JPS633702B2 - - Google Patents

Info

Publication number
JPS633702B2
JPS633702B2 JP6190881A JP6190881A JPS633702B2 JP S633702 B2 JPS633702 B2 JP S633702B2 JP 6190881 A JP6190881 A JP 6190881A JP 6190881 A JP6190881 A JP 6190881A JP S633702 B2 JPS633702 B2 JP S633702B2
Authority
JP
Japan
Prior art keywords
slab
mold
force
stopped
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6190881A
Other languages
Japanese (ja)
Other versions
JPS57177868A (en
Inventor
Masaru Ishikawa
Akira Pponda
Yasushi Ueno
Masaki Takenaka
Seishi Mizuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP6190881A priority Critical patent/JPS57177868A/en
Publication of JPS57177868A publication Critical patent/JPS57177868A/en
Publication of JPS633702B2 publication Critical patent/JPS633702B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/128Accessories for subsequent treating or working cast stock in situ for removing
    • B22D11/1284Horizontal removing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、水平連続鋳造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a horizontal continuous casting method.

〔従来の技術およびその問題点〕[Conventional technology and its problems]

従来、竪型連続鋳造方法においては、鋳片を振
動させることによつて、鋳型面への鋳片の焼付き
及び摩擦抵抗の軽減を図り、円滑な鋳型引抜きを
行つている。
Conventionally, in vertical continuous casting methods, the slab is vibrated to reduce sticking of the slab to the mold surface and to reduce frictional resistance, thereby achieving smooth mold withdrawal.

しかし、水平連続鋳造において、上記方法を採
用する場合には、タンデイツシユと鋳片とがノズ
ル等を介して完全にシールされて直結されねばな
らない。このために、水平連続鋳造においては、
鋳片に振動を付与しながら鋳造を行うことは非常
に困難である。
However, when employing the above method in horizontal continuous casting, the tundish and slab must be directly connected through a nozzle or the like in a completely sealed manner. For this reason, in horizontal continuous casting,
It is extremely difficult to perform casting while applying vibration to the slab.

そこで、水平連続鋳造において、鋳片を鋳型内
から引抜く方法として、鋳片を連続的に引抜く方
法が考えられる。しかし、この方法では、鋳片は
鋳型引抜き装置によつて常時引張られる一方、鋳
型内の鋳片は鋳型面との間の摩擦抵抗によつて拘
束される。この結果、鋳片には、冷却による収縮
時及び引抜時に張力がかかり、この張力によつて
鋳型内鋳片の初期凝固シエルの最脆弱部分が破断
したり、あるいは、この部分の亀裂が生じる。従
つて、鋳片の引抜安定性が阻害され、鋳片の表面
性状を著しく害する。
Therefore, in horizontal continuous casting, as a method for pulling out the slab from within the mold, a method of continuously pulling out the slab can be considered. However, in this method, while the slab is constantly pulled by the mold pulling device, the slab in the mold is restrained by frictional resistance between it and the mold surface. As a result, tension is applied to the slab when it shrinks due to cooling and when it is pulled out, and this tension causes the weakest part of the initially solidified shell of the slab in the mold to break or cause cracks in this part. Therefore, the drawing stability of the slab is inhibited, and the surface quality of the slab is significantly impaired.

上記問題を解決する方法として、鋳片を引抜い
た後、引抜きを一旦中止し、その後再び引抜くこ
とを繰返し行う、所謂、間欠引抜き方法がある。
As a method for solving the above problem, there is a so-called intermittent drawing method in which, after drawing the slab, the drawing is temporarily stopped, and then drawing is repeated.

しかし、この方法においては、鋳片引抜停止時
に鋳片の冷却収縮によつて、鋳片に引張力が作用
し、前述の理由と同様に鋳片シエル脆弱部に破断
や亀裂が生じる。この問題は、第3図に示すよう
に、特に鋳片を高速で引抜く場合に顕著に現われ
る。
However, in this method, tensile force is applied to the slab due to cooling contraction of the slab when drawing of the slab is stopped, and fractures and cracks occur in the fragile portion of the slab shell for the same reason as described above. As shown in FIG. 3, this problem becomes particularly noticeable when the slab is pulled out at high speed.

