JP2004018655A - Fibrous filler-containing resin composition and molded product formed by using the same - Google Patents

Fibrous filler-containing resin composition and molded product formed by using the same Download PDF

Info

Publication number
JP2004018655A
JP2004018655A JP2002174789A JP2002174789A JP2004018655A JP 2004018655 A JP2004018655 A JP 2004018655A JP 2002174789 A JP2002174789 A JP 2002174789A JP 2002174789 A JP2002174789 A JP 2002174789A JP 2004018655 A JP2004018655 A JP 2004018655A
Authority
JP
Japan
Prior art keywords
resin
resin composition
fibrous filler
weight
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002174789A
Other languages
Japanese (ja)
Inventor
Masaru Nakano
中野 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink Mfg Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP2002174789A priority Critical patent/JP2004018655A/en
Publication of JP2004018655A publication Critical patent/JP2004018655A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fibrous filler-containing resin composition giving a molded product provided with electrical conductivity and mechanical properties and also provided with further mechanical properties and heat resistance as a result of compounding fibers. <P>SOLUTION: The fibrous filler-containing resin composition in the form of pellets contains 50-70 wt.% of fibers impregnated with 30-50 wt.% of a polymerized fatty acid-based copolyamide resin, wherein the polymerized fatty acid-based copolyamide resin has a melt viscosity of ≤2,000 mPa.s and a softening temperature of ≥170°C. The molded product is obtained by molding the resin composition. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、繊維状フィラー含有樹脂組成物、またはこれを用いて得られる成形物に関する。
【0002】
【従来の技術】
繊維状フィラーの特性を付与するために、繊維状フィラーを熱可塑性樹脂に均一に混合する方法が種々検討されてきた。近年、繊維を溶融した熱可塑性樹脂に浸し、溶融樹脂を繊維中に含浸させた含浸樹脂繊維状フィラーを作成し、これをペレット化し、マスターバッチとする技術が進展してきている。
【0003】
これらのガラス繊維やカーボン繊維を含有したマスターバッチは、成形物の機械物性を強化するために成形樹脂に添加されているが、繊維に含浸する熱可塑性樹脂の選択の範囲が狭く、成形樹脂と同種でしかも同等の機械物性を有する熱可塑性樹脂を用いて繊維状フィラー含有樹脂組成物を製造していた。
【0004】
【発明が開発しようとする課題】
一般に、成形樹脂の分子量や成形時の溶融粘度は高いため、これを含浸樹脂として繊維に含浸させることは困難である。また、樹脂を含浸しないで、繊維そのものを熱可塑性樹脂と混練し、カッターで定尺にカットしペレット化する場合、繊維がペレットから抜け落ちるという問題があった。
【0005】
そのため、繊維の抜け落ちがないペレットを製造するのに、種々の工夫がなされている。例えば、含浸が困難なため、繊維を複数の束に分割して、それぞれの繊維の束に成形樹脂と同種で機械物性が同等の樹脂を溶融してコートし、該樹脂が固化する前に撚り合わせて1本のストランドにし、定尺にカットしてペレットを製造していた。
あるいは、繊維状フィラーの束を成形樹脂と同種で機械物性が同等の樹脂を溶融してコートした後に、コートした樹脂が固化する前に定尺にカットし、ペレットを製造していた。
【0006】
または、溶融粘度の低い、分子量の小さい成形樹脂と同系統の熱可塑性樹脂を使用すれば繊維状フィラーに含浸可能である。しかし、ペレットにするとき、カッター切断時の回転刃の衝撃力で含浸樹脂が割れたり、粉々になってしまうのでペレット化が不可能であった。
【0007】
更に、一般に射出成形前に繊維状フィラー含有樹脂組成物や成形樹脂のペレットを乾燥し水分を除去する工程がある。この工程により、成形物表面のシルバー(水分が蒸発した痕であり、線香花火状の模様)発生を抑制したり、また、加水分解性樹脂が成形樹脂の場合は、水分により加水分解して分子量低下を防ぐことにより、成形物における機械物性の低下を抑制する効果が得られる。
【0008】
この工程において、含浸樹脂が乾燥温度で溶融したりべたつきが生じたりするとペレット同士や乾燥用容器に付着してしまい、正確な配合量にならず射出成形物の品質に問題が生じる可能性がある。
【0009】
【課題を解決するための手段】
すなわち、本発明は、重合脂肪酸系共重合ポリアミド樹脂30〜50重量%を含浸した繊維50〜70重量%を含有するペレット状の繊維状フィラー含有樹脂組成物であって、重合脂肪酸系共重合ポリアミド樹脂の溶融粘度が2000mPa・s以下、かつ軟化温度が170℃以上であることを特徴とするペレット状の繊維状フィラー含有樹脂組成物である。
【0010】
また、重合脂肪酸系共重合ポリアミド樹脂の熱重量測定(TG)において2%以上重量変化する温度が350℃以上であるペレット状の繊維状フィラー含有樹脂組成物である。
【0011】
更に、上記のペレット状の繊維状フィラー含有樹脂組成物10〜50重量%を、成形樹脂としてポリカーボネート樹脂50〜90重量%に配合して均一に混合し射出成形して成る成形物である。
【0012】
【発明の実施の形態】
本発明の繊維状フィラー含有樹脂組成物に用いられる繊維の条件としては、溶融樹脂含浸工程時の繊維の形状保持、強度保持および熱安定性があることが必要である。
【0013】
