JPH0143699B2 - - Google Patents

Info

Publication number
JPH0143699B2
JPH0143699B2 JP2128281A JP2128281A JPH0143699B2 JP H0143699 B2 JPH0143699 B2 JP H0143699B2 JP 2128281 A JP2128281 A JP 2128281A JP 2128281 A JP2128281 A JP 2128281A JP H0143699 B2 JPH0143699 B2 JP H0143699B2
Authority
JP
Japan
Prior art keywords
concrete
condensate
sulfonic acid
acid group
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2128281A
Other languages
Japanese (ja)
Other versions
JPS57135760A (en
Inventor
Akio Kitagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP2128281A priority Critical patent/JPS57135760A/en
Publication of JPS57135760A publication Critical patent/JPS57135760A/en
Publication of JPH0143699B2 publication Critical patent/JPH0143699B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】 本発明は、高性能コンクリート減水剤、特に、
未硬化コンクリートに添加混練後のスランプ低下
が少ない改良されたコンクリート減水剤に係わ
る。 従来より、スルホン酸基含有メラミンホルムア
ルデヒド縮合生成物は、コンクリート減水剤とし
て、例えば、特公昭43−21659号、特公昭52−
13991号公報明細書に記載の如くよく知られてい
る。このスルホン酸基含有メラミンホルムアルデ
ヒド縮合物は、コンクリート混練における流動化
剤であつて、混水率を低下させ得る他に、コンク
リートの初期強度をも高める効果を発現せしめる
ので高性能減水剤として次第に普及しつつある
が、未だ完全な性能のものは提案されておらず、
例えば、前記特公昭52−13991号公報に記載のス
ルホン酸基含有メラミンホルムアルデヒド縮合物
の高濃度溶液も安定性がかなり改良されてはいる
が、これをコンクリートに添加して混練すると、
スランプの持続性に乏しいという欠点を有してい
る。 本発明者は、試験的に種々のスルホン酸基含有
メラミンホルムアルデヒド縮合物を製造し、コン
クリート配合物の性能を試験したところ、スルホ
ン酸基含有メラミンホルムアルデヒドの低縮合
物、高縮合物又はそれらの混合物を従来知られて
いるスルホン酸基含有メラミンホルムアルデヒド
の中縮合物に混合したとき、得られた混合物をコ
ンクリートに添加混練すると著るしく長時間コン
クリートのスランプ低下が起らないという事実を
見出し本発明を完成した。 本発明の目的は、長期保存における安定性に優
れかつ長時間コンクリートのスランプを持続せし
め得るスルホン酸基含有メラミンホルムアルデヒ
ド縮合物からなるコンクリート減水剤を提供する
ことにある。本発明の高性能コンクリート減水剤
は、メラミンホルムアルデヒド及び亜硫酸塩を水
媒体中でモル比1:2.2〜3.2:0.3〜1.0の割合で
縮合反応させることにより得られる下記スルホン
酸基含有メラミンホルムアルデヒド縮合物(A)、(B)
及び(C)を、(A)/(B)の重量比が1/100〜100/1と
なるようにかつ(A)と(B)の総和/(C)の重量比が5/
95〜50/50となるように含有させたことを特徴と
する。 本発明に用いられるメラミンは、通常の市販工
業製品でよく、また、ホルムアルデヒドとして
は、市販工業製品のホルマリン、パラホルムアル
デヒド等で充分である。更に亜硫酸塩としては、
市販工業製品の亜硫酸ソーダ、亜硫酸アンモニウ
ム、重亜硫酸ソーダ、重亜硫酸アンモニウム、ピ
ロ亜硫酸ソーダ等が例挙される。本発明において
は上記ホルムアルデヒドは、CH2O1モルを提供
する化合物量を1モルと、また亜硫酸塩はSO3
1モルを提供する化合物量をそれぞれ1モルとし
て計算し、本発明に用いられるスルホン酸基含有
メラミンホルムアルデヒド縮合物(A)、(B)及び(C)
は、上記メラミン1モル、ホルムアルデヒド2.2
〜3.2モル及び亜硫酸塩0.3〜1.0モルの割合でこれ
らを水中で縮合反応させることにより得られる。
上記モル比の範囲外では、得られたスルホン酸基
含有メラミンホルムアルデヒド縮合物をコンクリ
ートに添加混練したとき流動化能力が不充分とな
つたり、また、場合によつては長期間の保存中に
変質を来たし易く好ましくない。また、反応媒体
としては、縮合反応におけるPHの調節を容易なら
しめるために水媒体が好ましい。従つて、本発明
に用いられるスルホン酸基含有メラミンホルムア
ルデヒド縮合物は、通常5〜40重量%程度の水溶
液で得られ、そのまゝでも使用されるが、必要に
より濃度調整されたもの或は、更にこれらを脱水
乾燥することにより得られる粉状品でもよい。 本発明に用いられるスルホン酸基含有メラミン
ホルムアルデヒド縮合物(A)は、スルホン酸基含有
メラミンホルムアルデヒド縮合物の20重量%水溶
液として20℃で測定したとき5cp未満の粘度を示
すものである。この縮合物(A)は上記メラミン、ホ
ルムアルデヒド及び亜硫酸塩を上記モル比で水中
で先ずPH9〜12程度で付加反応させただけの樹脂
かあるいはその後、PH5〜7で縮合反応させた
後、冷却、中和させることにより得られる低縮合
樹脂である。本発明に用いられるスルホン酸基含
有メラミンホルムアルデヒド縮合物Bは、スルホ
ン酸基含有メラミンホルムアルデヒド縮合物の20
重量%水溶液として20℃で測定したとき、20cp
を越える粘度を示すものである。この縮合物(B)も
上記メラミン、ホルムアルデヒド及び亜硫酸塩を
上記モル比で水中で、先ずPH9〜12程度で付加反
応させた後、PH2.0〜4.0で縮合反応させることに
より得られる高縮合樹脂である。縮合反応終了後
液のPHを9〜12程度に調整することにより特に安
定な縮合物が得られる。本発明に用いられるスル
ホン酸基含有メラミンホルムアルデヒド縮合物(C)
は、スルホン酸基含有メラミンホルムアルデヒド
縮合物の20重量%水溶液として20℃で測定したと
き、5〜20cpの粘度を示すものである。この縮
合物(C)も、上記メラミン、ホルムアルデヒド及び
亜硫酸塩を上記モル比で水中で、先ずPH9〜12程
度で付加反応させた後、PH3.0〜6.0で縮合反応さ
せることにより得られる中縮合樹脂である。この
縮合物Cも要すればPH9〜12に調整することによ
り安定化し得る。これら上記(A)、(B)及び(C)の縮合
物は縮合反応の温度及び時間を調節することによ
り合成され、同じ温度では(A)、(B)、(C)の順に長時
間を要する。縮合反応におけるPHの値は重要な要
件であり、上記範囲外では反応中に沈澱折出を生
起せしめたり、或は非現実的な長時間の反応を要
したり、また、得られた縮合物のコンクリート流
動化性能が低下したり、コンクリートの強度向上
効果に乏しい等種々の欠点をもたらす。反応にお
けるPHの調節には、通常のアルカリ化剤、例えば
苛性ソーダ、酸性化剤、例えば、硫酸等を用いる
ことにより容易に行ない得る。 本発明の高性能コンクリート減水剤は、上記縮
合物C100重量部に上記縮合物(A)又は(B)を5〜100
重量部配合するか、或は、一層好ましくは、上記
縮合物(C)100重量部に、上記縮合物(A)と(B)を総和
として5〜100重量部の割合で配合することによ
り得られる。上記縮合物AとBの両方を配合する