これに対して、特開昭56−11146号公開公報に
開示される方法がある。この方法は、第4図に示
すように、鋳片を一定時間鋳型内から引抜き後、
鋳片引抜きを一旦停止し、その後、鋳片を鋳型方
向に一定時間押戻し、その後、再び鋳片引抜きを
行うことを繰返す方法である。(以下、先行技術
という)。
On the other hand, there is a method disclosed in Japanese Unexamined Patent Publication No. 11146/1983. In this method, as shown in Figure 4, after the slab is pulled out of the mold for a certain period of time,
This is a method of repeatedly stopping the slab drawing, then pushing the slab back toward the mold for a certain period of time, and then repeating the process of pulling the slab again. (hereinafter referred to as prior art).

しかし、上記先行技術によつても鋳片の引抜き
安定性は不満足なものであり、高速引抜き時に、
ある確率で、鋳型内における鋳片に破断あるいは
亀裂が生じる。この原因としては、鋳片の引抜き
停止時、第5図a及びbに示すように、鋳片引抜
き装置(図示せず)の制御上のオーバーシユー
ト、即ち、慣性力によつて、鋳片に押戻し力が作
用して、鋳型1内のシエル2の最脆弱部のシエル
2′が、弾性挫屈限界に達し、この慣性力による
押し戻し力によつて、前記脆弱なシエル2′が挫
屈し、これと鋳型1壁面との接触が完全でなくな
る。この結果、前記シエル2′の鋳型への抜熱が
悪くなり、シエル2′部分で凝固遅れが生じ、シ
エル2′が発達しない。従つて、次の鋳片引抜き
時に、前記シエル2′に破断や亀裂が生じる。シ
エルに破断や亀裂が生じると、破断あるいは亀裂
個所の修復のために、鋳片引抜きを一時停止する
か、あるいは、引抜き速度を大幅にダウンさせる
必要があり、操業に大きな支障を来たす。
However, even with the above prior art, the drawing stability of the slab is unsatisfactory, and during high-speed drawing,
There is a certain probability that the slab in the mold will break or crack. This is due to an overshoot in the control of the slab drawing device (not shown), that is, due to inertia force, when the slab drawing is stopped, as shown in Fig. 5 a and b. The push-back force acts on the shell 2', which is the weakest part of the shell 2 in the mold 1, and reaches its elastic buckling limit.The push-back force caused by this inertial force causes the weak shell 2' to buckle. As a result, the contact between this and the wall surface of the mold 1 is not complete. As a result, heat removal from the shell 2' to the mold becomes poor, solidification delay occurs in the shell 2' portion, and the shell 2' does not develop. Therefore, the shell 2' is broken or cracked when the slab is next drawn. When a break or crack occurs in the shell, it is necessary to temporarily stop the drawing of the slab or to significantly reduce the drawing speed in order to repair the break or crack, which greatly impedes the operation.

〔問題点を解決するための手段〕[Means for solving problems]

本願発明者等は、上間問題点を解決すべく鋭意
研究を重ねた。この結果、鋳片引抜き停止期間
中、鋳片に一定の大きさの鋳片引抜き力を作用さ
せれば、鋳片引抜き停止と同時に鋳片に作用する
鋳片押戻し力を軽減することができるといつた知
見を得た。
The inventors of the present application have conducted extensive research in order to solve the Uema problem. As a result, if a certain amount of slab pulling force is applied to the slab during the period when slab pulling is stopped, it is possible to reduce the slab pushing back force that acts on the slab at the same time when slab pulling is stopped. I gained this knowledge.

