JPS6337058B2 - - Google Patents

Info

Publication number
JPS6337058B2
JPS6337058B2 JP55176708A JP17670880A JPS6337058B2 JP S6337058 B2 JPS6337058 B2 JP S6337058B2 JP 55176708 A JP55176708 A JP 55176708A JP 17670880 A JP17670880 A JP 17670880A JP S6337058 B2 JPS6337058 B2 JP S6337058B2
Authority
JP
Japan
Prior art keywords
reaction
weight
aqueous solution
reducing agent
melamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55176708A
Other languages
Japanese (ja)
Other versions
JPS57100959A (en
Inventor
Minoru Endo
Shigekatsu Kobayashi
Hiroshi Kuramochi
Juji Kinoshita
Kazuhito Kono
Akio Kitagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP17670880A priority Critical patent/JPS57100959A/en
Publication of JPS57100959A publication Critical patent/JPS57100959A/en
Publication of JPS6337058B2 publication Critical patent/JPS6337058B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、実質的にスルホン酸基含有メラミン
ホルムアルデヒド樹脂からなる高濃度コンクリー
ト減水剤水溶液の製造法の改良に関する。 スルホン酸基含有メラミンホルムアルデヒド樹
脂は、混練水中でセメント、石膏等水硬性無機質
材料に対し高い分散性能を示す減水剤として知ら
れているが、その性能の向上と共に現場使用の利
便から水溶液状の製品の提供が望まれている。更
に、この水溶液状製品としては、減水剤成分の濃
度が低いと、輸送、その他取り扱い上不要な水分
のための費用を要するために高濃度のものが望ま
れている。けれども、このスルホン酸基含有メラ
ミンホルムアルデヒド樹脂の水溶液は、その濃度
が高くなるにつれて保存中の変質が起り易くなる
性質を有し、そのために、保存期間の異なる高濃
度品をコンクリートに配合して使用すると、単に
減水率を一定に設定し得ないばかりか、コンクリ
ートの硬化時間、養生後の強度等も目標値からは
ずれた値となり、実用上の重大な問題が発生す
る。 高濃度であつて、しかも安定性の高いスルホン
酸基含有メラミンホルムアルデヒド樹脂からなる
コンクリート減水剤水溶液の製造方法として、特
開昭50−86593号公報に、メラミン、ホルムアル
デヒド及び亜硫酸アルカリをモル比1:2.7〜
3.2:0.9〜1.1で水溶液中、温度60〜80℃およびPH
10〜13で亜硫酸塩が消失するまで反応させた後、
PHを3.0〜4.5とし温度30〜60℃で30〜90分縮合反
応を行わせ、更にその生成液をPH7.5〜9.0に調節
した後、20℃で固体含量20%のときの粘度が5〜
40cpとなるまで70〜95℃に加熱し、その後生成
液のPHを10.5〜11.5に調節する方法が提案されて
いる。この提案された方法によると、固形分濃度
30〜50%の水溶液状製品を製造し得るが、上記の
ように縮合反応を行わせた後に更に、PH7.5〜9.0
及び温度70〜95℃で、例えば、60分もの加熱処理
工程を要し効率的な簡易プロセスでないのみなら
ず、製造される製品の性能を一定のものにコント
ロールし難い。 本発明は、このような問題を解消しようとする
ものであつて、実質的にスルホン酸基含有メラミ
ンホルムアルデヒド樹脂からなる高性能のコンク
リート減水剤水溶液を、その固形分濃度30〜50重
量%の高濃度品として、しかもその安定性が、例
えば1年以上もの長期保存によつても変質が起ら
ない程に高く、そして一定品質の製品として生産
できる製造法を提供することを目的とする。 本発明の高濃度コンクリート減水剤水溶液の製
造法は、水媒体中で、メラミン、ホルムアルデヒ
ド及び亜硫酸塩をモル比1:2.7〜3.3:0.9〜1.2
としアルカリ性で加熱する第1段反応工程と、そ
の生成液を酸性で加熱する第2段反応工程とから
なる実質的にスルホン酸基含有メラミンホルムア
ルデヒド樹脂含有のコンクリート減水剤水溶液の
製造法において、上記第1段反応をPH10〜13及び
温度60〜80℃で20〜60分行わせ、引き続き上記第
2段反応をPH5〜6及び温度40〜60℃で30〜150
分行わせた後、直ちにこの第2段反応工程生成液
