JPS6337029A - Pneumatic conveying device for granular material - Google Patents

Pneumatic conveying device for granular material

Info

Publication number
JPS6337029A
JPS6337029A JP17947186A JP17947186A JPS6337029A JP S6337029 A JPS6337029 A JP S6337029A JP 17947186 A JP17947186 A JP 17947186A JP 17947186 A JP17947186 A JP 17947186A JP S6337029 A JPS6337029 A JP S6337029A
Authority
JP
Japan
Prior art keywords
powder
granular material
pipe
transport
storage container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17947186A
Other languages
Japanese (ja)
Other versions
JP2535150B2 (en
Inventor
Yasuto Daito
康人 大東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsui Mfg Co Ltd
Original Assignee
Matsui Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsui Mfg Co Ltd filed Critical Matsui Mfg Co Ltd
Priority to JP61179471A priority Critical patent/JP2535150B2/en
Publication of JPS6337029A publication Critical patent/JPS6337029A/en
Application granted granted Critical
Publication of JP2535150B2 publication Critical patent/JP2535150B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To automatically replenish the granular material when the level of the material in a material receiving container is lowered, by shifting the granular material held in a pressurized condition by means of conveying pressurized air to pressurized air from a booster mechanism. CONSTITUTION:When a granular material filled in material receiving containers 22, air only in an amount corresponding to the amount of discharged air from the material receiving containers 22, is fed into the system from an air pressure feed source 17 or a booster mechanism 30 disposed in a conveying pipe 12, which is sufficient for allowing the granular material in the material receiving containers 22, branch pipes 20, the conveying pipe 12 and a pressure container 10 to fall in an equilibrium condition. When the granular material in the material receiving containers 22 are consumed so that the level of the granular material is lowered, the lowered level influences at once upon the inside of the conveying pipe 12 through the branch pipes 20 connected to the containers 22, and therefore, the internal pressure of the conveying pipe 12 is lowered in that part. The lowered pressure is replenished at once by the granular material which is held during that time in a high density and high pressure condition and which is shifted from the branch pipes 20, the conveying pipe 12 and the pressure container 10, and therefore the original equilibrium condition is recovered, thereby it is possible to automatically replenish materials for consumed materials.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、食品原材料、医薬品原材料、合成樹脂成形
原材料の如き粉粒体を、加圧空気により圧送する空気輸
送装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a pneumatic transport device that uses pressurized air to transport powder and granular materials such as food raw materials, pharmaceutical raw materials, and synthetic resin molding raw materials.

(従来の技術) 従来、この種の粉粒体の空気輸送装置は、(イ)例えば
、第10図に示す如(、圧力容器(^)と空気圧送源(
B)と輸送管(C)とからなる−基の空気輸送装置によ
って、複数の材料受容器(D)・・・(D)へ粉粒体を
輸送供給する場合には、輸送管(C)に分岐管([りを
接続し、各分岐部毎に輸送管(C) と分岐管(E) 
とを選択的に開放するボールパルプの如き開閉弁(v)
を設け、この各開閉弁(V)をそれぞれの材料受容器(
D)に設けたレベル形(L)からの信号により切り換え
るとともに、圧力容器(A)内には、通常、各材料受容
器(D)の容量の数分の1の小量の粉粒体を収容し、加
圧空気の供給部の作動によってその収容量の全量を送り
切る動作と、加圧空気の供給部の作動を停止して投入弁
(F)を開弁しチャージタンク(G)から粉粒体材料を
補充する動作とを交互に所定回数繰り返すことによって
、所定の材料受容器(D)への需要量を満たすバッジ方
式を採っていた。
(Prior Art) Conventionally, this type of pneumatic transportation device for powder and granular materials has (a) a pressure vessel (^) and a pneumatic feeding source (
When transporting and supplying powder to a plurality of material receivers (D) using a pneumatic transport device consisting of a transport pipe (C) and a transport pipe (C), the transport pipe (C) Connect the branch pipe ([ri) to the transport pipe (C) and branch pipe (E) for each branch.
An on-off valve (v) such as ball pulp that selectively opens the
, and each on-off valve (V) is connected to each material receiver (
D) is switched by a signal from the level type (L) installed in the pressure vessel (A), and a small amount of powder or granular material, usually a fraction of the capacity of each material receiver (D), is placed in the pressure vessel (A). The pressurized air supply unit is operated to send out the entire capacity, and the pressurized air supply unit is stopped to open the input valve (F) and the charge tank (G) is discharged from the charge tank (G). A badge method was adopted in which the demand for a predetermined material receiver (D) was satisfied by alternately repeating the operation of replenishing powder material a predetermined number of times.