この発明は、鋳片を鋳型内から水平方向に一定
時間引き抜き、次いで、前記鋳片の引抜きを一定
時間停止し、この後、前記鋳片に一定時間鋳片押
戻し力を付与し、そして、再び、前記鋳片を前記
鋳型内から水平方向に一定時間引き抜くことから
なる、鋼の水平連続鋳造方法において、前記鋳片
の引抜きを一定時間停止する間、前記鋳片に一定
の大きさの鋳片引抜き力を付与し、これによつ
て、鋳片引抜き停止時に、慣性力によつて前記鋳
片に作用する鋳片押戻し力を軽減し、かくして、
前記鋳型内のシエルが挫屈するのを防止すること
に特徴を有するものである。
This invention involves pulling the slab out of the mold in a horizontal direction for a certain period of time, then stopping the drawing of the slab for a certain period of time, then applying a slab pushing force to the slab for a certain period of time, and Again, in the horizontal continuous casting method for steel, which consists of pulling the slab out of the mold in a horizontal direction for a certain period of time, the casting of a certain size is applied to the slab while the drawing of the slab is stopped for a certain period of time. Applying a single pull-out force, this reduces the slab pushing back force that acts on the slab due to inertia force when the slab withdrawal is stopped, and thus,
The feature is that the shell within the mold is prevented from buckling.

次に、この発明の水平連続鋳造方法の一実施態
様を図面を参照しながら説明する。
Next, one embodiment of the horizontal continuous casting method of the present invention will be described with reference to the drawings.

第1図は、この発明の一実施態様の鋳片引抜パ
ターンを示すグラフである。
FIG. 1 is a graph showing a slab drawing pattern according to an embodiment of the present invention.

第1図に示すように、この発明の方法は、T1
時間、鋳片を鋳型内から水平方向に引き抜いた
後、T2時間、鋳片の引抜きを停止し、その後、
T3時間、鋳片を鋳型内にPBの力で押戻し、次い
で、再び、T1時間、鋳片を鋳型内から水平方向
に引き抜くことを繰り返し行なうに際して、鋳片
の引抜き停止期間中、鋳片に鋳片引抜き方向の力
PNを付与するものである。
As shown in FIG .
After pulling the slab horizontally out of the mold for T 2 hours, the slab is stopped being pulled out for T 2 hours, and then,
When repeatedly pushing the slab back into the mold with the force P B for T 3 hours and then pulling it horizontally out of the mold again for T 1 hour, during the period when the slab is stopped being pulled out, Force in the slab pulling direction on the slab
This gives P N.

上記PNを鋳片に付与するのは、次の理由によ
る。即ち、鋳片の引抜きを停止すると、第1図中
Aで示すように、鋳片には慣性力による押戻し力
が作用する。なお、第1図中点線のグラフは、実
際の、時間と押戻し力および1ピツチの引抜き速
度との関係を示すものである。前記慣性力による
押戻し力が鋳片に作用すると、鋳型内の脆弱なシ
エルが挫屈する。従つて、慣性力による押戻し力
を軽減して、鋳型内のシエルの挫屈を防止するた
めに、鋳片引抜き停止期間中、鋳片に、鋳片引抜
抵抗力FOより小さな鋳片引抜き力を付与するの
である。
The reason why the above P N is applied to the slab is as follows. That is, when the drawing of the slab is stopped, a push-back force due to inertial force acts on the slab, as shown by A in FIG. The dotted line graph in FIG. 1 shows the actual relationship between time, push-back force, and one-pitch pull-out speed. When the push-back force due to the inertial force acts on the slab, the fragile shell within the mold buckles. Therefore, in order to reduce the push-back force due to inertia force and prevent buckling of the shell in the mold, during the period when the slab is stopped, the slab is subjected to a slab pulling force smaller than the slab pulling resistance F O. It gives power.

鋳片引抜き停止期間中に、鋳片に引抜き方向の
力PNを付与しても、実際には鋳片に生じる引抜
抵抗によつて鋳片は停止している。
Even if a force P N in the drawing direction is applied to the slab during the period when the slab is stopped, the slab is actually stopped due to the pulling resistance generated in the slab.

上記PNは、 −FO<PN<+FO …(1) の範囲に設定する。 The above P N is set in the range −F O <P N <+F O (1).

(1)式において、FOは、鋳型から鋳片引抜装置
間に生じる鋳片の引抜抵抗力を表わし、(−)値
は、鋳片押戻し方向、(+)値は鋳片引抜方向を
表わし、FOは、 FO=FM+FS …(2) で表わされる。
In equation (1), F O represents the pulling resistance force of the slab generated between the mold and the slab pulling device, the (-) value indicates the direction of pushing back the slab, and the (+) value indicates the direction of pulling the slab. F O is expressed as F O = F M + F S (2).