ときは、(A)/(B)の重量比は通常1/100〜100/1
の割合で行なわれる。かゝる配合によつて、本発
明の好ましいコンクリート減水剤が形成される理
学的解析は未だ明らかではないが、上記縮合物(C)
は分子量分布を有するが低縮合物の比率及び高縮
合物の比率が少なく、上記縮合物(A)及び(B)の添加
配合がこれらを補つているものと解される。しか
し、低縮合物(A)、高縮合物(B)又は特にそれらの混
合物を縮合物(C)に添加配合することによつて、コ
ンクリートのスランプを著しく防ぎ得る減水剤が
形成されることは意想外の驚くべき発見である。
何んとなれば、低縮合物(A)は、これをコンクリー
トに添加したとき、減水効果及び強度向上効果に
乏しく、また、高縮合物(B)は、長期保存において
不安定であるばかりでなく、これをコンクリート
に添加混練したときは強度向上効果はほゞ満足で
きる性能を示しても減水効果が乏しくなり、この
ような経験的事実に基いて、通常一般に中縮合物
(C)が広くコンクリート減水剤として用いられてい
たからである。 本発明のコンクリート減水剤は、コンクリート
に対し減水効果、初期強度及び長期強度向上効果
を示し、更にスランプ低下を防ぐ効果に優れ、従
来知られているどのスルホン酸基含有メラミンホ
ルムアルデヒド縮合物からなるコンクリート減水
剤よりも格段に優れるものである。また、本発明
の減水剤は、コンクリートの他にも、例えば、モ
ルタル等の流動化減水剤としても用いられる。 以下、実施例及び比較例を挙げて説明するが、
本発明の技術的範囲はこれに限定されるものでは
ない。 実施例 1 (イ) 還流冷却器、撹拌装置及び温度計を備えた1
の4つ口フラスコにメラミン126.0g(1モ
ル)、40%ホルマリン225g(3モル)を投入
し、PH7.5、温度70℃にて反応させ、反応液が
透明になつたところで速やかに50℃に冷却し、
ピロ亜硫酸ナトリウムNa2S2O595g(亜硫酸塩
として1モル)、水730g、及び水酸化ナトリウ
ムを加えPHを11.0とし、60℃の温度で亜硫酸塩
が検出されなくなるまで、約1時間反応した。
次に反応液を硫酸でPH4.0に下げて温度60℃で
縮合せしめ、水酸化ナトリウムで中和してPHを
約9とし、20℃及び20%濃度に於ける粘度が
10cpを示す時点で縮合反応を中止し上述の如
く中和、冷却することにより縮合物(C)を得た。 (ロ) 上記(イ)と同様の操作に従つて、縮合反応のPH
を3.5で行い、20℃及び20%濃度に於ける粘度
が25cpを示す点で縮合反応を中止し、中和冷
却することにより縮合物(B)を得た。 (ハ) 上記(イ)と同様に反応を行い、亜硫酸塩が検出
されなくなるまで反応を行つたが、以後の縮合
反応を行わせないで、縮合物(A)を得た。20℃及
び20%濃度に於ける粘度は3cpであつた。 次いで、上記スルホン基含有メラミンホルムア
ルデヒド縮合物(A)、(B)及び(C)を固形分比で(A)/
(B)/(C)=1/1/8となる重量割合に混合するこ
とにより、本発明のコンクリート減水剤を得た。 実施例 2 上記調整の(A)、(B)及び(C)の縮合物を(A)/(B)/(C)
=2/1/7の重量割合になる様に混合すること
によりコンクリート減水剤を得た。 実施例 3 配合成分 セメント:小野田普通セメント 細骨材:鬼怒川産 粗骨材: 〃 (最大寸法20mm) 減水剤:上記実施例1及び2による調整品 を用い、後記のコンクリート配合により、強制練
りミキサー(50容)中にて練り混ぜを行つた
(減水剤中の水は練り混ぜ水の1部として算入し
た。)。全練り混ぜ時間は2分間とし、室温20〜23
℃、コンクリート温度18〜22℃で行なつた。経時
スランプの測定は10分毎に30秒ミキサーの撹拌を
行い、その後一定時間毎にコンクリートの一部を
採取してJIS A−1101法スランプ測定を行つた。
結果を第1表に示す。 コンクリートの配合 水/セメント比(W/c)0.55 細骨材/粗骨材比(S/a)0.413 単位セメント量 307Kg また、上記コンクリートについて28日養生後圧
縮強度を測定したところ第1表に記載の結果が得
られた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a high performance concrete water reducer, in particular:
This invention relates to an improved concrete water reducer that causes less slump reduction after being added to uncured concrete and mixed. Conventionally, sulfonic acid group-containing melamine formaldehyde condensation products have been used as concrete water reducing agents, for example, in Japanese Patent Publications No. 43-21659 and Japanese Patent Publication No. 1982-1999.
It is well known as described in the specification of Japanese Patent No. 13991. This sulfonic acid group-containing melamine formaldehyde condensate is a fluidizing agent in concrete mixing, and in addition to being able to reduce the water mixing ratio, it also has the effect of increasing the initial strength of concrete, so it is gradually becoming popular as a high-performance water reducing agent. However, no one with perfect performance has been proposed yet.
For example, the high concentration solution of the sulfonic acid group-containing melamine formaldehyde condensate described in Japanese Patent Publication No. 52-13991 has considerably improved stability, but when it is added to concrete and kneaded,