のPHを12〜13.5に調節すると同時に冷却すること
により、水の除去工程を含まずに反応系に仕込ま
れた原料に由来して固形分を30〜50重量%含有す
る水溶液を生成させることを特徴とするものであ
る。 本発明に用いられるメラミンは、通常の市販工
業製品でよく、また、ホルムアルデヒドとして
は、市販工業製品のホルマリン、パラホルムアル
デヒド等で充分である。更に亜硫酸塩としては、
市販工業製品の亜硫酸ソーダ、亜硫酸アンモニウ
ム、重亜硫酸ソーダ、重亜硫酸アンモニウム、ピ
ロ亜硫酸ソーダ等が例挙される。場合によつて
は、上記メラミンの代りに、メラミンに対し特に
20重量%以下の割合で、メラミン以外の含アミノ
基化合物、例えば、尿素、グアナミン類化合物、
ジシアンジアミド、チオ尿素等をメラミンと混合
したものも使用し得る。上記メラミンは、平均6
モルの活性水素を含む化合物量を1モルとして計
算され、また、上記ホルムアルデヒドはCH2O1
モルを供給する化合物量を1モルと、更に上記亜
硫酸塩は、1モルのSO3基を提供する化合物量1
モルとそれぞれ計算される。 本発明による第1段反応は、通常の反応器中に
反応媒体である水、メラミン、ホルムアルデヒ
ド、亜硫酸塩及びPHを調整するためのアルカリ性
物質を仕込み、撹拌下に容易に行わせることがで
きる。上記メラミン、ホルムアルデビド及び亜硫
酸塩の仕込み順序は任意でよいが、同時仕込み法
が簡便である。通常、PH調節のためのアルカリ性
物質の添加は反応開始直前に行われる。この第1
反応工程において、メラミン、ホルムアルデビド
及び亜硫酸塩を、モル比1:2.7〜3.3:0.9〜1.2、
PH10〜13、温度60〜80℃で20〜60分加熱すること
により、スルホン酸基含有メチロールメラミンの
水溶液が生成し、引き続く第2反応工程に供する
ことができる。上記反応におけるPHの調節は、苛
性ソーダ等通常のアルカリ性物質の添加により容
易に行われる。 この第1段反応工程に引き続く第2段反応工程
では縮合反応が進められる。この反応を進めるた
めのPH5〜6の調節は、上記第1段反応工程によ
り生成した液に塩酸、硫酸等通常の鉱酸類、好ま
しくは硫酸を水溶液として加えることにより容易
に行い得る。この第2段反応は温度40〜60℃で30
〜150分撹拌下加熱することにより行われる。 本発明の方法は、この第2段反応を終了させた
後、直ちにその生成液に通常のアルカリ性物質、
好ましくは、例えば苛性ソーダ等の水溶液を加え
ることによりPH11.5〜13.5、好ましくは12〜13に
調節すると同時に冷却して常温の製品とするもの
である。従つて、本発明の製法では、製品を得る
までの間に反応系から水を除去する工程は含まれ
ない。本発明による製品の固形分濃度は通常30〜
50重量%の高濃度であるが、この濃度は、第1段
反応工程及び第2段反応工程及び最終のPH11.5〜
13.5に調節する間に用いられた原料に由来するも
のである。 この最終のPH調節には、通常、苛性ソーダ水溶
液の添加が行われるので、上記第2段反応は、通
常固形分として30重量%を超える高い濃度、例え
ば、約50重量%で行われる。そしてこの第2段反
応は、縮合反応が進行する反応であるが、この第
2段反応工程でのPH値は製品の水溶液の減水剤と
しての性能に著しい影響を与えることが見出され
た。この効果を理学的に解明することは困難であ
るが、縮合反応が進行するこの第2段反応での濃
度が高いと、わずかのPH値の変動によつても、生
成するスルホン酸基含有メラミンホルムアルデヒ
ド樹脂の分子構造及び分子量、更にこれらの分布
等が変動し易く、好ましい減水剤としては働かな
い樹脂成分の生成比率が変動し易くなるものと考
えられる。 上記第2段反応工程での液のPHが5以下では、
反応の進行と共に液の増粘速度で著大となり、好
ましい時点で反応を停止する操作を困難ならし
め、また、得られた液をPH11.5〜13.5に調節して
も液の貯蔵安定性が不充分となり易く、更に、こ
れを添加することにより得られたセメントペース
ト粘度も高くなり減水効果が低下する。上記とは
反対に第2段反応工程における液のPHが6以上で
は、反応は殆んど進行しないか或は反応を進める
のに著るしい長時間を要し好ましくない。上記特
定のPHにおいて、反応温度を40〜60℃に、また、
反応時間を30〜150分に設定することにより本発
明の好ましい減水剤水溶液が得られる。 上記第2段反応の終了後、その生成液に直ちに
加えられるアルカリは、上記第2段反応のそれ以
上の進行を停止する作用をし、そして得られた製
品水溶液の格別の安定化には、PH11.5以上、好ま
しくは12以上を必要とし、更にこのPH調節と同時
に生成液を常温にまで冷却することを必要とする
ことが見出された。この製品水溶液に、そのPH値
が13を超える程に多量のアルカリを加えてもその
割には安定性は向上せず、製品水溶液の安定貯蔵
期間として1年程度で充分であれば、不要のアル
カリ添加を避けてPH値12〜13程度となるようにア
ルカリを加えるのが好ましい。 かくして本発明の方法によれば、製造プロセス