また、(O)圧力容器(A)に粉粒体を投入供給する方
法としては、従来より■同第10図に仮想線で示すよう
に、チャージタンク(G)の上方にパルプ(H)を介し
てサービスタンク(K)を設け、このサービスタンク(
K)より自然落下するもの、■上記サービスタンク(K
)なしでチャージタンク(G)から直接に自然落下する
ものが知られており、上記■、■何れの場合も、踏み台
(M)に乗って粉粒体を手投入していた。
(O) As a method of supplying powder to the pressure vessel (A), as shown by the imaginary line in Figure 10, pulp (H) is placed above the charge tank (G). A service tank (K) is provided through the service tank (K).
Items that naturally fall from the service tank (K), ■
) is known to fall directly from the charge tank (G) by itself, and in both of the above cases ① and ②, the powder and granules were manually added while riding on a step stool (M).

(発明が解決しようとする問題点) しかるに、上記従来例のものによれば、上記(イ)の構
成から、輸送管(C)の各分岐部に取り付けた開閉弁(
V)、各材料受容器(D)に設けたレベル計(L)、そ
れらの制御機器などの多くの構成部品を必要とする。従
って、その分だけ高価な粉粒体の空気輸送装置となる。
(Problems to be Solved by the Invention) However, according to the above-mentioned conventional example, from the configuration (a) above, the on-off valves (
V), requires many components such as level meters (L) provided in each material receiver (D) and their control equipment. Therefore, the pneumatic transportation device for powder and granular materials is correspondingly more expensive.

また、開閉弁(v)による輸送路の頻繁な遮断、開放に
伴う該開閉弁等の撰耗が激しく、開閉弁(V)への粉粒
体の噛み込みや付着などにより、該開閉弁(V)の作動
不良や故障の原因となっていた。さらに、開閉弁(v)
の切り換え動作に伴い材料の輸送が一時中断されたりし
て輸送時間にロスがあった。
In addition, due to the frequent blocking and opening of the transportation route by the on-off valve (V), the on-off valve, etc. is subject to severe wear and tear, and the on-off valve (V) may be caught in or adhered to particles, etc. V) was causing malfunction or breakdown. Furthermore, the on-off valve (v)
Due to the switching operation, the transportation of materials was temporarily interrupted, resulting in a loss in transportation time.

また、上記(に)の構成から、前記■、■の何れの場合
も、チャージタンク(G)の投入口が高いため踏み台(
M)を用いなければ手投入出来ない煩わしさがあった。
Also, from the configuration (2) above, in both of the cases ① and ②, since the charging port of the charge tank (G) is high, the step stool (
It was troublesome that it could not be manually inserted without using M).

また前記■の場合には投入口ががなり高くなり、これら
の材料投入部の設置高さが制限を受けるほか、余分なパ
ルプなどを必要とした。
Further, in the case of (2) above, the input port becomes large and high, which limits the installation height of these material input sections, and requires extra pulp and the like.

前記■の場合には粉粒体材料輸送中にはチャージタンク
(G)の手段入口を開けることができなかった。
In the case (2) above, it was not possible to open the means inlet of the charge tank (G) during transportation of the powder material.

この発明は、上記問題点をことごとく解決しようとする
ものである。
This invention attempts to solve all of the above problems.

