重逼°
%(5,51容量%)、ポリエチレンワックス29.5
重量チ(5L74容11およびカーコンブラック44.
25重量%(40,75容!%)からなる収束繊維(■
)(16JF/m)を得、次いで同様にして被覆線a(
fV)(40g/m)を作成した後、3絹長に切断して
イレッ) (fV)を得た。
Example 4 A stainless steel long IR male 26.25 kg was prepared in the same manner as in Example 3 except that the amounts of polyethylene wax and carbon black used were changed to 40 parts and 60 parts, respectively.
% (5,51% by volume), polyethylene wax 29.5
Weight (5L 74 volume 11 and car contact black 44.
Convergent fibers (■
) (16JF/m), and then similarly coated wire a(
fV) (40 g/m) was prepared, and then cut into 3 silk lengths to obtain Ilet) (fV).

このベレット(fV)69.24部と高密度ポリエチレ
ン30.76部とを混合して用いた以外は実施例1と同
様にして150X80X2mの平板を成形した。
A flat plate of 150 x 80 x 2 m was molded in the same manner as in Example 1 except that 69.24 parts of this pellet (fV) and 30.76 parts of high-density polyethylene were mixed and used.

この平板はステンレススチール繊維7.27重量% (
1,OO容196)、ポリエチレンワックス&17重量
%(9,76容量チ)、カーデンブラック12.25重
量%(7,40容i%)および高密度ポリエチレン72
.31重量%(81,84容f%)からなるものであり
、外観が良好で体積固有抵抗値が低く、電磁波遮蔽能力
に特に優れるものであった。
This flat plate has 7.27% by weight of stainless steel fiber (
1,00 volume 196), polyethylene wax & 17% by weight (9,76 volume i%), carden black 12.25% by weight (7,40 volume i%) and high density polyethylene 72
.. It consisted of 31% by weight (81.84% by volume), had a good appearance, a low volume resistivity value, and was particularly excellent in electromagnetic wave shielding ability.

試験例 実施例1〜4および比較例1〜3で得られた平板の外観
を目視により評価すると共に、体積固再抵抗値、電@波
遮蔽能力を測定した。結果を表−1に示す。尚、外観評
価基壇、+;+ll定方法を以下に示す。
Test Examples The appearance of the flat plates obtained in Examples 1 to 4 and Comparative Examples 1 to 3 was visually evaluated, and the volume solid resistance value and radio wave shielding ability were measured. The results are shown in Table-1. The method for determining the appearance evaluation platform is shown below.

平板の外観評価 平板片面上で観察できる未分散の繊維のかたまりの大き
さ、数を基壇として、外観を評価した。
Appearance evaluation of the flat plate The appearance was evaluated based on the size and number of undispersed fiber clusters observed on one side of the flat plate.

5:極めて良好 (4#1.維又は粒子のがた1りが小さく、数は10個
未(v4) 4:良 好 (*維又は粒子のかたまりが小ヒく、数は10〜19個
) 3:普 通 (大きい繊維又は粒子のかた1りが若干あり、数は20
〜391固) 2:不 良 (繊維又は粒子のかたまりが大きく、数は40〜49個
) 1:極めて不良 (lI&維又は粒子のかたまりが大きく、数はSOS以
上) 体積固有抵抗値 5RIS (日本合成ゴム協会)−2301に準じて測
定。
5: Extremely good (4#1. There is a small amount of loose fibers or particles, and the number is less than 10 (v4) 4: Good (*There is a small amount of loose fibers or particles, and the number is 10 to 19) ) 3: Normal (there are some large fibers or particles, the number is 20)
~391 hard) 2: Poor (Large clusters of fibers or particles, number 40-49) 1: Extremely poor (Large clusters of fibers or particles, number SOS or higher) Volume resistivity 5RIS (Japan Measured according to Synthetic Rubber Association)-2301.

電磁波遮蔽能力Electromagnetic shielding ability

Claims (1)

【特許請求の範囲】[Claims]  平均線径1、000μm以下の短繊維および/又は平
均粒径100μm以下の粒子と、分子量10、000以
下の熱可塑性重合体(A)とを含有してなる含浸剤を導
電性長繊維の束に含浸させ、次いで必要に応じて該重合
体(A)以外の熱可塑性樹脂(B)で被覆することを特
徴とする導電性樹脂組成物の製造方法。
An impregnating agent containing short fibers with an average diameter of 1,000 μm or less and/or particles with an average particle diameter of 100 μm or less and a thermoplastic polymer (A) with a molecular weight of 10,000 or less is applied to a bundle of conductive long fibers. A method for producing a conductive resin composition, which comprises impregnating the conductive resin composition with a thermoplastic resin (B) other than the polymer (A), if necessary.
JP18076486A 1986-07-31 1986-07-31 Production of electrically conductive resin composition Pending JPS6337142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18076486A JPS6337142A (en) 1986-07-31 1986-07-31 Production of electrically conductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18076486A JPS6337142A (en) 1986-07-31 1986-07-31 Production of electrically conductive resin composition

Publications (1)

