JPS5896618A - Manufacture of cement dispersant - Google Patents

Manufacture of cement dispersant

Info

Publication number
JPS5896618A
JPS5896618A JP19456981A JP19456981A JPS5896618A JP S5896618 A JPS5896618 A JP S5896618A JP 19456981 A JP19456981 A JP 19456981A JP 19456981 A JP19456981 A JP 19456981A JP S5896618 A JPS5896618 A JP S5896618A
Authority
JP
Japan
Prior art keywords
pref
reaction
acid
temperature
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19456981A
Other languages
Japanese (ja)
Inventor
Kazuo Uno
鵜野 一男
Yasuhiko Otaki
大滝 康彦
Kiyoto Imai
今井 清人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP19456981A priority Critical patent/JPS5896618A/en
Publication of JPS5896618A publication Critical patent/JPS5896618A/en
Pending legal-status Critical Current

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)

Abstract

PURPOSE:To obtain a cement dispersant consisting mainly of a cndensate, by the condensation, under inert gas-pressurized state between naphthalenesulfonic acid and formaldehyde to reduce reaction time and markedly decrease the amount of the catalyst, i.e. sulfuric acid to effect easier after-treatment. CONSTITUTION:To naphthalenesulfonic acid, ca. 0.01-0.5 (pref. 0.04-0.4)mol, per mol of the above acid, of sulfuric acid as a catalyst is added and then water of ca. 0.15-0.5 time for the weight of the naphthalene sulfonic acid is added followed by incorporating ea. 0.8-1.2 (pref. 0.9-1.1)mol, in terms of formaldehyde, of ca. 37% formalin to carry out a reaction under a pressure >=0.2 (pref. 0.5- 10)kg/cm<2>G of an inert gas (e.g., nitrogen) at[a. 100-140 (pref. 110-130) deg.C for 2-16 (pref. 3-10)hr, thus obtaining a condensate and its salt C the objective cement dispersant). USE:For the application to concrete, mortor, cement paste, etc.

Description

【発明の詳細な説明】 本発明社、ナフタレンスルホン酸−ホルムアルデヒド縮
合物及びその塩類を主成分とするセメント分散剤の製造
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a cement dispersant containing a naphthalene sulfonic acid-formaldehyde condensate and its salts as a main component.

セメント分散剤をコンクリートの練り混ぜの際に添加す
ると、コンクIJ −トの軟度が増大し、作業性を向上
させると共に、コンクリートの必要水量が減少しコンク
リートの強度の増大、水密性の増大、ひびわれ性の減少
等の種々の好ましい結果をもたらす。このため、セメン
ト分散剤は、今日広く一般に使用されている。
Adding a cement dispersant during mixing of concrete increases the softness of the concrete, improving workability, reducing the amount of water required for concrete, increasing the strength of concrete, increasing watertightness, This results in a variety of favorable results, including reduced cracking. For this reason, cement dispersants are widely and commonly used today.

ナフタレンスルホン酸とホルムアルデヒドとを縮合させ
て得られる縮合物(以下、NFCとかく。)及びその塩
類がセメント分散剤としての性能を有することは従来知
られておシ、縮合反応を高度に進めて得られるNFCが
特にセメント分散剤として、すぐれ九性能を示すことも
公知であった(特公昭41−11737 、特公昭4B
 −9564)。
It has been known that the condensate obtained by condensing naphthalene sulfonic acid and formaldehyde (hereinafter referred to as NFC) and its salts have performance as a cement dispersant. It was also known that NFC exhibited excellent performance especially as a cement dispersant.
-9564).