(問題点を解決するための手段) 上記問題点を解消すべく講じた、第1の発明の粉粒体の
空気輸送装置は、粉粒体を投入供給する圧力容器と、圧
力容器に接続する輸送管と、輸送管の先端部に分岐管を
介して接続する材料受容器と、前記輸送管及び分岐管に
常時粉粒体を充填し、かつ輸送方向に常時加圧するとと
もに、前記圧力容器の排出部に連通接続する空気圧送源
とを設けるとともに、前記分岐管には適宜間隔を置いて
1つ以上のブースター機構を設け、上記材料受容器内の
材料レベルの低下を、前記の如く輸送用加圧空気または
ブースター機構の加圧空気により、加圧状態に維持して
いる粉粒体を移動させることにより自動的に補充させる
べく構成してなることを特徴とするものである。
(Means for Solving the Problems) A pneumatic transportation device for powder and granular materials according to a first aspect of the invention, which has been designed to solve the above problems, includes a pressure vessel for charging and supplying powder and granules, and a pressure vessel connected to the pressure vessel. A transport pipe, a material receiver connected to the tip of the transport pipe via a branch pipe, and the transport pipe and the branch pipe are constantly filled with powder and granular material, and the pressure vessel is constantly pressurized in the transport direction. a pneumatic source in communication with the discharge, and one or more booster mechanisms spaced appropriately in the branch pipe to reduce the level of material in the material receiver as described above. It is characterized in that it is configured to be automatically replenished by moving the powder and granules maintained in a pressurized state using pressurized air or pressurized air from a booster mechanism.

また、この第2の発明は、上記粉粒体の空気輸送装置に
おいて、圧力容器の上流側に設けた粉粒体の貯蔵容器は
仕切板によりチャージ室とサービス室とに分割し、前記
サービス室は貯蔵容器の排出部の前部に、チャージ室は
同排出部の後部にそれぞれ臨ませるとともに、貯蔵容器
の排出部を材料供給管を介して圧力容器に接続する一方
、前記輸送管の終端部に接続した循環パイプの終端部を
前記貯蔵容器のサービス室に連通接続したことを特徴と
するものである。
Further, in the second invention, in the above pneumatic transportation device for powder and granular material, the storage container for powder and granular material provided upstream of the pressure vessel is divided into a charging chamber and a service chamber by a partition plate, and the service chamber is divided into a charge chamber and a service chamber. is located at the front of the discharge section of the storage container, and the charge chamber is located at the rear of the same discharge section, and the discharge section of the storage container is connected to the pressure vessel via the material supply pipe, while the terminal end of the transport pipe The terminal end of the circulation pipe connected to the storage container is connected to the service chamber of the storage container.

(実施例) この発明の1実施例を第1図ないし第9図に基づいて以
下に説明する。
(Example) An example of the present invention will be described below based on FIGS. 1 to 9.

第9図は、この実施例の全体の概略図であり、(1)は
大気圧下に開放された投入口(2)を有する貯蔵容器で
、この貯蔵容器(1)の排出部側には材料供給管(3)
を介して、貯蔵容器fll内の材料が空気源(4)から
の輸送空気により投入供給される圧力容器Q1)が接続
してある。圧力容器0〔の排出部aDには輸送管(ロ)
の基端部が接続してあるとともに、圧力容器Qlの基端
部近くには元加圧用のブースター機構α湯が取り付けで
ある。また、圧力容器αΦの排出部O1lにはコンプレ
ッサ等の空気圧送源aηが接続されている。この空気圧
送源01の加圧空気により、前記輸送管(ロ)および後
述する分岐管(2鴨に輸送すべき粉粒体を常時充填状態
に維持するとともに、輸送方向に常時加圧状態(この実
施例では高加圧状態としてあるが、これに限らない、)
に維持するようにしてある。なお、0荀はレベル計、0
9は排気弁、αeは圧力計である。
FIG. 9 is an overall schematic diagram of this embodiment, in which (1) is a storage container having an inlet (2) opened to atmospheric pressure, and a discharge portion of this storage container (1). Material supply pipe (3)
A pressure vessel Q1) is connected via which the material in the storage vessel fll is fed by transport air from an air source (4). There is a transport pipe (b) in the discharge part aD of pressure vessel 0.
is connected to the base end of the pressure vessel Ql, and a booster mechanism α for pressurization is attached near the base end of the pressure vessel Ql. Further, an air pressure supply source aη such as a compressor is connected to the discharge portion O1l of the pressure vessel αΦ. The pressurized air from this pneumatic supply source 01 maintains the powder and granules to be transported to the transport pipe (B) and the branch pipe (2) described later in a constantly filled state, and also maintains a constantly pressurized state in the transport direction (this In the example, it is a high pressurized state, but it is not limited to this.)
I try to maintain it. In addition, 0 Xun is a level meter, 0
9 is an exhaust valve, and αe is a pressure gauge.