は簡易かつ効率的であつて、得られる製品水溶液
は30〜50重量%の高濃度でありながら、著しく高
い安定性を示し、そしてこれを用いたコンクリー
トに高い流動性と養生コンクリートに高い強度を
与える。 実施例 1 温度計、撹拌器、コンデンサーを備えた反応器
に、40%ホルマリン675重量部を投入し、これに、
撹拌下メラミン378重量部、ピロ亜硫酸ソーダ286
重量部及び10%苛性ソーダ水溶液約210重量部を
投入し、PHを11.0に調整した。撹拌下20分を要し
て反応混合物を75℃まで昇温し、引きつづき30分
間反応させた後、45℃に冷却した。これに10%硫
酸約550重量部を加えることによりPHを5.0に調節
し、反応液の温度を45℃に保ちながら撹拌下約60
分縮合させた後直ちに、10%苛性ソーダ水溶液約
330重量部を加えてPHを12.5に調節し冷却した。
得られた液は透明であり、不揮発分40.5%を含
み、20℃における粘度は270cpであり、20℃にお
けるPHは13.2を示した。また、この生成液は、密
閉下室温で貯蔵したところ、1年以上変質が認め
られず極めて安定であつた。 実施例 2 実施例1と同様にして、メラミン378重量部、
40%ホルマリン675重量部、35%酸性亜硫酸ソー
ダ水溶液891重量部及び30%苛性ソーダ水溶液70
重量%を反応器に仕込み、PHを11.0に調整した。
撹拌下20分を要して反応混合物を75℃まで昇温
し、引きつづき30分間反応させた後50℃に冷却し
た。これに純水438重量部を加え、更に25%硫酸
水溶液を加えることによりPHを5.01に調整し、反
応液の温度を50℃に保ちながら撹拌下90分縮合反
応させた後直ちに30%苛性ソーダ水溶液を加えて
PHを12.0に調整し冷却した。得られた液は透明で
あり、不揮発分34.8%を含み、20℃における粘度
は86cpであり、PHは12.5を示した。この生成液は
密閉下室温で貯蔵したところ1年以上変質が認め
られず極めて安定であつた。 比較例 1 縮合反応時にPHを6.5に調整した他は実施例2
と同様にして樹脂溶液を調製したところ、生成液
は透明であり、不揮発分35%を含み、PHは12.0を
示したが、20℃における粘度はわずか12cpであ
り、後記第1表に示す如く減水剤性能が劣ること
を認めた。 比較例 2 縮合反応時のPHを3.8に調整した他は実施例2
と同様にして樹脂溶液を調製したところ、生成液
は透明であり、不揮発分34.2%を含みPHは12.0を
示したが、20℃における粘度は550cpと高く、密
閉下室温で貯蔵したところ6ケ月でゲル化した。
尚、調製直後品の減水剤性能は第1表に示す。 比較例 3 縮合反応時の反応温度を30℃、反応時間を150
℃とした他は実施例2と同様にして樹脂溶液を調
製したところ、生成液は透明であり、不揮発分
35.5%を含み、PHは12.0を示したが、20℃におけ
る粘度はわずか7cpであり、後記第1表に示す如
く減水剤性能が劣ることを認めた。 比較例 4 縮合反応時の反応温度を70℃、反応時間を30分
とした他は実施例2と同様にして樹脂溶液を調製
したところ、生成液は透明であり、不揮発分35.1
%を含み、PHは12.0を示したが、20℃における粘
度は480cpと高く、密閉下室温で貯蔵したところ
2か月でゲル化した。調製直後品の減水剤性能は
第1表に示す。 比較例 5 縮合反応終了後のPHを11.0に調整した他は実施
例2と同様にして樹脂溶液を調製したところ、生
成液は20℃における粘度80cpを示したが、密閉
下室温で貯蔵したところ6ケ月でゲル化した。 実施例 3 実施例1と同様にして、40%ホルマリン675重
量部、メラミン378重量部、35%酸性亜硫酸ソー
ダ水溶液891重量部、及び30%苛性ソーダ水溶液
70重量部を反応器に仕込み、PHを11.0に調整し
た。撹拌下20分を要して反応混合物を75℃まで昇
温し、引きつづき30分間反応させた後50℃に冷却
した。これに純水438重量部を加え、更に25%硫
酸水溶液を加えることにより、PHを5.01に調整
し、反応液の温度を50℃に保ちながら、撹拌下90
分縮合反応させた後直ちに30%苛性ソーダ水溶液
を加えてPHを13.0に調整し冷却した。得られた液
は透明であり、不揮発分34.9%を含み、20℃にお
ける粘度は78cpであり、PHは13.2を示した。この
生成液は密閉下室温で貯蔵したところ1年以上変
質が認められず安定であつた。 実施例 4 上記実施例1〜3及び比較例1〜4で得られた
樹脂溶液について、減水剤の性能をJIS―R―
5201の方法に従つて試験した。すなわち普通ポル
トランドセメント520重量部と豊浦産標準砂1040
重量部と水286重量部を混合し、各樹脂溶液は上
記混水286重量部中に内添して混合した。樹脂溶
液の添加量、モルタルフロー値、28日後圧縮強度
を一括第1表に示す。樹脂溶液の添加量はセメン
トに対する重量部を表わし、セメントに対する樹
脂固形分の重量比は1/100に一定とした。尚、
樹脂溶液を添加しない例についても行ない第1表
に結果を示す。 同表は、本発明法によるスルホン酸基含有メラ
ミンホルムアルデヒド樹脂溶液が極めて優れた減