一般にNFCは、硫酸の存在下で、ナフタレンスルホン
酸とホルムアルデヒドトラ95〜100℃で、縮合反応
して得られるが、セメント分散剤としてすぐれた性能を
示す縮合反応が高度に進んだNFCを得るKは、硫酸の
量を大として、かつ長時間縮合反応することが必要であ
った。たとえば上記特公昭41−11737 、特公1
@48−9564の実施例によれば、縮合反応時にナフ
タレンスルホン酸1モル幽シ硫酸をα73〜α79モル
存在させ、反応時間を25時間またはそれ以上行ってい
た。従って、反応が長時間を要する仁とと共に多量の硫
酸の後処理が問題となった。すなわち、硫酸の使用量が
多いため縮合反応を終った反応生成物をライ建ングソー
デーシ曹ンを行うと副生ずる石膏量が多く、このろ過及
び処分に難点があった。また反応生成物の後処理の別法
として、水酸化ナトリウムを加えて中和する方法をとる
と、硫酸ナトリウムが大量に副生じ、寒冷時において硫
酸ナトリウムが析出してNFC塩溶液の取扱いに支障を
きたした。
Generally, NFC is obtained by a condensation reaction between naphthalene sulfonic acid and formaldehyde at 95 to 100°C in the presence of sulfuric acid. It was necessary to use a large amount of sulfuric acid and conduct the condensation reaction for a long time. For example, the above-mentioned Special Publication No. 41-11737, Special Publication No. 1
According to Example @48-9564, 1 mol of naphthalene sulfonic acid and 79 mol of naphthalene sulfonic acid were present during the condensation reaction, and the reaction time was 25 hours or more. Therefore, the post-treatment of large amounts of sulfuric acid became a problem as well as the need for a long reaction time. That is, since a large amount of sulfuric acid is used, when the reaction product after the condensation reaction is subjected to lye-sodification, a large amount of gypsum is produced as a by-product, which is difficult to filter and dispose of. Another method for post-processing the reaction product is to neutralize it by adding sodium hydroxide, but a large amount of sodium sulfate is produced as a by-product, and sodium sulfate precipitates in cold weather, which interferes with the handling of the NFC salt solution. caused.

本発明者らは、これらの問題点を解消するため種々研究
した結果、縮合時に不活性ガスを封入し、縮合反応温度
を100〜140’Cの加圧反応をすることにより縮合
反応時間を短縮し得ると共に硫酸量も大巾に低減し得る
事を見出し、本発明を完成するにhたった。
As a result of various studies to solve these problems, the present inventors shortened the condensation reaction time by sealing an inert gas during condensation and performing a pressurized reaction at a condensation reaction temperature of 100 to 140'C. It was discovered that the amount of sulfuric acid could be greatly reduced and the present invention was completed.

本発明は、ナフタレンスルホン酸トホルムアルデヒドと
を不活性ガスの加圧下で縮合させることを特徴とするナ
フタレンスルホン酸−ホルムアルデヒド縮合物及びその
塩類を主成分とするセメント分散剤の製造方法である。
The present invention is a method for producing a cement dispersant containing a naphthalene sulfonic acid-formaldehyde condensate and its salts as main components, which is characterized by condensing naphthalene sulfonic acid and formaldehyde under pressure of an inert gas.

本発明において、ナフタレンスルホン酸は、純品が好ま
しいが、本発明の効果やセメント分散性を損わない範囲
でアルキルナフタレン等を含んだす7タレンのスルホン
化物であっテモよい0 本発明において、ナフタレンスルホン酸とホルムアルデ
ヒドとの縮合反応は、硫酸を触媒として使用する仁とが
反応時間の短縮等の利点かあシ好ましい。
In the present invention, the naphthalene sulfonic acid is preferably a pure product, but it is preferable to use a sulfonated product of hexathalene containing alkylnaphthalene, etc., as long as it does not impair the effects of the present invention or cement dispersibility. In the condensation reaction of sulfonic acid and formaldehyde, it is preferable to use sulfuric acid as a catalyst due to advantages such as shortening of reaction time.