前記輸送管(2)の先端部(下流側)には、T字管やY
字管などの継ぎ手Qυを介して分岐した分岐管(至)が
1つまたは2つ以上(実施例では6個)設けてあり、こ
の各分岐管Q鴫の下端部には、例えばパンの生地製造装
置における手粉収納用ホッパー、合成樹脂成形機などの
ホンパーなどの任意供給部に連接される材料受容器(2
)が接続されている。この分岐管+21は複数個に分割
して、分岐管(至)の長さを任意に調節することもでき
る。
At the tip (downstream side) of the transport pipe (2), there is a T-shaped pipe or a Y-shaped pipe.
One or more (six in the embodiment) branch pipes branched through joints Qυ such as joints are provided, and at the lower end of each branch pipe Qυ, for example, bread dough is placed. A material receiver (2
) are connected. This branch pipe +21 can also be divided into a plurality of parts to arbitrarily adjust the length of the branch pipe.

前記分岐管(至)には適宜間隔を置いて1つ以上のブー
スター機構I2時が設けてあり、分岐管(2Iに充填し
た粉粒体が自然に排出しない場合には、このブースター
機構(2)の加圧空気により排出するようにしてある。
The branch pipe (to) is provided with one or more booster mechanisms (I2) at appropriate intervals, and when the powder and granules filled in the branch pipe (2I) are not discharged naturally, this booster mechanism (2I) is installed at suitable intervals. ) is discharged using pressurized air.

このブースター機構(2)の具体的構造、取付個数、取
付位置は任意である。
The specific structure, number and mounting position of this booster mechanism (2) are arbitrary.

このブースター機構(2)の取付位置は、第1図示の如
く、輸送管(2)側から材料受容器(2)側に従い順次
長い間隔を取るようにしてあり、同図において、a<b
<c<d<・・・〈nとしてある。しかし、材料の物性
により、a−b−cwd・・・−nとしてもよいし、a
>b≦C≦d≦・・・≦nでもよい、 このブースター
機構(2)のそれぞれの取付位置を一般式により示すと
、 αn−Fnl<P+Σイー、α+ΣII−I  Fとな
る。
As shown in the first figure, the mounting positions of the booster mechanism (2) are arranged so that the distances are gradually longer from the transport pipe (2) side to the material receiver (2) side, and in the figure, a<b
<c<d<...<n. However, depending on the physical properties of the material, it may be a-b-cwd...-n, or a
>b≦C≦d≦...≦n.If the respective mounting positions of this booster mechanism (2) are expressed by a general formula, αn-Fnl<P+ΣE, α+ΣII-IF.

(ただし、第5図に示すように、輸送管側の輸送圧力を
P、最下流側のブースター機構Q1の材料の摩擦抵抗を
αn、同じく材料が落下しようとする重力をFTlとす
る。) 例えば、第5図の如く、ブースター機構Q場が2個有る
場合には、(a)ではαt  Fl<P+(α・+α+
 ) + (I6 +Fl )にある位置にブースター
23.があれば、23.よりの加圧空気により該位置の
材料が排出される。同様にして、(b)ではαr  P
+ <P+Cto +)”0、(C)ではα。
(However, as shown in Fig. 5, the transportation pressure on the transportation pipe side is P, the frictional resistance of the material of the booster mechanism Q1 on the most downstream side is αn, and the gravity with which the material tries to fall is FTl.) For example, , as shown in Fig. 5, when there are two booster mechanism Q fields, in (a) αt Fl<P+(α・+α+
) + (I6 +Fl ) booster 23. If there is, 23. The pressurized air evacuates the material at the location. Similarly, in (b) αr P
+ <P+Cto +)”0, α in (C).