It has the disadvantage of poor slump sustainability. The present inventor experimentally manufactured various sulfonic acid group-containing melamine formaldehyde condensates and tested the performance of concrete mixtures, and found that low condensates, high condensates, or mixtures thereof of sulfonic acid group-containing melamine formaldehyde The present invention was based on the discovery of the fact that when mixed with a conventionally known intermediate condensate of melamine formaldehyde containing sulfonic acid groups, when the resulting mixture was added to concrete and kneaded, no significant drop in slump of concrete occurred for a long time. completed. An object of the present invention is to provide a concrete water reducing agent comprising a sulfonic acid group-containing melamine-formaldehyde condensate that has excellent stability during long-term storage and can sustain the slump of concrete for a long period of time. The high-performance concrete water reducing agent of the present invention is the following sulfonic acid group-containing melamine formaldehyde condensate obtained by condensing melamine formaldehyde and sulfite in an aqueous medium at a molar ratio of 1:2.2 to 3.2:0.3 to 1.0. (A), (B)
and (C) so that the weight ratio of (A)/(B) is 1/100 to 100/1 and the weight ratio of the sum of (A) and (B)/(C) is 5/
It is characterized in that it is contained in a ratio of 95 to 50/50. The melamine used in the present invention may be an ordinary commercially available industrial product, and as the formaldehyde, commercially available industrial products such as formalin and paraformaldehyde are sufficient. Furthermore, as sulfites,
Examples include commercially available industrial products such as sodium sulfite, ammonium sulfite, sodium bisulfite, ammonium bisulfite, and sodium pyrosulfite. In the present invention, formaldehyde is calculated assuming that the amount of the compound that provides 1 mol of CH 2 O is 1 mol, and sulfite is calculated assuming that the amount of the compound that provides 1 mol of SO 3 groups is 1 mol, respectively, and the sulfonate used in the present invention is Acid group-containing melamine formaldehyde condensates (A), (B) and (C)
is 1 mol of the above melamine, 2.2 mol of formaldehyde
It is obtained by condensation reaction of these in water at a ratio of ~3.2 mol and 0.3 to 1.0 mol of sulfite.
If the molar ratio is outside the above range, the resulting sulfonic acid group-containing melamine formaldehyde condensate may not have sufficient fluidization ability when added to concrete and may deteriorate during long-term storage. This is not desirable because it easily causes Further, as the reaction medium, an aqueous medium is preferable in order to facilitate adjustment of pH in the condensation reaction. Therefore, the sulfonic acid group-containing melamine formaldehyde condensate used in the present invention is usually obtained as an aqueous solution of about 5 to 40% by weight, and can be used as is, but the concentration may be adjusted as necessary. Furthermore, powder products obtained by dehydrating and drying these may also be used. The sulfonic acid group-containing melamine formaldehyde condensate (A) used in the present invention exhibits a viscosity of less than 5 cp when measured at 20° C. as a 20% by weight aqueous solution of the sulfonic acid group-containing melamine formaldehyde condensate. This condensate (A) is either a resin obtained by first adding the above-mentioned melamine, formaldehyde and sulfite in the above-mentioned molar ratio in water at a pH of about 9 to 12, or a resin which is then subjected to a condensation reaction at a pH of about 5 to 7, followed by cooling, It is a low condensation resin obtained by neutralization. The sulfonic acid group-containing melamine formaldehyde condensate B used in the present invention is a sulfonic acid group-containing melamine formaldehyde condensate containing 20
20 cp when measured at 20°C as a wt% aqueous solution