本発明において不活性ガスとしては、窒素、炭酸ガス、
ヘリウム、アルゴン等のガスを用いる。本発明における
不活性ガスは、上記のものに制限されるものでなく、縮
合反応に悪影響を及はさ々いガスを意味している。不活
性ガスの圧力としては、0.2 kg/cjG以上、好
ましくは、α5〜10慝−Gとする。
In the present invention, the inert gas includes nitrogen, carbon dioxide,
A gas such as helium or argon is used. The inert gas in the present invention is not limited to those mentioned above, but refers to any gas that does not have a bad influence on the condensation reaction. The pressure of the inert gas is 0.2 kg/cjG or higher, preferably α5 to 10 cm-G.

本発明の方法によるNFCの製造は、次のようにして行
う。ナフタレンスルホン酸1モル尚り硫酸を触媒として
0.01−0.5モル、好ましくは、0.04〜0.4
モル存在させ、次いで水をナフタレンスルホン酸重量の
0.15〜0.5倍量添加し約371ホルマリンをホル
ムアルデヒドとして058〜1゜2モル好ましくは、0
.9〜1.1モル加え、不活性ガスを0.2−10以上
、好ましくは、0.5〜10kfaiG封入す物性、性
能両面から好ましいNFCが得られ難く、一方10ki
cd Gを超えると、設備の経済面及び安全面から実用
的でない。反応温度は、100〜140℃、好ま°しく
け、110〜130℃であシ、温度が100℃未満では
、反応速度が運くなり本発明の効果が発揮されず、14
0℃を超えると、反応速度が早くなりすぎ、反応のコン
トロールがむずかしく、かつ高粘度のNFCとなシ、実
用的でない。反応時間は、触媒量、温度等の賭因子によ
シ異なるが、反応管理、経済性から勘案すれば2〜16
時間好ましくは、3〜10時間が適当である。縮合反応
中に反応物の粘度が上昇し、攪i困難な場合には、少量
の水を加えて攪拌を容゛ 易にする。又反応を円滑かつ
容易に遂行するために水を予め添加しておくこともでき
る。反応終了後、水を目的濃度に合せて所定量加えて希
釈し、アルカリで中和した後、0℃で硫酸ナトリウムを
晶析除去してもよいし、常法に従ってライミングソーデ
ーシ璽ンを行って4良い。一本発明の方法によって得ら
れるNFCは、Na塩の形で用いられるほか、K%NH
4、C4塩の形で用いられても曳い。
NFC is manufactured by the method of the present invention as follows. 1 mol of naphthalene sulfonic acid and 0.01-0.5 mol using sulfuric acid as a catalyst, preferably 0.04-0.4 mol
0.15 to 0.5 times the weight of naphthalene sulfonic acid is added to give about 371 formalin as formaldehyde, preferably 0.
.. Adding 9 to 1.1 mol of inert gas and enclosing 0.2 to 10 or more, preferably 0.5 to 10 kfaiG of inert gas makes it difficult to obtain a preferable NFC from both physical properties and performance;
If it exceeds cd G, it is impractical from the economic and safety aspects of the equipment. The reaction temperature is preferably 100 to 140°C, preferably 110 to 130°C. If the temperature is less than 100°C, the reaction rate will be slow and the effect of the present invention will not be exhibited.
If the temperature exceeds 0°C, the reaction rate becomes too fast, it is difficult to control the reaction, and NFC becomes highly viscous, which is not practical. The reaction time varies depending on factors such as catalyst amount and temperature, but from 2 to 16
Preferably, the appropriate time is 3 to 10 hours. If the viscosity of the reactants increases during the condensation reaction, making stirring difficult, add a small amount of water to make stirring easier. Also, water can be added in advance to carry out the reaction smoothly and easily. After the reaction is complete, add a predetermined amount of water to the desired concentration to dilute, neutralize with alkali, and then crystallize and remove the sodium sulfate at 0°C, or add liming soda according to the usual method. I went and got a 4. NFC obtained by the method of the present invention is used in the form of Na salt as well as K%NH
4. Can also be used in the form of C4 salt.