繊維の素材が有機化合物の場合は、繊維の素材の融点又は軟化温度が、含浸樹脂の融点又は軟化温度より充分高いことが必要となる。また、繊維状フィラーの成形用樹脂への分散性の観点から、含浸用樹脂の融点又は軟化温度より成形用樹脂の融点又は軟化温度の方が高いことが好ましい。
以上のことから、それぞれの融点又は軟化温度の関係は、繊維>成形用樹脂>含浸用樹脂であることが必要であり、それ以外の制限は特にない。
尚、本発明における融点とは、示差走査熱量測定器にて、窒素ガス気流下、昇温速度10℃/分の条件で測定された融点のピーク面積であり、軟化温度とは、JIS K7234の環球法に準じて測定を行った。
【0014】
本発明で用いられる繊維の代表的なものを例示すれば、大別して天然繊維として綿繊維、麻繊維。有機合成繊維として、ナイロン繊維、ポリエチレンテレフタレート(PET)繊維、ポリブチレンテレフタレート(PBT)繊維、ポリフェニレンスルフィド(PPS)繊維、イミド繊維、アラミド繊維、液晶樹脂繊維。無機繊維として、ガラス繊維、カーボン繊維。金属繊維として、銅繊維、ステンレス繊維等を挙げることができる。これらの繊維の表面が化学処理や電子線照射等の物理的処理をされたものでも良い。複数の機能性を付与する目的で、2種以上の繊維の組み合わせも可能であり、成形物の要求特性に応じて適宜選択して使用すれば良い。金属繊維も含めてこれらの繊維の表面に金属をコートして、導電性を付与したものを用い、成形物に導電性を付与することも可能である。
【0015】
本発明で用いられる繊維の繊維径や本数は特に限定されないが、含浸工程やその後の取り扱いの観点から、1本当りの繊維径は6〜20μmが好ましい。また、一束当たりの本数が2500〜50000の範囲が好ましい。
一束の繊維を単位として樹脂を含浸した後、ペレット成形されて繊維状フィラー含有樹脂組成物となる。繊維の束は繊維状フィラー樹脂組成物ペレットの太さに影響するため、上記範囲外ではペレットの径が細すぎたり太すぎたりして使い難い。
【0016】
繊維は含浸前に開繊させることが好ましい。開繊により樹脂の含浸が短時間にスムーズに行われ、成形条件が多少変化しても高い含浸性が保持され、繊維を均一に分散かつ各繊維を囲むように樹脂が含浸するため繊維間に存在する空間が小さく、空間の数も減少し、良好な含浸状態が得られる。
【0017】
繊維は無撚りの方が開繊処理しやすいため、繊維に樹脂が含浸されやすくなり好ましいが、撚りがかかっているものを用いることも出来る。また、含浸装置のダイの出口で、含浸後の繊維に撚りを行ってもよい。撚る際に、ダイの中でほぐれたり短く切れてしまったりした繊維を巻き込むことにより、これらが原因で生じるオリフィスの目詰まりを防ぐとともに、含浸された樹脂が繊維の束の外側に浸み出して束を被覆して形状が整い、繊維を保護する効果もある。
【0018】
尚、本発明で用いられる繊維は、含浸工程、成形工程の際に、その延伸性が失われない温度で加工されることが好ましい。
【0019】
本発明において含浸樹脂として用いられる熱可塑性樹脂は、重合脂肪酸系共重合ポリアミド樹脂である。炭素数が20〜48の重合脂肪酸と短鎖二塩基酸とジアミンとを、(重合脂肪酸/短鎖二塩基酸)の重量比が0.25〜5.2で、かつ全カルボキシル基に対し全アミノ基が実質的に当量になるように混合して重縮合させたものである。市販品としてはトーマイド244−8(富士化成工業社製)が挙げられる。
【0020】
炭素数が20〜48の重合脂肪酸としては、不飽和脂肪酸、例えば炭素数が10〜24の二重結合又は三重結合を一個以上含有する一塩基性脂肪酸を重合して得た重合脂肪酸が用いられる。具体例としてはオレイン酸、リノール酸、エルカ酸等の二量体が挙げられる。市販されている重合脂肪酸は、通常二量体化脂肪酸を主成分とし、他に原料の脂肪酸や三量体化脂肪酸を含有するが、二量体化脂肪酸含量が70%以上、好ましくは95%以上であり、かつ水素添加して不飽和度を下げたものが望ましく、例としてブリボール1009、ブリボール1004(以上ユニケマ社製)、エンボール1010(ヘンケル社製)等の市販品が挙げられる。
【0021】
短鎖二塩基酸としてはアゼライン酸、セバシン酸及びこの両者の混合物が挙げられる。
ジアミンとしては、炭素数が2〜20のジアミンが好ましく、具体的にはエチレンジアミン、1,4−アミノブタン、ヘキサメチレンジアミン、ノナメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4−トリメチルヘキサメチレンジアミン、ビス−(4,4’−アミノシクロヘキシル)メタン、メタキシリレンジアミンのようなジアミン類が挙げられる。
【0022】
本発明で用いられる重合脂肪酸系共重合ポリアミド樹脂は、250℃における溶融粘度が2000mPa・s以下である。溶融粘度が4000mPa・s以下であれば良好な含浸が可能である。しかし、加工工程において200℃以上に加熱すると、樹脂の分子量低下に伴い溶融樹脂の表面に酸化皮膜が生じるため、これを含浸して成る繊維状フィラー含有樹脂組成物から得られた成形物の物性低下に影響する。尚、本発明における溶融粘度とは、JIS K6862に準拠して、試験温度250℃にて測定されたものである。
【0023】
また、重合脂肪酸系共重合ポリアミド樹脂の軟化温度は、170℃以上であることが必要である。170℃以上であれば、成形工程の熱による樹脂劣化が少なく、成形物の耐熱性が向上する効果が得られる。
【0024】
更に、重合脂肪酸系共重合ポリアミド樹脂の熱重量分析(TG)で2%以上減量する温度が350℃以上であると、280〜320℃くらいの高温成形工程における熱による樹脂劣化が少ないので、繊維状フィラー含有樹脂組成物中の樹脂の低分子量化が進んで分解物が生じることを防ぐ効果があるので好ましい。
本発明における熱重量分析(TG)とは、JIS K7120に準拠し、昇温速度10℃/分で昇温したときの重量変化をいう。
【0025】
上記の他、重合脂肪酸系共重合ポリアミド樹脂の分子量は1000以上が好ましい。1000未満ではペレット成形が困難となり好ましくない。このペレット成形の工程は、繊維状フィラ−含有樹脂組成物の定量供給性のためには必要不可欠なものであり、MNが1000未満の樹脂ではペレット成形の衝撃に耐えられずにぐずぐずになりペレット形状が保持出来ない。尚、本発明でいう「ペレット」とは、直径又は一辺が2〜5mmくらいの小さい球形、円柱形又は角柱等に造粒した成形用材料をいう。尚、本発明において分子量とは、HPLCにて測定した数平均分子量(以下、MNという)のことである。
【0026】
また、重合脂肪酸系共重合ポリアミド樹脂は、75℃以上130℃以下の温度で乾燥後、常温にしてもべたつきを生じないことが好ましい。尚、べたつきとは、ペレットが独立せずお互いに付着してしまうことをいう。乾燥条件としては120℃5時間または80℃5時間が好ましい。
ペレット表面にべたつきがある場合、容器の壁面やペレット同士が付着し、定量性に欠けるおそれがある。べたつきの理由としては、加熱工程時の樹脂劣化や低分子量成分の存在が挙げられる。
【0027】
繊維への樹脂の含浸方法としては、例えば、繊維を、加熱して低粘度にした含浸樹脂に浸して含浸させる公知の方法が挙げられる。この含浸工程により、繊維束を構成する繊維と繊維の間の空間が樹脂で満たされるとともに、繊維は確実に一体化して離脱することなく保持され、その後の取り扱い性が良好になり作業性が向上する。
【0028】
含浸装置としては、すでにいくつかのものが提案されている。周知の方法としては、押出し機から供給される溶融樹脂を導入する導入口を設置した含浸樹脂溶融浴容器中に繊維の束を通すことにより含浸をさせ、含浸樹脂溶融浴容器に設けられた出口オレフィスから含浸された繊維の束が引き取られる。