It shows a viscosity exceeding . This condensate (B) is also a high condensation resin obtained by first carrying out an addition reaction of the above-mentioned melamine, formaldehyde and sulfite at the above-mentioned molar ratio in water at a pH of about 9 to 12, and then carrying out a condensation reaction at a pH of 2.0 to 4.0. It is. A particularly stable condensate can be obtained by adjusting the pH of the liquid after the condensation reaction to about 9 to 12. Sulfonic acid group-containing melamine formaldehyde condensate (C) used in the present invention
shows a viscosity of 5 to 20 cp when measured at 20°C as a 20% by weight aqueous solution of a sulfonic acid group-containing melamine formaldehyde condensate. This condensate (C) is also a medium condensation product obtained by first adding the above melamine, formaldehyde and sulfite at the above molar ratio in water at a pH of about 9 to 12, and then carrying out a condensation reaction at a pH of 3.0 to 6.0. It is resin. This condensate C can also be stabilized by adjusting the pH to 9 to 12, if necessary. These condensates of (A), (B), and (C) above are synthesized by adjusting the temperature and time of the condensation reaction; at the same temperature, (A), (B), and (C) are synthesized in the order of It takes. The pH value in the condensation reaction is an important requirement, and if it is outside the above range, precipitation may occur during the reaction, or an unrealistically long reaction time may be required, or the resulting condensate may deteriorate. This brings about various drawbacks, such as a decrease in concrete fluidization performance and a lack of effect on improving the strength of concrete. The pH in the reaction can be easily adjusted by using a common alkalizing agent, such as caustic soda, or an acidifying agent, such as sulfuric acid. The high-performance concrete water reducer of the present invention includes 5 to 100 parts of the above condensate (A) or (B) in 100 parts by weight of the above condensate C.
It is obtained by blending the above condensate (A) and (B) in a total amount of 5 to 100 parts by weight with 100 parts by weight of the above condensate (C). It will be done. When blending both the above condensates A and B, the weight ratio of (A)/(B) is usually 1/100 to 100/1.
This is done at a rate of . Although the physical analysis of the formation of the preferred concrete water reducing agent of the present invention by such a combination is not yet clear, the above condensate (C)
Although it has a molecular weight distribution, the ratio of low condensates and high condensates is small, and it is understood that the addition and blending of the above condensates (A) and (B) compensate for these. However, by adding and blending a low condensate (A), a high condensate (B), or especially a mixture thereof to a condensate (C), a water reducing agent that can significantly prevent concrete slump is not formed. This is an unexpected and surprising discovery.
When added to concrete, low condensates (A) have poor water-reducing and strength-improving effects, and high condensates (B) are unstable during long-term storage. However, when it is added to concrete and kneaded, the water reduction effect becomes poor even though the strength improvement effect is almost satisfactory.Based on this empirical fact, it is usually