但し、FM:鋳型内鋳片引抜抵抗、 FS:ガイドロールセグメントでの鋳片引
抜抵抗。
However, F M is the pull-out resistance of the slab in the mold, F S is the pull-out resistance of the slab at the guide roll segment.

一方、上記PBは、 −FO<PB<−(FO+FB) …(3) の範囲に設定する。 On the other hand, the above P B is set in the range −F O <P B <−(F O +F B ) (3).

(3)式において、FBは、鋳片シエル最脆弱部の
弾性挫屈限界荷重を表わし、FBは、最脆弱部シ
エル厚みdの関数、すなわち、 FB=f(d) …(5) で表わされる。
In equation (3), F B represents the elastic buckling limit load of the weakest part of the slab shell, and F B is a function of the shell thickness d of the weakest part, that is, F B = f(d)...(5 ).

また、d=K√2+a …(6) 但し、K:鋳型内冷却能力によつて決まる凝固
定数、 α:定数。
Also, d=K√ 2 +a...(6) where, K: solidification fixed number determined by the cooling capacity in the mold, α: constant.

の関係から(FB)は、 FB=f(d)=f(T2) …(7) で表わされる。FBは、通常の材料力学における
材料の挫屈限界荷重を求める式で得られる。以上
の関係を第2図に示す。
From the relationship, (F B ) is expressed as F B =f(d)=f(T 2 )...(7). F B is obtained by the formula for determining the material's buckling limit load in normal material mechanics. The above relationship is shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、鋳片
引抜き停止期間中、鋳片に一定の大きさの鋳片引
抜き力を付与することによつて、鋳片引抜き停止
時に、慣性力によつて鋳片に作用する鋳片押戻し
力を軽減できる。従つて、鋳型内の脆弱なシエル
の挫屈が防止される。この結果、高速で鋳片を引
抜くことが可能となり、操業能率が向上する。し
かも、前記のように、鋳型内シエルに挫屈が生じ
ないので、鋳型内鋳片に破断や亀裂が生じる虞れ
も激減し、鋳片品質の大幅改善が図れるといつた
きわめて有用な効果がもたらされる。
As explained above, according to the present invention, by applying a constant magnitude of slab pulling force to the slab during the period when slab pulling is stopped, the inertia force is applied to the slab when the slab drawing is stopped. The force to push back the slab acting on the slab can be reduced. Collapsing of the fragile shell within the mold is thus prevented. As a result, the slab can be pulled out at high speed, improving operational efficiency. Moreover, as mentioned above, since buckling does not occur in the shell in the mold, the risk of breakage or cracking in the slab in the mold is drastically reduced, which has extremely useful effects such as greatly improving the quality of the slab. brought about.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施態様の鋳片引抜き
パターンを示すグラフ、第2図は、鋳片引抜停止
時に鋳片に付与する押戻し力と、鋳片押戻し時に
鋳片に付与する押戻し力の適正範囲を示す図、第
3図は、鋳片引抜速度と鋳型内鋳片の破断あるい
は亀裂発生頻度との関係を示す図、第4図は、先
行技術の鋳片引抜パターンを示す図、第5図a,
bは、鋳型内シエルの挫屈発生の状態を示す部分
断面図である。図面において、 1…鋳型、2,2′…シエル。
Fig. 1 is a graph showing a slab pulling pattern according to an embodiment of the present invention, and Fig. 2 is a graph showing the push-back force applied to the slab when the slab withdrawal is stopped, and the push-back force applied to the slab when pushing back the slab. Figure 3 is a diagram showing the appropriate range of push-back force, Figure 3 is a diagram showing the relationship between the slab withdrawal speed and the frequency of fracture or crack occurrence of slabs in the mold, and Figure 4 is a diagram showing the slab pulling pattern of the prior art. Figure 5a,
b is a partial cross-sectional view showing the state in which buckling of the shell in the mold occurs. In the drawings: 1... Mold, 2, 2'... Shell.