次いで、機械的衝撃処理によりカットされペレット成形されて繊維状フィラー含有樹脂組成物となる。
【0029】
本発明の繊維状フィラー含有樹脂組成物は、マスターバッチである。マスターバッチとは、繊維を高濃度に含有し、成形物の成形時に成形樹脂(未着色の熱可塑性樹脂)で、繊維状フィラー含有率を所望の濃度に希釈して成形物とされるものである。
【0030】
本発明の繊維状フィラー含有樹脂組成物における繊維の含有量は、ペレット成形性や成形樹脂への繊維の均一分散され易さ、および繊維の機能の発現性の観点から40〜80重量%が好ましく、特に50〜70重量%が好ましい。
【0031】
尚、本発明の繊維状フィラー含有樹脂組成物には、本発明の効果を阻害しない範囲内で必要に応じて耐熱安定剤、耐候剤、滑剤、スリップ剤、核剤、顔料、染料等を配合することができる。
【0032】
本発明の成形物製造時に、繊維状フィラー含有樹脂組成物とともに用いられる成形樹脂としては、重合脂肪酸系共重合ポリアミド樹脂と相溶性のあるものが用いられる。例えばオレフィン系樹脂としてはポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、酸変性オレフィン樹脂等が挙げられ、スチレン系樹脂としては耐衝撃性ポリスチレン、ABS樹脂、ポリカーボネート、スチレン−ブタジエン共重合体等、その他、PBT樹脂、PET樹脂、ポリアミド樹脂、ポリアセタール樹脂等が挙げられる。これらは1種、又は2種類以上の併用ができる。280〜320℃程度で高温加工されるABSやポリカーボネートにおいて、特に良好な効果が得られ好ましい。
【0033】
本発明の成形物は、まず、繊維状フィラー含有樹脂組成物10〜50重量%を成形用熱可塑性樹脂50〜90重量%に配合する。
成形物における繊維の配合割合は、目的とする成形物の用途によっても異なるが、10〜90重量%、特に20〜40重量%が好ましい。10重量%未満では成形物の機械特性が得られず、また90重量%を超えると成形物に反り等の不良が発生するので好ましくない。
【0034】
本発明の成形物の製造工程において、成形前に乾燥することにより樹脂組成物および成形樹脂の水分が除去される。乾燥条件としては、120℃5時間または80℃5時間が好ましい。
その後、これらを均一に混合し射出成形して得られる。
【0035】
本発明において、繊維と成形樹脂の組み合わせにより所望の特性を有する成形物が得られる。カーボン繊維含有のABS、ポリカーボネート樹脂成形物の場合、導電性や静電気防止効果を有する電子機器の筐体が挙げられ、ステンレス繊維含有のABS、ポリカーボネート樹脂の場合、電磁波シールド効果を有する電子機器の筐体が挙げられる。また、PET繊維含有のポリプロピレン樹脂成形物の場合、特に耐寒衝撃強度が強化されるため自動車の内装部品として有用である。
【0036】
【実施例】
以下、実施例、比較例を用いて本発明を更に詳しく説明する。例中、部は重量部、%は重量%を示す。評価結果は表1、2に示した。
[繊維状フィラー含有樹脂組成物の製造]
(実施例1)
PPS繊維(繊維径16μm、繊維束7000本)60重量%を、重合脂肪酸系共重合ポリアミド樹脂(軟化温度170℃、TG350℃、溶融粘度(250℃)1700mPa・S)で含浸、5mm長ペレット状に成形し、含浸樹脂分40重量%の繊維状フィラー含有樹脂組成物を作製した。
【0037】
(実施例2)
カーボン繊維(繊維径7μm、繊維束36000本)70重量%を、重合脂肪酸系共重合ポリアミド樹脂(軟化温度170℃、TG350℃、溶融粘度(250℃)1700mPa・S)で含浸、5mm長ペレット状に成形し、含浸樹脂分30重量%の繊維状フィラー含有樹脂組成物を作製した。
【0038】
(実施例3)
アラミド繊維(繊維径14μm、繊維束6000本)50重量%を、重合脂肪酸系共重合ポリアミド樹脂(軟化温度170℃、TG350℃、溶融粘度(250℃)1700mPa・S)で含浸、5mm長ペレット状に成形し、含浸樹脂分50重量%の繊維状フィラー含有樹脂組成物を作製した。
【0039】
(実施例4)
ステンレス繊維(繊維径8μm、繊維束12000本)80重量%を、重合脂肪酸系共重合ポリアミド樹脂(軟化温度170℃、TG350℃、溶融粘度(250℃)1700mPa・S)で含浸、5mm長ペレット状に成形し、含浸樹脂分20重量%の繊維状フィラー含有樹脂組成物を作製した。
【0040】
(実施例5)
実施例2で得られた繊維状フィラー含有樹脂組成物ペレット14.3重量%に、ポリカーボネート樹脂85.7重量%を配合し、120℃、5時間乾燥し水分を除去した。その後、射出成形機(型式IS100F;東芝機械(株)製)にて物性試験片を成形した。
【0041】
(比較例1)
ステンレス繊維(繊維径8μm、繊維束12000本)75重量%を、熱可塑性飽和共重合ポリエステル樹脂(融点170℃、250℃での溶融粘度;6500mPa・S)で含浸したが、繊維束の内部まで樹脂が及ばなかった。また、5mm長ペレット状に成形する際、カッターによる定尺切断においてペレットが切り離れなかった。
【0042】
(比較例2)
ステンレス繊維(繊維径8μm、繊維束12000本)70重量%を、低分子量ポリプロピレン樹脂(融点160℃、200℃での溶融粘度;1500mPa・S)で含浸した。次いで、カッターによる定尺切断において5mm長のペレット状にカットする際、含浸樹脂が粉々になりペレット成形が出来なかった。
【0043】
(比較例3)
アラミド繊維(繊維径16μm、繊維束6000本)60重量%を、エチレン・アクリル酸コポリマー樹脂(融点110℃、溶融粘度(200℃)1200mPa・S)で含浸し、5mm長のペレット状に成形し、含浸樹脂分40重量%の繊維状フィラー含有樹脂組成物を作成した。
【0044】
(比較例4)
実施例2で得られた繊維状フィラー含有樹脂組成物ペレット10重量%に、実施例5と同じポリカーボネート樹脂90重量%を配合し、均一に混合して単軸押出し機(L/D;28、50mm:(株)プラエンジ製)を用いて押出成形してペレット化したものを、実施例5と同じ射出成形機で物性試験片を成形し、物性試験を行った。
【0045】
(比較例5)
カーボン繊維(繊維径7μm、繊維束36000本)70重量%を、重合脂肪酸系共重合ポリアミド樹脂(軟化温度150℃、TG365℃、溶融粘度(200℃)3800mPa・S、溶融粘度(250℃)800mPa・s)で含浸、5mm長ペレット状に成形し、含浸樹脂分30重量%の繊維状フィラー含有樹脂組成物を作製した。
得られた繊維状フィラー含有樹脂組成物14.3重量%に、ポリカーボネート樹脂85.7重量%を配合し、120℃、5時間乾燥し水分を除去した。その後、射出成形機(型式IS100F;東芝機械(株)製)にて物性試験片を成形し、物性試験を行った。
【0046】
[繊維状フィラー含有樹脂組成物の評価試験]
(1)繊維フィラーにおける樹脂の含浸状態を以下の基準で評価した。
○ 含浸状態良好。繊維と繊維の間に樹脂が含浸されている。
× 含浸状態不良。繊維と繊維の間に樹脂が含浸されていない。
(2)カッターによる定尺切断によるペレット成形性を以下の基準で評価した。
○ 5mm長カットが可能であった。
× 5mm長カットが不可能であった。
(3)120℃、5時間乾燥後の繊維フィラー含有樹脂組成物ペレットの状態を以下の基準で評価した。
○ べたつきがない。
× べたつきがある。
以上の評価を表1に纏める。
【0047】
【表1】