本発明の製造方法にょシ、縮合時間を大巾に短縮でき、
かつ少ない硫酸量の存在下でセメント分散剤としてすぐ
れた性能を示すNFCが得られ、NFCの製造コストを
従来公知の方法に比べて極度に低減させる事ができる。
The production method of the present invention can greatly shorten the condensation time,
Moreover, NFC exhibiting excellent performance as a cement dispersant in the presence of a small amount of sulfuric acid can be obtained, and the manufacturing cost of NFC can be extremely reduced compared to conventionally known methods.

本発明の分散剤は、コンクリートに用いられるほか、モ
ルタル、セメントペースト等に添加して用いられてもコ
ンクリートの場合と同様の効果がある。
In addition to being used for concrete, the dispersant of the present invention has the same effect as for concrete even when added to mortar, cement paste, etc.

本発明を従来公知の方法と比較して効果並びに利点を列
挙すると次の通シである。
The effects and advantages of the present invention compared with conventionally known methods are listed below.

0) 縮合反応において従来の方法では、温度を100
℃以上にするとホルムアルデヒドあるいは、ホルマリン
の安定剤であるメタノールの発泡現象、ひどい時には、
内容物が吹き出す現象があり、100℃以上の温度では
、縮合反応ができなかった。一方、本発明の如く不活性
ガスで加圧して上記の発泡現象を抑制して反応をすれば
、縮合温度をあげる事ができる。
0) In the conventional method of condensation reaction, the temperature is
If the temperature exceeds ℃, formaldehyde or methanol, which is a stabilizer for formalin, will foam, and in severe cases,
There was a phenomenon that the contents were blown out, and the condensation reaction could not be carried out at a temperature of 100°C or higher. On the other hand, if the reaction is carried out while suppressing the above-mentioned foaming phenomenon by pressurizing with an inert gas as in the present invention, the condensation temperature can be raised.

又、縮合温度をあげることにより、反応物の粘度を減少
せしめる事ができる為、攪拌状態も良好なものとなシ反
応も均一に進行する。
In addition, by raising the condensation temperature, the viscosity of the reactant can be reduced, so that the stirring condition is good and the reaction proceeds uniformly.

(ロ)従来の方法では、縮合反応が進み、増粘するにつ
れ反応物の液面上昇があるが、本発明の加圧反応では、
はぼ一定である。
(b) In the conventional method, the liquid level of the reactants rises as the condensation reaction progresses and the viscosity increases, but in the pressurized reaction of the present invention,
is almost constant.

e9  従来の方法では、密閉系で自圧のみで100℃
以上の縮合反応を行うと発泡現象があシ、攪拌状態が悪
くなり局部加熱現象を起し反応物の一部は樹脂化しやす
いが本発明の不活性ガスを封入する方法では、これらの
現象を防止てきる。
e9 In the conventional method, the temperature was raised to 100℃ using only self-pressure in a closed system.
When the above condensation reaction is carried out, foaming occurs, the stirring condition worsens, local heating occurs, and a part of the reactant tends to turn into resin, but the method of the present invention, in which inert gas is enclosed, prevents these phenomena. It can be prevented.

に)従来の方法の反応では、反応物の粘度が高くなると
局部加熱現象を起し、反応物の一部は、樹脂化しやすい
が、本発明の加圧反応によれば局部加熱現象を防止でき
る。
b) In the reaction of conventional methods, when the viscosity of the reactant increases, local heating phenomenon occurs, and a part of the reactant tends to turn into resin, but the pressurized reaction of the present invention can prevent the local heating phenomenon. .

(へ)本発明の加圧反応では、縮合反応温度をあげる事
ができるので、触媒の硫酸の量を大巾に低減でき、その
濃度は、ホル−v IJン添加前および添加後50チ未
満でよく、かつ反応時間を短縮できる。
(f) In the pressurized reaction of the present invention, the condensation reaction temperature can be raised, so the amount of sulfuric acid as a catalyst can be greatly reduced, and its concentration is less than 50% before and after the addition of hol-v IJ. , and the reaction time can be shortened.