水剤であることを示している。
The present invention relates to an improved method for producing a highly concentrated concrete water reducing agent aqueous solution consisting essentially of a sulfonic acid group-containing melamine formaldehyde resin. Sulfonic acid group-containing melamine formaldehyde resin is known as a water reducing agent that exhibits high dispersion performance for hydraulic inorganic materials such as cement and gypsum in mixing water. is desired to be provided. Furthermore, in this aqueous solution product, a product with a high concentration is desired because if the concentration of the water reducing agent component is low, the cost of unnecessary water for transportation and other handling will be increased. However, this aqueous solution of sulfonic acid group-containing melamine formaldehyde resin has the property of becoming more susceptible to deterioration during storage as its concentration increases, so high concentration products with different storage periods are used in concrete. In this case, not only is it not possible to set the water reduction rate constant, but also the hardening time of the concrete, the strength after curing, etc. become values that deviate from the target values, leading to serious practical problems. As a method for producing a concrete water reducing agent aqueous solution made of a highly concentrated and highly stable sulfonic acid group-containing melamine formaldehyde resin, melamine, formaldehyde and alkali sulfite are mixed in a molar ratio of 1: 2.7~
3.2: In aqueous solution at 0.9-1.1, temperature 60-80℃ and PH
After reacting until the sulfite disappears at 10 to 13,
After setting the pH to 3.0 to 4.5 and carrying out the condensation reaction at a temperature of 30 to 60°C for 30 to 90 minutes, and further adjusting the resulting liquid to pH 7.5 to 9.0, the viscosity at 20°C and solid content of 20% was 5. ~
A method has been proposed in which the pH of the produced liquid is adjusted to 10.5 to 11.5 after heating to 70 to 95°C until it reaches 40 cp. According to this proposed method, the solids concentration
A 30-50% aqueous solution product can be produced, but after the condensation reaction as described above, the pH is 7.5-9.0.