This is because (C) was widely used as a concrete water reducing agent. The concrete water reducer of the present invention exhibits water reduction effect, initial strength and long-term strength improvement effect on concrete, and is also excellent in preventing slump reduction, and can be used for concrete made of any conventionally known sulfonic acid group-containing melamine formaldehyde condensate. It is much better than water reducing agents. In addition to concrete, the water reducing agent of the present invention can also be used as a fluidizing water reducing agent for, for example, mortar. Hereinafter, it will be explained by giving Examples and Comparative Examples.
The technical scope of the present invention is not limited thereto. Example 1 (a) 1 equipped with a reflux condenser, a stirring device and a thermometer
Put 126.0 g (1 mol) of melamine and 225 g (3 mol) of 40% formalin into a four-necked flask, and let them react at pH 7.5 and temperature of 70°C. When the reaction solution becomes clear, immediately heat the mixture to 50°C. cooled to
95 g of sodium pyrosulfite Na 2 S 2 O 5 (1 mole as sulfite), 730 g of water, and sodium hydroxide were added to adjust the pH to 11.0, and the reaction was carried out for about 1 hour at a temperature of 60°C until sulfite was no longer detected. .
Next, the reaction solution was lowered to pH 4.0 with sulfuric acid, condensed at a temperature of 60℃, neutralized with sodium hydroxide to a pH of about 9, and the viscosity at 20℃ and 20% concentration was
The condensation reaction was stopped when 10 cp was obtained, and the condensate (C) was obtained by neutralizing and cooling as described above. (b) Follow the same procedure as in (a) above to determine the pH of the condensation reaction.
3.5, the condensation reaction was stopped when the viscosity at 20°C and 20% concentration showed 25 cp, and the condensate (B) was obtained by neutralization and cooling. (c) The reaction was carried out in the same manner as in (a) above until sulfite was no longer detected, but the subsequent condensation reaction was not carried out to obtain condensate (A). The viscosity at 20°C and 20% concentration was 3 cp. Next, the above sulfone group-containing melamine formaldehyde condensates (A), (B) and (C) were mixed in a solid content ratio of (A)/
By mixing in a weight ratio of (B)/(C)=1/1/8, the concrete water reducing agent of the present invention was obtained. Example 2 The condensate of (A), (B) and (C) prepared above was converted into (A)/(B)/(C)
A concrete water reducing agent was obtained by mixing at a weight ratio of =2/1/7. Example 3 Compounding components Cement: Onoda ordinary cement Fine aggregate: Kinugawa product Coarse aggregate: 〃 (maximum dimension 20 mm) Water reducing agent: Using the prepared products according to Examples 1 and 2 above, and using the concrete mixture described below, a forced mixing mixer was used. (50 volumes) (The water in the water reducing agent was counted as part of the mixing water.) The total kneading time was 2 minutes, and the temperature was 20-23℃.
℃, and the concrete temperature was 18-22℃. The slump over time was measured by stirring with a mixer for 30 seconds every 10 minutes, and then taking a portion of the concrete at regular intervals and measuring the slump according to JIS A-1101.
The results are shown in Table 1. Concrete mix water/cement ratio (W/c) 0.55 Fine aggregate/coarse aggregate ratio (S/a) 0.413 Unit cement amount 307 kg Also, the compressive strength of the above concrete was measured after 28 days of curing and the results are shown in Table 1. The results described were obtained. 【table】