(へ)硫酸の使用蓋が少ないので、副生の硫酸塩の量が
少なくなり後処理が容易となる。たとえば、ナフタレン
スルホン酸1モル当り触媒として存在させる硫酸量を0
.045モルとして綜合反応を行い水酸化す) IJウ
ムで中和した場合には、副生ずる硫酸ナトリウムが少な
いゆえ、0℃に冷却しても析出することがなく、後処理
は不要もしくは簡便なものとなる。
(F) Since less sulfuric acid is used, the amount of by-product sulfate is reduced, making post-treatment easier. For example, the amount of sulfuric acid present as a catalyst per mole of naphthalenesulfonic acid is 0.
.. When neutralized with IJium, there is less sodium sulfate as a by-product, so it does not precipitate even when cooled to 0°C, and post-treatment is unnecessary or simple. becomes.

次に実施例・比較例を挙げて本発明を説明と するが、本発明はこれ 何ら限定されるもので社ない。Next, the present invention will be explained by giving examples and comparative examples. However, the present invention is not limited to this in any way.

実施例1゜ (1)NPCの製造 200tのナフタレンを115〜120℃に加熱して溶
融し、120〜130℃の温度で98−硫酸200 f
を1時間を要して添加した後、1時間で160℃に昇温
し、同温度で6時間反応せしめた。120〜130℃に
冷却後9891一 硫酸199添加し、次に水781を添加した。
Example 1 (1) Production of NPC 200 tons of naphthalene was heated to 115-120°C to melt it, and 200 f of 98-sulfuric acid was added at a temperature of 120-130°C.
was added over a period of 1 hour, the temperature was raised to 160°C over 1 hour, and the reaction was continued at the same temperature for 6 hours. After cooling to 120-130°C, 199 g of 9891 monosulfuric acid was added, and then 781 g of water was added.

温度を80〜90℃まで冷却、保温し37%ホルマリン
127fを3時間にわたって滴下した。
The temperature was cooled to 80 to 90°C, kept warm, and 37% formalin 127f was added dropwise over 3 hours.

滴下後、水を120 f添加した後、窒素を導入し3.
0 kg/cjGとした。次いで115℃に昇温し、こ
の温度で4時間給合反応を行った。
After dropping, 120 f of water was added, and then nitrogen was introduced.3.
It was set to 0 kg/cjG. Next, the temperature was raised to 115°C, and a feeding reaction was carried out at this temperature for 4 hours.

縮合を終ったものは、水酸化ナトリウム溶液で中和し、
0℃で硫酸ナトリウムを晶析除去した。
After condensation, neutralize with sodium hydroxide solution,
Sodium sulfate was crystallized and removed at 0°C.

ロロコンクリート試験 (1)  コンクリート使用材料 ・セメント:小野田、アサノ、住友社製普通ポルトラン
ドセメント を3種等量混合して使用。
Roro Concrete Test (1) Concrete materials/cement: Onoda, Asano, and Sumitomo ordinary Portland cement were mixed in equal amounts.

細骨材:大井用産川砂 粗骨材;青梅産砕石(最大寸法20m)(2)  コン
クリート配合条件 単位セメント量:450噸菊3 単位水f : 156 kg/ms 細骨材率: 42 % NFC添加量:七メン) 100重量部当り固形分換算
で0.5重1部添 加。
Fine aggregate: Ubukawa sand coarse aggregate for Oi; Crushed stone from Ome (maximum size 20 m) (2) Concrete mixing conditions Unit cement amount: 450 Kangiku 3 Unit water f: 156 kg/ms Fine aggregate ratio: 42 % NFC Addition amount: 1 part by weight of 0.5 weight (calculated as solid content) per 100 parts by weight.