It requires a heat treatment step of, for example, 60 minutes at a temperature of 70 to 95°C, which is not only not an efficient and simple process, but also makes it difficult to control the performance of the manufactured product to a constant level. The present invention aims to solve such problems by using a high-performance concrete water reducing agent aqueous solution consisting essentially of a sulfonic acid group-containing melamine formaldehyde resin with a solid content concentration of 30 to 50% by weight. The object of the present invention is to provide a manufacturing method that enables the production of a concentrated product, which has such high stability that no deterioration occurs even after long-term storage, for example, one year or more, and which can produce a product of constant quality. The method for producing a highly concentrated concrete water reducing agent aqueous solution of the present invention involves mixing melamine, formaldehyde and sulfite in an aqueous medium in a molar ratio of 1:2.7 to 3.3:0.9 to 1.2.
In the method for producing an aqueous concrete water reducing agent solution substantially containing a sulfonic acid group-containing melamine formaldehyde resin, the method comprises a first reaction step of heating in an alkaline solution and a second reaction step of heating the resulting solution in an acidic state. The first stage reaction was carried out for 20 to 60 minutes at a pH of 10 to 13 and a temperature of 60 to 80°C, and then the second stage reaction was carried out at a pH of 5 to 6 and a temperature of 40 to 60°C for 30 to 150 minutes.
By immediately adjusting the pH of the second reaction process product liquid to 12 to 13.5 and cooling it at the same time, the solid content derived from the raw materials charged into the reaction system can be removed without a water removal process. It is characterized by producing an aqueous solution containing 30 to 50% by weight of The melamine used in the present invention may be an ordinary commercially available industrial product, and as the formaldehyde, commercially available industrial products such as formalin and paraformaldehyde are sufficient. Furthermore, as sulfites,
Examples include commercially available industrial products such as sodium sulfite, ammonium sulfite, sodium bisulfite, ammonium bisulfite, and sodium pyrosulfite. In some cases, instead of the above melamine, specifically for melamine
In a proportion of 20% by weight or less, amino group-containing compounds other than melamine, such as urea, guanamine compounds,
Mixtures of dicyandiamide, thiourea, etc. with melamine may also be used. The above melamine has an average of 6
It is calculated assuming that the amount of the compound containing mol of active hydrogen is 1 mol, and the above formaldehyde is CH 2 O1
The amount of the compound that provides 1 mole of SO 3 groups is 1 mole, and the amount of the compound that provides 1 mole of SO 3 groups is 1 mole.
Each is calculated as a mole. The first stage reaction according to the present invention can be easily carried out under stirring by charging a reaction medium of water, melamine, formaldehyde, sulfite, and an alkaline substance for adjusting the pH in a conventional reactor. The melamine, formaldebide and sulfite may be added in any order, but a simultaneous method is convenient. Usually, the addition of an alkaline substance for pH control is carried out immediately before the start of the reaction. This first
In the reaction step, melamine, formaldebide and sulfite are mixed in a molar ratio of 1:2.7-3.3:0.9-1.2.
By heating for 20 to 60 minutes at a pH of 10 to 13 and a temperature of 60 to 80°C, an aqueous solution of methylolmelamine containing a sulfonic acid group is generated, which can be used in the subsequent second reaction step. The pH in the above reaction can be easily adjusted by adding a common alkaline substance such as caustic soda. In the second reaction step following this first reaction step, a condensation reaction proceeds. Adjustment of the pH to 5 to 6 in order to proceed with this reaction can be easily carried out by adding ordinary mineral acids such as hydrochloric acid and sulfuric acid, preferably sulfuric acid, as an aqueous solution to the liquid produced in the first stage reaction step. This second stage reaction takes place at a temperature of 40 to 60°C.
This is done by heating under stirring for ~150 minutes. In the method of the present invention, immediately after completing this second stage reaction, a normal alkaline substance is added to the product liquid.
Preferably, the pH is adjusted to 11.5 to 13.5, preferably 12 to 13, by adding an aqueous solution such as caustic soda, and at the same time, the product is cooled to a room temperature product. Therefore, the production method of the present invention does not include a step of removing water from the reaction system before obtaining the product. The solid content concentration of the product according to the invention is usually 30~
The concentration is as high as 50% by weight, but this concentration is the same as that in the first reaction step, second reaction step, and final pH of 11.5.