Figure 2004018655
【0048】
[成形物の物性評価試験]
(1)引張強度、伸び、曲げ強度、Izod衝撃強度、熱変形温度
表2に示す規格に準じて試験を行った。
(2)体積抵抗率の測定法
東洋法にて試験を行った。
(試験片調整法)
試験片(寸法3mm×50mm×75mm)の2つの長端面(3mm×75mmの面)の表面をサンドペーパー(タイプ;AA−100 三共理化学(株)製)で削ってスキン層を除去した後、銀ペースト(シルコートRL−10  福田金属箔粉工業(株)製)を塗布し充分乾燥して電極とする。
(測定)
エレクトロマルチメーター(CDM−5000 CUSTOM社製)にて上記電極間の電気抵抗を測定する。
(規格化)
測定値を次の数式で規格化して、体積抵抗率を求める。
ρ=R×S/L
但し、ρ;体積抵抗率
R;電気抵抗測定値
S;電極の面積
L;電極間の距離
以上の評価を表2に纏める。
【0049】
【表2】
Figure 2004018655
【0050】
【発明の効果】
本発明の繊維状フィラー含有樹脂組成物は、重合脂肪酸系共重合ポリアミ
ド樹脂30〜50重量%を含浸した繊維50〜70重量%を含有し、重合脂
肪酸系共重合ポリアミド樹脂の溶融粘度が2000mPa・s以下であるの
で、加工温度が200℃以上においても樹脂の分子量があまり低下せずに良
好に含浸でき、従来よりも長い、ペレット長と同じ程度の繊維を保持したペ
レットが得られる。また、重合脂肪酸系共重合ポリアミド樹脂の軟化温度が
170℃以上であるので耐熱性が向上できる。
【0051】
また、重合脂肪酸系共重合ポリアミド樹脂の熱重量測定(TG)において
2%以上重量変化する温度が350℃以上であるので、高温成形工程におけ
る樹脂劣化が少ない。よって、低分子量の樹脂分解物が生じることがないの
で、成形物の機械物性が向上できる。
【0052】
本発明の成形物は、上記の繊維状フィラー含有樹脂組成物10〜50重量
%と、成形樹脂としてポリカーボネート樹脂50〜90重量%とを配合して
均一に混合し射出成形して成るので、繊維状フィラー含有樹脂組成物におけ
る繊維は、成形物の製造において成形樹脂と溶融混練されるまで含浸樹脂に
よって保護されるた。よって、繊維の長さが保持され、強化材や導電性など
の機能を充分に発現することが出来る。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fibrous filler-containing resin composition or a molded product obtained using the same.
[0002]
[Prior art]
In order to impart the properties of the fibrous filler, various methods for uniformly mixing the fibrous filler with the thermoplastic resin have been studied. In recent years, a technique has been developed in which a fiber is immersed in a molten thermoplastic resin to produce an impregnated resin fibrous filler in which the molten resin is impregnated into a fiber, which is then pelletized to form a master batch.
[0003]
The masterbatch containing these glass fibers and carbon fibers is added to the molding resin in order to strengthen the mechanical properties of the molding, but the range of selection of the thermoplastic resin impregnating the fibers is narrow, A fibrous filler-containing resin composition has been produced using a thermoplastic resin of the same type and having the same mechanical properties.
[0004]
[Problems to be developed by the invention]
Generally, since the molding resin has a high molecular weight and a high melt viscosity at the time of molding, it is difficult to impregnate the fiber with the resin as an impregnating resin. Further, when the fiber itself is kneaded with a thermoplastic resin without being impregnated with the resin, and cut into a fixed size with a cutter to form a pellet, there is a problem that the fiber falls off from the pellet.
[0005]
Therefore, various devices have been devised to produce pellets in which fibers do not fall off. For example, since impregnation is difficult, the fibers are divided into a plurality of bundles, and each bundle of fibers is coated with a resin of the same type as the molding resin and having the same mechanical properties, and twisted before the resin is solidified. The strands were combined into one strand and cut into a fixed length to produce pellets.
Alternatively, a bundle of fibrous fillers is melted and coated with a resin of the same type as the molding resin and having the same mechanical properties, and then cut to a fixed size before the coated resin is solidified to produce pellets.
[0006]
Alternatively, a fibrous filler can be impregnated by using a thermoplastic resin of the same type as a molding resin having a low melt viscosity and a low molecular weight. However, when the pellets are formed, the impregnated resin is broken or broken by the impact force of the rotary blade at the time of cutting the cutter, so that pelletization is impossible.
[0007]
Further, there is generally a step of drying the pellets of the fibrous filler-containing resin composition or the molding resin to remove moisture before injection molding. By this step, the generation of silver (a mark of evaporation of water, a sparkler-like pattern) on the surface of the molded product is suppressed, and when the hydrolyzable resin is a molding resin, it is hydrolyzed by water to give a molecular weight. By preventing the decrease, the effect of suppressing the decrease in the mechanical properties of the molded product can be obtained.
[0008]
In this step, if the impregnated resin melts or becomes sticky at the drying temperature, it adheres to the pellets or to the drying container, and the mixing amount may not be accurate, which may cause a problem in the quality of the injection molded product. .
[0009]
[Means for Solving the Problems]
That is, the present invention relates to a pelletized fibrous filler-containing resin composition containing 50 to 70% by weight of a fiber impregnated with 30 to 50% by weight of a polymerized fatty acid-based copolymerized polyamide resin. A pellet-like fibrous filler-containing resin composition, wherein the resin has a melt viscosity of 2000 mPa · s or less and a softening temperature of 170 ° C. or more.
[0010]
Further, the resin composition is a pellet-like fibrous filler-containing resin composition in which the temperature at which the weight changes by 2% or more in the thermogravimetric measurement (TG) of the polymerized fatty acid-based copolymer polyamide resin is 350 ° C or more.
[0011]
Furthermore, a molded product obtained by blending 10 to 50% by weight of the above-mentioned resin composition containing a fibrous filler in the form of a pellet with 50 to 90% by weight of a polycarbonate resin as a molding resin, uniformly mixing and injection molding.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The condition of the fibers used in the fibrous filler-containing resin composition of the present invention must be such that the fibers have shape retention, strength retention and thermal stability during the molten resin impregnation step.
[0013]
When the fiber material is an organic compound, the melting point or softening temperature of the fiber material needs to be sufficiently higher than the melting point or softening temperature of the impregnated resin. Further, from the viewpoint of dispersibility of the fibrous filler in the molding resin, it is preferable that the melting point or the softening temperature of the molding resin is higher than the melting point or the softening temperature of the impregnating resin.
From the above, the relationship between each melting point or softening temperature needs to be: fiber> molding resin> impregnating resin, and there is no particular limitation.
In the present invention, the melting point is a peak area of a melting point measured by a differential scanning calorimeter under a nitrogen gas flow at a rate of temperature increase of 10 ° C./min, and the softening temperature is defined by JIS K7234. The measurement was performed according to the ring and ball method.
[0014]
Typical examples of the fibers used in the present invention include cotton fibers and hemp fibers as natural fibers. As organic synthetic fibers, nylon fibers, polyethylene terephthalate (PET) fibers, polybutylene terephthalate (PBT) fibers, polyphenylene sulfide (PPS) fibers, imide fibers, aramid fibers, and liquid crystal resin fibers. Glass fibers and carbon fibers as inorganic fibers. Examples of the metal fiber include a copper fiber and a stainless fiber. The surface of these fibers may be subjected to a physical treatment such as chemical treatment or electron beam irradiation. For the purpose of imparting a plurality of functions, a combination of two or more kinds of fibers is also possible, and may be appropriately selected and used according to the required characteristics of the molded product. It is also possible to impart conductivity to a molded article by using a metal coated on the surface of these fibers, including metal fibers, and imparting conductivity.
[0015]
Although the fiber diameter and the number of fibers used in the present invention are not particularly limited, the fiber diameter per fiber is preferably 6 to 20 μm from the viewpoint of the impregnation step and subsequent handling. Further, the number per bundle is preferably in the range of 2,500 to 50,000.
After impregnating the resin in units of a bundle of fibers, the resin is pellet-formed to obtain a fibrous filler-containing resin composition. Since the bundle of fibers affects the thickness of the fibrous filler resin composition pellet, outside the above range, the diameter of the pellet is too small or too large, making it difficult to use.
[0016]
The fibers are preferably opened before impregnation. The impregnation of the resin is performed smoothly in a short time by opening the fiber, the high impregnation is maintained even if the molding conditions are slightly changed, and the resin is impregnated so as to uniformly disperse the fibers and surround each fiber. The existing space is small, the number of spaces is reduced, and a good impregnation state is obtained.
[0017]
The untwisted fibers are easier to spread, and thus the resin is more likely to be impregnated with the resin. However, twisted fibers can also be used. The impregnated fiber may be twisted at the exit of the die of the impregnation device. When twisting, the fibers that have been loosened or cut short in the die prevent clogging of the orifice caused by these, and the impregnated resin seeps out of the fiber bundle. It also has the effect of covering the bundle to form a shape and protecting the fibers.