Claims (1)

【特許請求の範囲】 1 鋳片を鋳型内から水平方向に一定時間引き抜
き、次いで、前記鋳片の引抜きを一定時間停止
し、この後、前記鋳片に一定時間鋳片押戻し力を
付与し、そして、再び、前記鋳片を前記鋳型内か
ら水平方向に一定時間引き抜くことからなる、鋼
の水平連続鋳造方法において、 前記鋳片の引抜きを一定時間停止する間、前記
鋳片に一定の大きさの鋳片引抜き力を付与し、こ
れによつて、鋳片引抜き停止時に、慣性力によつ
て前記鋳片に作用する鋳片押戻し力を軽減し、か
くして、前記鋳型内のシエルが挫屈するのを防止
することを特徴とする、鋼の水平連続鋳造方法。
[Scope of Claims] 1. A slab is pulled out from within the mold in a horizontal direction for a certain period of time, then the drawing of the slab is stopped for a certain period of time, and then a slab pushing force is applied to the slab for a certain period of time. , and again, in the horizontal continuous casting method for steel, which consists of pulling out the slab horizontally from within the mold for a certain period of time, while the drawing of the slab is stopped for a certain period of time, the slab has a certain size. The shell in the mold is applied with a force to pull out the slab, thereby reducing the force pushing back the slab acting on the slab due to inertia force when the slab withdrawal is stopped, and thus the shell in the mold is crushed. A method of horizontal continuous casting of steel, characterized by preventing succumbing.
JP6190881A 1981-04-25 1981-04-25 Horizontal and continuous casting method for steel Granted JPS57177868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6190881A JPS57177868A (en) 1981-04-25 1981-04-25 Horizontal and continuous casting method for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6190881A JPS57177868A (en) 1981-04-25 1981-04-25 Horizontal and continuous casting method for steel

Publications (2)

Publication Number Publication Date
JPS57177868A JPS57177868A (en) 1982-11-01
JPS633702B2 true JPS633702B2 (en) 1988-01-25

Family

ID=13184721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6190881A Granted JPS57177868A (en) 1981-04-25 1981-04-25 Horizontal and continuous casting method for steel

Country Status (1)

Country Link
JP (1) JPS57177868A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3426168C2 (en) * 1984-07-16 1985-11-21 Mannesmann AG, 4000 Düsseldorf Process for the horizontal continuous casting of metals, in particular steel
JPS61235044A (en) * 1985-04-10 1986-10-20 Hitachi Zosen Corp Continuous casting method for thin sheet
DE3528328A1 (en) * 1985-08-07 1987-02-19 Mannesmann Ag METHOD AND DRAWING DEVICE FOR HORIZONTAL CONTINUOUS CASTING OF METAL, ESPECIALLY STEEL

Also Published As

Publication number Publication date
JPS57177868A (en) 1982-11-01

Similar Documents

Publication Publication Date Title
JPS633702B2 (en)
JPH04284950A (en) Method for continuously casting metal strip
JP2980006B2 (en) Continuous casting method
JP3045052B2 (en) Roll segment device for continuous casting machine
JP3149834B2 (en) Steel slab continuous casting method
JP2712920B2 (en) High speed casting end control method in continuous casting
JP3525530B2 (en) Continuous casting control method
JP2720692B2 (en) High-speed casting end method in continuous casting
JPS61162256A (en) Improvement of surface characteristic of continuous casting steel ingot
JPS61189850A (en) Continuous casting method of steel slab
JPS61235056A (en) System for controlling molten steel level in continuous casting machine
JPH08168852A (en) Horizontal continuous casting method
JP3064774B2 (en) Continuous casting control method
JPH04187357A (en) Method for controlling drawing in horizontal continuous casting
JPS62240146A (en) Continuous casting method for casting sheet
JPH09308946A (en) Horizontal continuous casting mold
JPS586759A (en) Continuous casting method for steel
JPS62275555A (en) Method and apparatus for contractive continuous casting
JPH06335756A (en) Continuous casting method
JPH09314298A (en) Continuous casting method
JPH038541A (en) Apparatus for continuously casting strip
JPS58173064A (en) Continuous casting device
JPS61235053A (en) Preventing method for restrained breakout
JPS5938864B2 (en) Control method of slab support device in continuous casting
JPS6235855B2 (en)