13.5 from the raw materials used during the adjustment. This final pH adjustment is usually performed by adding an aqueous solution of caustic soda, so the second stage reaction is usually carried out at a high concentration of solids exceeding 30% by weight, for example about 50% by weight. This second stage reaction is a reaction in which a condensation reaction proceeds, and it has been found that the PH value in this second stage reaction step has a significant effect on the performance of the product as a water reducing agent for an aqueous solution. Although it is difficult to explain this effect physically, if the concentration in this second stage reaction where the condensation reaction progresses is high, even a slight change in the pH value will result in the formation of sulfonic acid group-containing melamine. It is thought that the molecular structure and molecular weight of formaldehyde resin, as well as their distribution, etc., tend to fluctuate, and the production ratio of resin components that do not function as a preferred water reducing agent tends to fluctuate. If the pH of the liquid in the second stage reaction step is 5 or less,
As the reaction progresses, the viscosity of the liquid increases dramatically, making it difficult to stop the reaction at a desired point, and even if the pH of the resulting liquid is adjusted to 11.5 to 13.5, the storage stability of the liquid is poor. This tends to be insufficient, and furthermore, the viscosity of the cement paste obtained by adding this increases, reducing the water-reducing effect. In contrast to the above, if the pH of the liquid in the second reaction step is 6 or higher, the reaction will hardly proceed or it will take a significant amount of time to proceed, which is not preferable. At the above specific pH, the reaction temperature is 40-60℃, and
By setting the reaction time to 30 to 150 minutes, a preferable water reducing agent aqueous solution of the present invention can be obtained. Immediately after the completion of the second stage reaction, the alkali added to the product liquid acts to stop the further progress of the second stage reaction, and for particular stabilization of the resulting aqueous product solution, It has been found that a pH of 11.5 or higher, preferably 12 or higher is required, and that it is also necessary to cool the produced liquid to room temperature at the same time as adjusting the pH. Even if a large amount of alkali is added to this product aqueous solution so that its PH value exceeds 13, the stability will not be improved. It is preferable to avoid adding alkali and add alkali so that the pH value is about 12 to 13. Thus, according to the method of the present invention, the manufacturing process is simple and efficient, and the product aqueous solution obtained has a high concentration of 30 to 50% by weight, but exhibits extremely high stability, and concrete using the same gives high fluidity and high strength to cured concrete. Example 1 675 parts by weight of 40% formalin was charged into a reactor equipped with a thermometer, a stirrer, and a condenser.
378 parts by weight of melamine, 286 parts by weight of sodium pyrosulfite under stirring
parts by weight and about 210 parts by weight of a 10% aqueous solution of caustic soda were added to adjust the pH to 11.0. The reaction mixture was heated to 75°C over 20 minutes with stirring, continued to react for 30 minutes, and then cooled to 45°C. The pH was adjusted to 5.0 by adding approximately 550 parts by weight of 10% sulfuric acid, and the temperature of the reaction solution was maintained at 45°C while stirring for approximately 60°C.
Immediately after partial condensation, 10% caustic soda aqueous solution of approx.
330 parts by weight was added to adjust the pH to 12.5 and cooled.
The resulting liquid was transparent, contained 40.5% nonvolatile content, had a viscosity of 270 cp at 20°C, and exhibited a pH of 13.2 at 20°C. Moreover, when this product liquid was stored at room temperature under closed conditions, no deterioration was observed for more than one year and it was extremely stable. Example 2 In the same manner as in Example 1, 378 parts by weight of melamine,
40% formalin 675 parts by weight, 35% acidic sodium sulfite aqueous solution 891 parts by weight and 30% caustic soda aqueous solution 70 parts by weight
% by weight was charged into the reactor and the pH was adjusted to 11.0.
The reaction mixture was heated to 75°C over 20 minutes with stirring, and then allowed to react for 30 minutes, and then cooled to 50°C. Add 438 parts by weight of pure water and further add 25% sulfuric acid aqueous solution to adjust the pH to 5.01. While keeping the temperature of the reaction solution at 50°C, condensation reaction was carried out for 90 minutes with stirring, and immediately after that, 30% caustic soda aqueous solution was added. plus
The pH was adjusted to 12.0 and cooled. The resulting liquid was transparent, contained 34.8% nonvolatile content, had a viscosity of 86 cp at 20°C, and exhibited a pH of 12.5. When this product liquid was stored at room temperature under closed conditions, no deterioration was observed for more than one year and it was extremely stable. Comparative Example 1 Example 2 except that the pH was adjusted to 6.5 during the condensation reaction
When a resin solution was prepared in the same manner as above, the resulting liquid was transparent, contained 35% nonvolatile content, and had a pH of 12.0, but the viscosity at 20°C was only 12 cp, as shown in Table 1 below. It was acknowledged that the water reducing agent performance was inferior. Comparative example 2 Example 2 except that the PH during the condensation reaction was adjusted to 3.8
When a resin solution was prepared in the same manner as above, the resulting liquid was transparent, contained 34.2% nonvolatile content, and had a pH of 12.0, but the viscosity at 20°C was as high as 550 cp, and it did not last for 6 months when stored at room temperature under closed conditions. gelatinized.