Claims (1)

【特許請求の範囲】 1 メラミン、ホルムアルデヒド及び亜硫酸塩を
水媒体中でモル比1:2.2〜3.2:0.3〜1.0の割合
で縮合反応させることにより得られる下記スルホ
ン酸基含有メラミンホルムアルデヒド縮合物(A)、
(B)及び(C)を、(A)/(B)の重量比が1/100〜100/1
となるようにかつ(A)と(B)の総和/(C)の重量比が
5/95〜50/50となるように含有させたことを特
徴とする高性能コンクリート減水剤。 (A)…20重量%の水溶液が20℃で5cp未満の粘度を
示す。 (B)…20重量%の水溶液が20℃で20cpを越える粘
度を示す。 (C)…20重量%の水溶液が20℃で5〜20cpの粘度
を示す。
[Scope of Claims] 1. The following sulfonic acid group-containing melamine formaldehyde condensate (A) obtained by condensing melamine, formaldehyde and sulfite in an aqueous medium at a molar ratio of 1:2.2 to 3.2:0.3 to 1.0. ),
(B) and (C), the weight ratio of (A)/(B) is 1/100 to 100/1
A high-performance concrete water reducing agent characterized in that it is contained in such a manner that the sum of (A) and (B)/(C) is in a weight ratio of 5/95 to 50/50. (A) A 20% by weight aqueous solution exhibits a viscosity of less than 5 cp at 20°C. (B)...A 20% by weight aqueous solution exhibits a viscosity exceeding 20 cp at 20°C. (C)...A 20% by weight aqueous solution exhibits a viscosity of 5 to 20 cp at 20°C.
JP2128281A 1981-02-14 1981-02-14 High power concrete water-reducing admixture Granted JPS57135760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2128281A JPS57135760A (en) 1981-02-14 1981-02-14 High power concrete water-reducing admixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2128281A JPS57135760A (en) 1981-02-14 1981-02-14 High power concrete water-reducing admixture