[0018]
The fibers used in the present invention are preferably processed at a temperature at which the stretchability is not lost during the impregnation step and the molding step.
[0019]
The thermoplastic resin used as the impregnating resin in the present invention is a polymerized fatty acid-based copolymer polyamide resin. A polymerized fatty acid having 20 to 48 carbon atoms, a short-chain dibasic acid, and a diamine are mixed with each other in a weight ratio of (polymerized fatty acid / short-chain dibasic acid) of 0.25 to 5.2 and based on all carboxyl groups. It is obtained by mixing and polycondensing amino groups in substantially equivalent amounts. Commercially available products include Tomide 244-8 (manufactured by Fuji Kasei Kogyo Co., Ltd.).
[0020]
As the polymerized fatty acid having 20 to 48 carbon atoms, an unsaturated fatty acid, for example, a polymerized fatty acid obtained by polymerizing a monobasic fatty acid having one or more double bonds or triple bonds having 10 to 24 carbon atoms is used. . Specific examples include dimers such as oleic acid, linoleic acid and erucic acid. Commercially available polymerized fatty acids usually contain a dimerized fatty acid as a main component and, in addition, a raw material fatty acid and a trimerized fatty acid, and have a dimerized fatty acid content of 70% or more, preferably 95% or more. It is desirable that the above-mentioned and the degree of unsaturation be reduced by hydrogenation are used. Examples thereof include commercially available products such as Buriball 1009, Buriball 1004 (all manufactured by Unichema), and Enball 1010 (Henkel).
[0021]
Short chain dibasic acids include azelaic acid, sebacic acid and mixtures of both.
As the diamine, a diamine having 2 to 20 carbon atoms is preferable, and specifically, ethylenediamine, 1,4-aminobutane, hexamethylenediamine, nonamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2,4-diamine Diamines such as trimethylhexamethylenediamine, bis- (4,4'-aminocyclohexyl) methane, and metaxylylenediamine.
[0022]
The polymerized fatty acid copolymer polyamide resin used in the present invention has a melt viscosity at 250 ° C. of 2000 mPa · s or less. If the melt viscosity is 4000 mPa · s or less, good impregnation is possible. However, when heated to 200 ° C. or more in the processing step, an oxide film is formed on the surface of the molten resin with a decrease in the molecular weight of the resin, and thus the physical properties of the molded product obtained from the fibrous filler-containing resin composition obtained by impregnating the oxide film. Affects decline. The melt viscosity in the present invention is measured at a test temperature of 250 ° C. in accordance with JIS K6862.
[0023]
Also, the softening temperature of the polymerized fatty acid-based copolymerized polyamide resin needs to be 170 ° C. or higher. When the temperature is 170 ° C. or higher, there is little resin deterioration due to heat in the molding step, and an effect of improving the heat resistance of the molded article can be obtained.
[0024]
Further, if the temperature at which the polymer fatty acid-based copolymerized polyamide resin loses 2% or more in thermogravimetric analysis (TG) is 350 ° C. or more, resin deterioration due to heat in a high-temperature molding step of about 280 to 320 ° C. is small, This is preferable because it has the effect of preventing the decomposition of the resin in the resin composition containing a fibrous filler from being decomposed due to the progress of lowering the molecular weight of the resin.
The thermogravimetric analysis (TG) in the present invention refers to a change in weight when the temperature is raised at a rate of 10 ° C./min according to JIS K7120.
[0025]
In addition to the above, the molecular weight of the polymerized fatty acid-based copolymer polyamide resin is preferably 1,000 or more. If it is less than 1,000, pellet molding becomes difficult, which is not preferable. This pellet molding step is indispensable for the quantitative supply of the fibrous filler-containing resin composition. With a resin having an MN of less than 1000, the resin cannot withstand the impact of the pellet molding, and becomes sloppy. The shape cannot be maintained. The “pellet” as used in the present invention refers to a molding material granulated into a small sphere, a column or a prism having a diameter or a side of about 2 to 5 mm. In the present invention, the molecular weight is a number average molecular weight (hereinafter, referred to as MN) measured by HPLC.
[0026]
In addition, it is preferable that the polymerized fatty acid-based copolymer polyamide resin does not become sticky even at room temperature after drying at a temperature of 75 ° C or more and 130 ° C or less. In addition, stickiness means that pellets adhere to each other without being independent. Drying conditions are preferably 120 ° C. for 5 hours or 80 ° C. for 5 hours.
If the pellet surface is sticky, the wall surfaces of the container and the pellets may adhere to each other, and may lack quantitative performance. Reasons for stickiness include resin degradation during the heating step and the presence of low molecular weight components.
[0027]
As a method of impregnating the fiber with the resin, for example, a known method of impregnating the fiber by impregnating the fiber with an impregnated resin heated to have a low viscosity can be used. By this impregnation step, the space between the fibers constituting the fiber bundle is filled with the resin, and the fibers are reliably integrated and held without detachment, thereby improving the handling property and the workability afterwards. I do.
[0028]
Several impregnation devices have already been proposed. As a well-known method, impregnation is performed by passing a bundle of fibers into an impregnated resin melting bath container provided with an inlet for introducing a molten resin supplied from an extruder, and an outlet provided in the impregnated resin melting bath container. A bundle of impregnated fibers is withdrawn from the orifice.
Next, the resin composition is cut and pellet-shaped by a mechanical impact treatment to obtain a fibrous filler-containing resin composition.
[0029]
The fibrous filler-containing resin composition of the present invention is a master batch. A masterbatch is a molding resin that contains fibers at a high concentration and is a molding resin (uncolored thermoplastic resin) at the time of molding the molding, and the fibrous filler content is diluted to a desired concentration to form a molding. is there.
[0030]
The content of the fiber in the fibrous filler-containing resin composition of the present invention is preferably from 40 to 80% by weight from the viewpoints of pellet moldability, easy dispersion of the fiber in the molding resin, and expression of the function of the fiber. And particularly preferably 50 to 70% by weight.
[0031]
The fibrous filler-containing resin composition of the present invention may contain a heat stabilizer, a weathering agent, a lubricant, a slip agent, a nucleating agent, a pigment, a dye, and the like, if necessary, within a range that does not impair the effects of the present invention. can do.
[0032]
As the molding resin used together with the fibrous filler-containing resin composition during the production of the molded article of the present invention, a resin compatible with the polymerized fatty acid-based copolymer polyamide resin is used. For example, olefin-based resins include polyethylene, polypropylene, ethylene-propylene copolymer, acid-modified olefin resin, and the like, and styrene-based resins include impact-resistant polystyrene, ABS resin, polycarbonate, styrene-butadiene copolymer, and the like. , PBT resin, PET resin, polyamide resin, polyacetal resin and the like. These can be used alone or in combination of two or more. In the case of ABS or polycarbonate processed at a high temperature of about 280 to 320 ° C., particularly good effects are obtained, which is preferable.
[0033]
In the molded product of the present invention, first, 10 to 50% by weight of the fibrous filler-containing resin composition is blended with 50 to 90% by weight of the thermoplastic resin for molding.
The compounding ratio of the fibers in the molded product varies depending on the intended use of the molded product, but is preferably 10 to 90% by weight, particularly preferably 20 to 40% by weight. If the amount is less than 10% by weight, the mechanical properties of the molded article cannot be obtained, and if it exceeds 90% by weight, the molded article is undesirably warped or defective.
[0034]
In the manufacturing process of the molded article of the present invention, moisture of the resin composition and the molded resin is removed by drying before molding. Drying conditions are preferably 120 ° C. for 5 hours or 80 ° C. for 5 hours.