The water reducing agent performance of the product immediately after preparation is shown in Table 1. Comparative Example 3 The reaction temperature during the condensation reaction was 30°C, and the reaction time was 150°C.
A resin solution was prepared in the same manner as in Example 2 except that the temperature was changed to
It contained 35.5% and showed a pH of 12.0, but the viscosity at 20°C was only 7 cp, and as shown in Table 1 below, it was recognized that the water reducing agent performance was poor. Comparative Example 4 A resin solution was prepared in the same manner as in Example 2 except that the reaction temperature during the condensation reaction was 70°C and the reaction time was 30 minutes. The resulting liquid was transparent and had a nonvolatile content of 35.1
%, and the pH was 12.0, but the viscosity at 20°C was as high as 480 cp, and when stored at room temperature under closed conditions, it gelled in 2 months. The water reducing agent performance of the freshly prepared product is shown in Table 1. Comparative Example 5 A resin solution was prepared in the same manner as in Example 2, except that the pH after the completion of the condensation reaction was adjusted to 11.0. It gelled in 6 months. Example 3 In the same manner as in Example 1, 675 parts by weight of 40% formalin, 378 parts by weight of melamine, 891 parts by weight of 35% acidic sodium sulfite aqueous solution, and 30% caustic soda aqueous solution were prepared.
70 parts by weight was charged into a reactor, and the pH was adjusted to 11.0. The reaction mixture was heated to 75°C over 20 minutes with stirring, and then allowed to react for 30 minutes, and then cooled to 50°C. By adding 438 parts by weight of pure water and further adding 25% sulfuric acid aqueous solution, the pH was adjusted to 5.01.
Immediately after the partial condensation reaction, a 30% aqueous sodium hydroxide solution was added to adjust the pH to 13.0, and the mixture was cooled. The resulting liquid was transparent, contained 34.9% nonvolatile content, had a viscosity of 78 cp at 20°C, and exhibited a pH of 13.2. When this product liquid was stored at room temperature under closed conditions, it remained stable for more than one year without any change in quality. Example 4 Regarding the resin solutions obtained in Examples 1 to 3 and Comparative Examples 1 to 4, the performance of the water reducing agent was evaluated according to JIS-R-
Tested according to the method of 5201. That is, 520 parts by weight of ordinary Portland cement and 1040 parts by weight of Toyoura standard sand.
parts by weight and 286 parts by weight of water were mixed, and each resin solution was internally added to 286 parts by weight of the above mixed water and mixed. Table 1 shows the amount of resin solution added, mortar flow value, and compressive strength after 28 days. The amount of the resin solution added is expressed in parts by weight relative to the cement, and the weight ratio of the resin solid content to the cement was constant at 1/100. still,
An example in which no resin solution was added was also tested and the results are shown in Table 1. The table shows that the sulfonic acid group-containing melamine formaldehyde resin solution prepared by the method of the present invention is an extremely excellent water reducing agent.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 水媒体中で、メラミン、ホルムアルデヒド及
び亜硫酸塩をモル比1:2.7〜3.3:0.9〜1.2とし
アルカリ性で加熱する第1段反応工程と、その生
成液を酸性で加熱する第2段反応工程とからなる
実質的にスルホン酸基含有メラミンホルムアルデ
ヒド樹脂含有のコンクリート減水剤水溶液の製造
法において、上記第1段反応をPH10〜13及び温度
60〜80℃で20〜60分行わせ、引き続き上記第2段
反応をPH5〜6及び温度40〜60℃で30〜150分行
わせた後、直ちにこの第2段反応工程生成液のPH
を12〜13.5に調節すると同時に冷却することによ
り、水の除去工程を含まずに反応系に仕込まれた
原料に由来して固形分を30〜50重量%含有する水
溶液を生成させることを特徴とする高濃度コンク
リート減水剤水溶液の製造法。
1 A first reaction step in which melamine, formaldehyde and sulfite are heated in an alkaline molar ratio of 1:2.7 to 3.3:0.9 to 1.2 in an aqueous medium, and a second reaction step in which the resulting solution is heated in an acidic state. In the method for producing an aqueous concrete water reducing agent solution containing substantially sulfonic acid group-containing melamine formaldehyde resin, the first stage reaction is carried out at a pH of 10 to 13 and a temperature of
The second stage reaction was carried out at 60 to 80°C for 20 to 60 minutes, and then the second stage reaction was carried out at a pH of 5 to 6 and a temperature of 40 to 60°C for 30 to 150 minutes.