(3)試験方法 上記の使用材料、配合条件のもとに50を強制御sシミ
キサ−を用いて、全材料投入後連続して90秒間練りま
ぜた。スランプ試験はJISA−11011’−コンク
リートのスランプ試験方町に準拠し、又、空気量は締め
固めには棒状バイブレータ−を使用してJISA−11
28rまだ固まらないコンクリートの空気量の圧力によ
る試験方法」に準拠し測定した。更に圧縮強度はJIS
A−1132rコンクリ一ト強度試験用供試体の作り方
」に準じて、Φ10 X 20mの供試体を作成し、J
ISA−1108rコンクリートの圧縮強度試験方法」
に準じて材令3日、7日及び28日における圧縮強度を
測定した。なお供試体作成時には、棒状バイブレータ−
を用いて締め固めを行った。
(3) Test method Based on the materials used and the blending conditions described above, 50 was mixed continuously for 90 seconds after adding all the ingredients using a strongly controlled mixer. The slump test was conducted in accordance with JISA-11011' - Concrete slump test method, and the amount of air was determined using a rod vibrator for compaction.
Measurements were made in accordance with ``Test method using pressure of air volume of unhardened concrete''. Furthermore, the compressive strength is JIS
A-1132r Concrete Strength Test Specimen Preparation A Φ10 x 20m specimen was prepared according to J
ISA-1108r concrete compressive strength test method”
Compressive strength was measured at 3 days, 7 days and 28 days of age. In addition, when preparing the specimen, a rod-shaped vibrator was used.
Compaction was performed using

実施例2゜ 200tのナフタレンを115〜120℃に加熱して溶
融し120〜130℃の温度で25%発煙硫酸122f
を1時間を要して添加した後、1時間で160℃に昇温
し同温度で4時間反応せしめた。100〜110℃に冷
却後水を4Of添加し温度を80〜90℃まで冷却後保
温し37チホルマリン127fを3時間にわたって滴下
した。滴下後、窒素を導入し30に4idGとし、つい
で115℃昇温しこの温度で5時間給合反応を行った。
Example 2 200 tons of naphthalene is heated to 115-120°C and melted, and 122f of 25% oleum is added at a temperature of 120-130°C.
was added over a period of 1 hour, the temperature was raised to 160° C. over 1 hour, and the reaction was continued at the same temperature for 4 hours. After cooling to 100-110°C, 4Of of water was added, the temperature was cooled to 80-90°C, kept warm, and 127f of 37-thiformalin was added dropwise over 3 hours. After the dropwise addition, nitrogen was introduced to bring the temperature to 30°C to 4idG, and then the temperature was raised to 115°C, and a feeding reaction was carried out at this temperature for 5 hours.

縮合を終ったものは、水酸化ナトリウム溶液で中和し0
℃まで冷却したが晶析物はなかった。
After condensation, neutralize with sodium hydroxide solution and reduce to 0.
Although it was cooled to ℃, there were no crystallized substances.

実施例3〜5及び比較例1 実施例1と同様にして、第1表の如く原料の仕込モル比
、反応条件等を変化させて反応を行った。その結果を第
1表に併記した。同表に見られるように本発明の方法は
、比較例に比べて短時間の反応でセメント分散剤の性能
として同等以上のものが得られている事がわかる。
Examples 3 to 5 and Comparative Example 1 Reactions were conducted in the same manner as in Example 1 while changing the molar ratio of raw materials, reaction conditions, etc. as shown in Table 1. The results are also listed in Table 1. As seen in the same table, it can be seen that the method of the present invention achieves the same or better performance of cement dispersant in a shorter reaction time than that of the comparative example.