Thereafter, they are uniformly mixed and injection molded.
[0035]
In the present invention, a molded product having desired characteristics can be obtained by a combination of a fiber and a molding resin. In the case of a carbon fiber-containing ABS or polycarbonate resin molded product, a case of an electronic device having conductivity and an antistatic effect can be mentioned, and in the case of a stainless fiber-containing ABS or polycarbonate resin, a case of an electronic device having an electromagnetic wave shielding effect. Body. In the case of a polypropylene resin molded article containing PET fiber, the cold shock resistance is particularly enhanced, so that the molded article is useful as an automobile interior part.
[0036]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. In the examples, “part” indicates “part by weight” and “%” indicates “% by weight”. The evaluation results are shown in Tables 1 and 2.
[Production of fibrous filler-containing resin composition]
(Example 1)
60% by weight of PPS fiber (fiber diameter 16 μm, fiber bundle 7000) is impregnated with a polymerized fatty acid-based copolymer polyamide resin (softening temperature 170 ° C., TG 350 ° C., melt viscosity (250 ° C.) 1700 mPa · S), 5 mm long pellets To prepare a fibrous filler-containing resin composition having an impregnated resin content of 40% by weight.
[0037]
(Example 2)
70% by weight of carbon fiber (fiber diameter 7 μm, fiber bundle 36000) is impregnated with a polymerized fatty acid-based copolymer polyamide resin (softening temperature 170 ° C., TG 350 ° C., melt viscosity (250 ° C.) 1700 mPa · S), 5 mm long pellet To prepare a fibrous filler-containing resin composition having an impregnated resin content of 30% by weight.
[0038]
(Example 3)
50% by weight of aramid fiber (fiber diameter 14μm, fiber bundle 6000) is impregnated with a polymerized fatty acid-based copolymerized polyamide resin (softening temperature 170 ° C, TG 350 ° C, melt viscosity (250 ° C) 1700mPa · S), into a 5mm long pellet. To prepare a fibrous filler-containing resin composition having an impregnated resin content of 50% by weight.
[0039]
(Example 4)
80% by weight of stainless steel fiber (fiber diameter 8μm, fiber bundle 12,000) impregnated with a polymerized fatty acid-based copolymer polyamide resin (softening temperature 170 ° C, TG 350 ° C, melt viscosity (250 ° C) 1700mPa · S), 5mm long pellet To obtain a fibrous filler-containing resin composition having an impregnated resin content of 20% by weight.
[0040]
(Example 5)
85.7% by weight of a polycarbonate resin was blended with 14.3% by weight of the fibrous filler-containing resin composition pellets obtained in Example 2, and dried at 120 ° C. for 5 hours to remove water. Thereafter, a physical property test piece was molded by an injection molding machine (model IS100F; manufactured by Toshiba Machine Co., Ltd.).
[0041]
(Comparative Example 1)
75% by weight of stainless steel fiber (fiber diameter 8μm, fiber bundle 12,000) was impregnated with a thermoplastic saturated copolymerized polyester resin (melting point at 170 ° C, melt viscosity at 250 ° C; 6500mPa · S). The resin did not reach. Further, when the pellet was formed into a pellet having a length of 5 mm, the pellet was not separated by the fixed length cutting using a cutter.
[0042]
(Comparative Example 2)
70% by weight of stainless steel fiber (fiber diameter 8 μm, fiber bundle 12,000) was impregnated with a low molecular weight polypropylene resin (melting viscosity at 160 ° C., 200 ° C .; 1500 mPa · S). Next, when cutting into a 5 mm-long pellet by cutting with a cutter at a fixed size, the impregnated resin was shattered and pellet molding was not possible.
[0043]
(Comparative Example 3)
60% by weight of aramid fiber (fiber diameter 16 μm, fiber bundle 6000) is impregnated with ethylene-acrylic acid copolymer resin (melting point 110 ° C., melt viscosity (200 ° C.) 1200 mPa · S) and formed into a 5 mm long pellet. A fibrous filler-containing resin composition having an impregnated resin content of 40% by weight was prepared.
[0044]
(Comparative Example 4)
90% by weight of the same polycarbonate resin as in Example 5 was blended with 10% by weight of the fibrous filler-containing resin composition pellets obtained in Example 2, mixed uniformly, and a single screw extruder (L / D: 28; 50 mm: extruded and molded into a pellet by using the same injection molding machine as in Example 5, and subjected to a physical property test.
[0045]
(Comparative Example 5)
70% by weight of carbon fiber (fiber diameter 7 μm, fiber bundle 36000) was mixed with a polymerized fatty acid copolymer polyamide resin (softening temperature 150 ° C., TG 365 ° C., melt viscosity (200 ° C.) 3800 mPa · S, melt viscosity (250 ° C.) 800 mPa -Impregnated in s) to form a 5 mm long pellet to prepare a fibrous filler-containing resin composition having an impregnated resin content of 30% by weight.
85.7% by weight of a polycarbonate resin was blended with 14.3% by weight of the obtained fibrous filler-containing resin composition, and dried at 120 ° C. for 5 hours to remove water. Thereafter, a physical property test piece was molded using an injection molding machine (model IS100F; manufactured by Toshiba Machine Co., Ltd.), and a physical property test was performed.
[0046]
[Evaluation test of fibrous filler-containing resin composition]
(1) The impregnation state of the resin in the fiber filler was evaluated according to the following criteria.
○ Good impregnation. A resin is impregnated between the fibers.
× Impregnation failure. The resin is not impregnated between the fibers.
(2) Pellet formability by fixed-size cutting with a cutter was evaluated according to the following criteria.
○ 5 mm long cut was possible.
× 5 mm long cut was not possible.
(3) The state of the fiber filler-containing resin composition pellets after drying at 120 ° C. for 5 hours was evaluated according to the following criteria.
○ There is no stickiness.
× There is stickiness.
The above evaluations are summarized in Table 1.
[0047]
[Table 1]
Figure 2004018655
[0048]
[Test for evaluating physical properties of molded products]
(1) Tensile strength, elongation, bending strength, Izod impact strength, heat deformation temperature Tests were performed according to the standards shown in Table 2.
(2) Measurement method of volume resistivity A test was conducted by the Toyo method.
(Test specimen adjustment method)
After the surfaces of the two long end faces (3 mm × 75 mm) of the test piece (dimensions 3 mm × 50 mm × 75 mm) were ground with sandpaper (type; AA-100 manufactured by Sankyo Rikagaku Co., Ltd.), the skin layer was removed. Silver paste (Silcoat RL-10, manufactured by Fukuda Metal Foil & Powder Co., Ltd.) is applied and dried sufficiently to form electrodes.
(Measure)
The electric resistance between the above-mentioned electrodes is measured with an electro multimeter (manufactured by CDM-5000 CUSTOM).
(Standardization)
The measured value is normalized by the following equation to determine the volume resistivity.
ρ = R × S / L
However, ρ; volume resistivity R; measured electric resistance S; electrode area L;
[0049]
[Table 2]
Figure 2004018655
[0050]
【The invention's effect】
The fibrous filler-containing resin composition of the present invention contains 50 to 70% by weight of a fiber impregnated with 30 to 50% by weight of a polymerized fatty acid-based copolymer polyamide resin, and has a melt viscosity of 2000 mPa · s or less, even at a processing temperature of 200 ° C. or higher, the resin can be impregnated well without a significant decrease in the molecular weight of the resin, and a pellet that is longer than before and retains fibers of the same length as the pellet length can be obtained. Further, since the softening temperature of the polymerized fatty acid-based copolymer polyamide resin is 170 ° C. or higher, heat resistance can be improved.
[0051]
In addition, since the temperature at which the weight changes by 2% or more in the thermogravimetric measurement (TG) of the polymerized fatty acid-based copolymerized polyamide resin is 350 ° C. or more, resin deterioration in the high-temperature molding step is small. Therefore, since a low-molecular-weight resin decomposition product does not occur, the mechanical properties of the molded product can be improved.
[0052]
Since the molded article of the present invention is obtained by blending 10 to 50% by weight of the above fibrous filler-containing resin composition and 50 to 90% by weight of a polycarbonate resin as a molding resin, and uniformly mixing and injection-molding the fiber composition, The fibers in the resin composition containing the filler in the form were protected by the impregnating resin until melt-kneaded with the molding resin in the production of the molding. Therefore, the length of the fiber is maintained, and functions such as a reinforcing material and conductivity can be sufficiently exhibited.