Publication Number Publication Date
JPS6337142A true JPS6337142A (en) 1988-02-17

Family

ID=16088912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18076486A Pending JPS6337142A (en) 1986-07-31 1986-07-31 Production of electrically conductive resin composition

Country Status (1)

Country Link
JP (1) JPS6337142A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277434A (en) * 1989-05-29 1990-03-16 Toray Ind Inc Molding containing transparent coating layer
EP0730168A2 (en) 1995-03-03 1996-09-04 Seiko Epson Corporation Film-forming coating solution and synthetic resin lens
US6010778A (en) * 1992-06-04 2000-01-04 Nikon Corporation Coating composition utilizing modified sol having tin oxide-tungsten oxide complex colloid particles and lens coated therewith
CN1057107C (en) * 1994-04-08 2000-10-04 日本Arc株式会社 Coating composition capable of yielding a cured product having a high refractive index and coated articles obtained therefrom
JP2005015324A (en) * 2002-12-03 2005-01-20 Nissan Chem Ind Ltd Denatured stannic oxide sol, stannic oxide-zirconium oxide multiple sol, and production method therefor
JP2007169310A (en) * 2005-12-19 2007-07-05 Lenovo Singapore Pte Ltd Coating agent and portable electronic instrument
US7476695B2 (en) 2004-03-16 2009-01-13 Nissan Chemical Industries, Ltd. Modified stannic oxide-zirconium oxide complex sol and method for preparing same
US7563827B2 (en) 2002-12-03 2009-07-21 Nissan Chemical Industries, Ltd. Modified stannic oxide sol, stannic oxide-zirconium oxide composite sol, coating composition and optical element
US10231569B2 (en) 2009-12-08 2019-03-19 Nestec S.A. Capsule system with flow adjustment means

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277434A (en) * 1989-05-29 1990-03-16 Toray Ind Inc Molding containing transparent coating layer
JPH0512378B2 (en) * 1989-05-29 1993-02-17 Toray Industries
US6010778A (en) * 1992-06-04 2000-01-04 Nikon Corporation Coating composition utilizing modified sol having tin oxide-tungsten oxide complex colloid particles and lens coated therewith
CN1057107C (en) * 1994-04-08 2000-10-04 日本Arc株式会社 Coating composition capable of yielding a cured product having a high refractive index and coated articles obtained therefrom
EP0730168A2 (en) 1995-03-03 1996-09-04 Seiko Epson Corporation Film-forming coating solution and synthetic resin lens
US5789476A (en) * 1995-03-03 1998-08-04 Seiko Epson Corporation Film-forming coating solution and synthetic resin lens
JP2005015324A (en) * 2002-12-03 2005-01-20 Nissan Chem Ind Ltd Denatured stannic oxide sol, stannic oxide-zirconium oxide multiple sol, and production method therefor
US7563827B2 (en) 2002-12-03 2009-07-21 Nissan Chemical Industries, Ltd. Modified stannic oxide sol, stannic oxide-zirconium oxide composite sol, coating composition and optical element
US7476695B2 (en) 2004-03-16 2009-01-13 Nissan Chemical Industries, Ltd. Modified stannic oxide-zirconium oxide complex sol and method for preparing same
JP2007169310A (en) * 2005-12-19 2007-07-05 Lenovo Singapore Pte Ltd Coating agent and portable electronic instrument
US10231569B2 (en) 2009-12-08 2019-03-19 Nestec S.A. Capsule system with flow adjustment means

Similar Documents

Publication Publication Date Title
KR102320339B1 (en) Electrically conductive molded body with positive temperature coefficient
CA2270980C (en) Electrically conductive compositions and methods for producing same
CA1218231A (en) Fiber-reinforced composite materials
JPS6337142A (en) Production of electrically conductive resin composition
EP0337487A1 (en) Electroconductive polymer composition
JP2002536799A (en) Conductive composition and method for producing the same
US5213736A (en) Process for making an electroconductive polymer composition
JP3720589B2 (en) Carbon fiber-containing thermoplastic resin molded product
EP1468130B1 (en) Modified polyolefin fibres
JP2000218711A (en) Carbon fiber-containing thermoplastic resin molded product
JPS60124654A (en) Electrically conductive resin composition
JP2007224209A (en) Conductive thermoplastic resin molded article
JPS6222836A (en) Production of electrically conductive resin composition
JPS58176220A (en) Production of conductive plastic
US7119139B2 (en) Modified polypropylene resins
TW502049B (en) Electrically conductive compositions and methods for producing same
JPS632986B2 (en)
JPS61209120A (en) Manufacture of electrically conductive termoplastic resin molding
KR100582959B1 (en) The multi-layer sheets with anti-static and self-cleaning function
KR100732320B1 (en) A method of preparing conductive resin composition and molded articles using it
JPS63230769A (en) Electrically conductive resin composition
JPS6129505A (en) Manufacture of master pellet for forming electromagnetic shielding material
JPS63241067A (en) Molded production of electrically conductive polymer
JP2004018655A (en) Fibrous filler-containing resin composition and molded product formed by using the same
JPH02129248A (en) Stainless fiber-filled conductive molding material