Claims (1)

【特許請求の範囲】[Claims] ナフタレンスルホ/酸とホルムアルデヒドとを不活性ガ
スの加圧下で縮合せしめることを特徴トスるナフタレン
スルホン酸−ホルムアルデヒド縮合物及びその塩類を主
成分とするセメント分散剤の製造方法。
A method for producing a cement dispersant containing a naphthalene sulfonic acid-formaldehyde condensate and its salts as a main component, which comprises condensing naphthalene sulfonic acid/acid and formaldehyde under pressure of an inert gas.
JP19456981A 1981-12-04 1981-12-04 Manufacture of cement dispersant Pending JPS5896618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19456981A JPS5896618A (en) 1981-12-04 1981-12-04 Manufacture of cement dispersant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19456981A JPS5896618A (en) 1981-12-04 1981-12-04 Manufacture of cement dispersant

Publications (1)

Publication Number Publication Date
JPS5896618A true JPS5896618A (en) 1983-06-08

Family

ID=16326708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19456981A Pending JPS5896618A (en) 1981-12-04 1981-12-04 Manufacture of cement dispersant

Country Status (1)

Country Link
JP (1) JPS5896618A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725665A (en) * 1985-08-23 1988-02-16 Chemie Linz Aktiengesellschaft Use of salts of water-soluble
WO2012080031A1 (en) 2010-12-14 2012-06-21 Basf Construction Polymers Gmbh Formaldehyde reduction with sugars under alkaline conditions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49128019A (en) * 1973-03-14 1974-12-07
JPS5314255A (en) * 1976-07-26 1978-02-08 Hitachi Ltd Starting method for water wheel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49128019A (en) * 1973-03-14 1974-12-07
JPS5314255A (en) * 1976-07-26 1978-02-08 Hitachi Ltd Starting method for water wheel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725665A (en) * 1985-08-23 1988-02-16 Chemie Linz Aktiengesellschaft Use of salts of water-soluble
WO2012080031A1 (en) 2010-12-14 2012-06-21 Basf Construction Polymers Gmbh Formaldehyde reduction with sugars under alkaline conditions

Similar Documents

Publication Publication Date Title
DK169431B1 (en) Salts of water-soluble naphthalene sulfonic acid formaldehyde condensates for use as additives for inorganic binders
KR920003030B1 (en) Process for production of cellular concrete
US4677159A (en) Process for the synthesis of highly stable sulfonated melamine-formaldehyde condensates as superplasticizing admixtures in concrete
JPS5896618A (en) Manufacture of cement dispersant
CN113582573A (en) Accelerating agent and preparation method and application thereof
US4820766A (en) Highly stable sulfonated melamine-formaldehyde condensate solution
JPH03187960A (en) Water-reducing agent for cement
CA1218910A (en) Dispersing composition
AU578925B2 (en) Water reducing additive for mortar and concrete
CA2287423C (en) Process for preparing an aqueous solution of sulfanilic acid modified melamine-formaldehyde resin and a cement composition
KR102272945B1 (en) A method for producing an admixture for a gypsum board and an admixture thereof, composition for forming a gypsum board
JPS63248782A (en) Manufacture of lightweight foamed cement set body
JP4182309B2 (en) Method for producing sulfanilic acid-modified melamine formaldehyde resin aqueous solution
JP3359699B2 (en) Manufacturing method of lightweight cellular concrete
JPS58179219A (en) Preparation of dispersing agent for cement
JPH01129016A (en) Production of fluidizing agent for inorganic binder
JP2833135B2 (en) Manufacturing method of high performance water reducing agent
JPH11302049A (en) Production of slurry dispersant, and dispersant
JPH0243763B2 (en) KONODOSURUPPONKAAMINOJUSHISUIYOEKINOSEIZOHO
JPH11302048A (en) Production of slurry dispersant, and dispersant
JP7326490B2 (en) Method for producing admixture for gypsum board, admixture using the same, and composition for forming gypsum board containing the same
CN107512864B (en) Low-sensitivity foam concrete foaming agent and preparation method thereof
JPS58179218A (en) Preparation of dispersing agent for cement
JPH01121314A (en) Sulfone group-containing melamine formaldehyde resin
JPS6337058B2 (en)