Claims (3)

重合脂肪酸系共重合ポリアミド樹脂30〜50重量%を含浸した繊維50〜70重量%を含有するペレット状の繊維状フィラー含有樹脂組成物であって、重合脂肪酸系共重合ポリアミド樹脂の溶融粘度が2000mPa・s以下、かつ軟化温度が170℃以上であることを特徴とするペレット状の繊維状フィラー含有樹脂組成物。A pellet-like fibrous filler-containing resin composition containing 50 to 70% by weight of fibers impregnated with 30 to 50% by weight of a polymerized fatty acid-based copolymerized polyamide resin, wherein the melt viscosity of the polymerized fatty acid-based copolymerized polyamide resin is 2000 mPa. -A pellet-like resin composition containing a fibrous filler, wherein the resin composition has a softening temperature of 170 ° C or lower. 重合脂肪酸系共重合ポリアミド樹脂の熱重量測定(TG)において2%以上重量変化する温度が350℃以上である請求項1に記載のペレット状の繊維状フィラー含有樹脂組成物。The pellet-like fibrous filler-containing resin composition according to claim 1, wherein the temperature at which the weight changes by 2% or more in the thermogravimetric measurement (TG) of the polymerized fatty acid-based copolymer polyamide resin is 350 ° C or more. 請求項1または2に記載のペレット状の繊維状フィラー含有樹脂組成物10〜50重量%を、成形樹脂としてポリカーボネート樹脂50〜90重量%に配合して均一に混合し射出成形して成る成形物。A molded product obtained by blending 10 to 50% by weight of the resin composition containing a pellet-like fibrous filler according to claim 1 or 2 with 50 to 90% by weight of a polycarbonate resin as a molding resin, uniformly mixing and injection molding. .
JP2002174789A 2002-06-14 2002-06-14 Fibrous filler-containing resin composition and molded product formed by using the same Pending JP2004018655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002174789A JP2004018655A (en) 2002-06-14 2002-06-14 Fibrous filler-containing resin composition and molded product formed by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002174789A JP2004018655A (en) 2002-06-14 2002-06-14 Fibrous filler-containing resin composition and molded product formed by using the same