Publications (2)

Publication Number Publication Date
JPS57135760A JPS57135760A (en) 1982-08-21
JPH0143699B2 true JPH0143699B2 (en) 1989-09-22

Family

ID=12050774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2128281A Granted JPS57135760A (en) 1981-02-14 1981-02-14 High power concrete water-reducing admixture

Country Status (1)

Country Link
JP (1) JPS57135760A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829965B2 (en) * 1986-09-11 1996-03-27 大日本インキ化学工業株式会社 Method for producing cement admixture

Also Published As

Publication number Publication date
JPS57135760A (en) 1982-08-21

Similar Documents

Publication Publication Date Title
US6555683B1 (en) Condensation products based on amino-s-triazines and the use thereof
US4725665A (en) Use of salts of water-soluble
US4677159A (en) Process for the synthesis of highly stable sulfonated melamine-formaldehyde condensates as superplasticizing admixtures in concrete
JP2741730B2 (en) Sulfonic acid group-containing condensation products mainly composed of amino-s-triazine and formaldehyde
JPH0341420B2 (en)
US4079040A (en) Sulfo-containing phenol-formaldehyde condensates
US4820766A (en) Highly stable sulfonated melamine-formaldehyde condensate solution
AU759031B2 (en) Process for preparing an aqueous solution of sulfanilic acid modified melamine-formaldehyde resin and a cement composition
JPH0143699B2 (en)
JPS6241605B2 (en)
EP0166774B1 (en) Water reducing agent utilized in mortar and concrete
JP4182309B2 (en) Method for producing sulfanilic acid-modified melamine formaldehyde resin aqueous solution
JPH03344B2 (en)
JP2886354B2 (en) Cement water reducer
JP3181103B2 (en) Cement water reducing agent, cement composition containing the same, and cured product
US4707508A (en) Long-shelflife concentrated aqueous solutions of melamine-formaldehyde condensates, preparation and use thereof
JPH01129016A (en) Production of fluidizing agent for inorganic binder
JPH0155210B2 (en)
JPH0151460B2 (en)
JP2000351661A (en) Cement composition containing sulfanilic acid-modified melamine-formaldehyde resin
JPS6337058B2 (en)
JP3477840B2 (en) Manufacturing method of water reducing agent
JPS6183662A (en) Cement additive
JPS59190245A (en) Cement fluidizing composition
JPS6158082B2 (en)