By adjusting the temperature to 12 to 13.5 and cooling at the same time, an aqueous solution containing 30 to 50% by weight of solids derived from the raw materials charged into the reaction system is produced without a water removal step. A method for producing a highly concentrated concrete water reducing agent aqueous solution.
JP17670880A 1980-12-15 1980-12-15 Manufacture of high concentration concrete water-reducing agent aqueous solution Granted JPS57100959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17670880A JPS57100959A (en) 1980-12-15 1980-12-15 Manufacture of high concentration concrete water-reducing agent aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17670880A JPS57100959A (en) 1980-12-15 1980-12-15 Manufacture of high concentration concrete water-reducing agent aqueous solution

Publications (2)

Publication Number Publication Date
JPS57100959A JPS57100959A (en) 1982-06-23
JPS6337058B2 true JPS6337058B2 (en) 1988-07-22

Family

ID=16018360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17670880A Granted JPS57100959A (en) 1980-12-15 1980-12-15 Manufacture of high concentration concrete water-reducing agent aqueous solution

Country Status (1)

Country Link
JP (1) JPS57100959A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217445A1 (en) 2016-06-16 2017-12-21 花王株式会社 Rheology modifier

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04130386U (en) * 1991-05-23 1992-11-30 株式会社ダイクレ Laminated structure of FRP grating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086593A (en) * 1973-11-28 1975-07-11
JPS5213991A (en) * 1975-07-23 1977-02-02 Katsumi Toyoda Vertical packer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086593A (en) * 1973-11-28 1975-07-11
JPS5213991A (en) * 1975-07-23 1977-02-02 Katsumi Toyoda Vertical packer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217445A1 (en) 2016-06-16 2017-12-21 花王株式会社 Rheology modifier

Also Published As

Publication number Publication date
JPS57100959A (en) 1982-06-23

Similar Documents

Publication Publication Date Title
US4501839A (en) Method of using highly concentrated aqueous solutions of low viscosity of melamine/aldehyde resins for improving building materials
US4725665A (en) Use of salts of water-soluble
US4677159A (en) Process for the synthesis of highly stable sulfonated melamine-formaldehyde condensates as superplasticizing admixtures in concrete
NZ227489A (en) Manufacture of urea-formaldhyde resins in three stages containing melamine
US3941734A (en) Process for preparing a sulfite modified melamine resin solution
JP2741730B2 (en) Sulfonic acid group-containing condensation products mainly composed of amino-s-triazine and formaldehyde
US5008365A (en) Process for the manufacture of urea-formaldehyde resins containing melamine
US4820766A (en) Highly stable sulfonated melamine-formaldehyde condensate solution
JPS6337058B2 (en)
CA2287423C (en) Process for preparing an aqueous solution of sulfanilic acid modified melamine-formaldehyde resin and a cement composition
JPS6241605B2 (en)
JP4182309B2 (en) Method for producing sulfanilic acid-modified melamine formaldehyde resin aqueous solution
GB2106527A (en) Dispersing composition
JPH0243763B2 (en) KONODOSURUPPONKAAMINOJUSHISUIYOEKINOSEIZOHO
JPH01129016A (en) Production of fluidizing agent for inorganic binder
JP3823368B2 (en) Method for producing water reducing agent aqueous solution
JP2833135B2 (en) Manufacturing method of high performance water reducing agent
JP2000351661A (en) Cement composition containing sulfanilic acid-modified melamine-formaldehyde resin
JPS6345159A (en) Manufacture of high concentration low viscosity sulfonated amino resin aqueous solution
JPH0143699B2 (en)
JPS6158082B2 (en)
JPH0627173B2 (en) Method for producing melamine formaldehyde resin containing sulfonic acid group
JPS5896618A (en) Manufacture of cement dispersant
JPH054357B2 (en)
CN110845173A (en) Method for accelerating static maintenance of concrete product