Publications (1)

Publication Number Publication Date
JP2004018655A true JP2004018655A (en) 2004-01-22

Family

ID=31173670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002174789A Pending JP2004018655A (en) 2002-06-14 2002-06-14 Fibrous filler-containing resin composition and molded product formed by using the same

Country Status (1)

Country Link
JP (1) JP2004018655A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132887A (en) * 2008-11-07 2010-06-17 Daicel Polymer Ltd Method for producing resin composition for sliding part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132887A (en) * 2008-11-07 2010-06-17 Daicel Polymer Ltd Method for producing resin composition for sliding part

Similar Documents

Publication Publication Date Title
JP5761632B2 (en) Glass fiber reinforced polyamide resin composition
EP1990369B1 (en) Glass-fiber-reinforced thermoplastic resin composition and molded article thereof
WO2014098103A1 (en) Fiber-reinforced thermoplastic-resin molded article, fiber-reinforced thermoplastic-resin molding material, and method for manufacturing fiber-reinforced thermoplastic-resin molding material
WO2008062755A1 (en) Flame-retardant polyamide composition
JP6957859B2 (en) Fiber-reinforced thermoplastic resin molded products and fiber-reinforced thermoplastic resin molded materials
JP2001503799A (en) Conductive composition and method for producing the same
JP2008088377A (en) Polyamide resin composition for breaker box body and breaker box body
US20060167158A1 (en) Resin composition for coating electric wire and electric wire using the same
WO2019167854A1 (en) Thermoplastic resin composition, molded article, method for manufacturing thermoplastic resin composition, and method for manufacturing plated molded article
EP2927265A1 (en) Pellet mixture, carbon fiber-reinforced polypropylene resin composition, molded body, and method for producing pellet mixture
JP2002536799A (en) Conductive composition and method for producing the same
JPWO2019074038A1 (en) Polyamide resin composition with excellent weather resistance
US7041726B2 (en) Insulating member using abrasion-resistant resin composition
JP2007224209A (en) Conductive thermoplastic resin molded article
JP2004018655A (en) Fibrous filler-containing resin composition and molded product formed by using the same
JP4956974B2 (en) Conductive thermoplastic resin composition and molded article
JPS6337142A (en) Production of electrically conductive resin composition
JP4290927B2 (en) Bundling agent, glass fiber, flaky glass and thermoplastic resin composition
JP6554815B2 (en) Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material
JP3736260B2 (en) Organic fiber resin composition and use thereof
JPH06145486A (en) Polybutylene terephthalate resin composition and its molded article
JP2007191540A (en) Thermoplastic resin composition and its manufacturing method
JPH11181181A (en) Resin composition
JP3978346B2 (en) Electric wires and cables with an adhesive olefin-based resin composition as a coating layer
JP6969082B2 (en) Catalyst batch, electric wire / cable formed using it, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050513

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070926

A131 Notification of reasons for refusal

Effective date: 20071016

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080226

Free format text: JAPANESE INTERMEDIATE CODE: A02