−Fe<pであれば、材料が排出され、(d)の状態に
なる。
If -Fe<p, the material is discharged and the state shown in (d) is reached.

また、ブースター機構(2)の取付構成は、第7図に示
された構造のものを使用してもよいが、この実施例では
、第2図示の如く、一端に空気源を接続した空気供給管
−を分岐管01に並設し、この分岐管(至)と空気供給
管Q4との間に適宜間隔を置いてブースター機構12棒
を介設し、該ブースター機構(21の加圧空気の供給、
停止を電磁弁129で行い、加圧空気の逆流をチエツク
弁L2@で行うように構成してある。鰭は減圧弁である
Further, as for the mounting structure of the booster mechanism (2), the structure shown in FIG. 7 may be used, but in this embodiment, as shown in FIG. A booster mechanism 12 rod is interposed at an appropriate interval between the branch pipe (end) and the air supply pipe Q4, and the booster mechanism (21) is connected to the pressurized air. supply,
The configuration is such that the stop is performed by a solenoid valve 129, and the backflow of pressurized air is performed by a check valve L2@. The fins are pressure reducing valves.

上述したように、ブースター機構I21)を設けた構成
とすれば、分岐管(至)が長すぎたり、粉粒体の物性な
どにより、第5図(a)に示す如く、分岐管r2II内
に粉粒体(M)が充填されたままで排出されない場合で
も、ブースター機構(2)の加圧空気により排出できる
。ブースター機構(2)の作動順位は任意であるが、こ
の実施例では、下流側から順次上流側のものを作動させ
た(第5図(b) 、(c) 、(d)参照)、また、
同時に2個以上の加圧を行ってもよいし、1個づつ行っ
てもよいし、あるいは、パルス的に連続して作動しても
よいが、材料受容器(2)からの要求があった時のみ作
動する方が加圧空気の節約になる。
As mentioned above, if the configuration includes the booster mechanism I21), if the branch pipe (to) is too long or due to the physical properties of the powder or granules, as shown in FIG. Even if the powder (M) remains filled and is not discharged, it can be discharged by pressurized air from the booster mechanism (2). The order of activation of the booster mechanisms (2) is arbitrary, but in this example, the booster mechanisms (2) were activated sequentially from the downstream side to the upstream side (see Figures 5(b), (c), and (d)). ,
Pressure may be applied to two or more at the same time, one at a time, or sequentially in a pulsed manner, but if there is a request from the material receiver (2) It saves pressurized air if it operates only at certain times.

そして、材料受容器(2)内の材料レベルの低下を、前
述した如く輸送用加圧空気とブースター機構(至)の加
圧空気とにより、加圧状態に維持している粉粒体を移動
させることによって自動的に補充させるように構成して
なるものである。
Then, the material level in the material receiver (2) is reduced by moving the powder and granules maintained in a pressurized state by using pressurized air for transportation and pressurized air from the booster mechanism (to) as described above. It is configured so that it is automatically replenished by

また、前記分岐管(至)は、第3図示の如く、少なくと
も下部を分割構成し、その分割管部(20a)を材料受
容器(2)内に任意長さに出し入れ自在に設けるとよい
、もっとも、分岐管(至)を複数の分割体で構成し、こ
れら各分割体を着脱自在に結合することでもよい、この
ような構成によれば、分岐管l2IIが短か過ぎたり、
粉粒体の物性などにより、第4図示の如く、材料受容器
(2)からオーバーフローするようなことが解消できる
。つまり、前記分割管部(20a)が材料受容器(2)
内への差し込み度合によって、それへの供給量を加減す
るレベル調整機能をもつことになる。
Further, as shown in the third figure, it is preferable that the branch pipe (to) has at least a lower part divided, and the divided pipe part (20a) is provided in the material receiver (2) so as to be freely inserted and taken out at an arbitrary length. However, it is also possible to configure the branch pipe (to) with a plurality of divided bodies and connect these divided bodies in a detachable manner. According to such a configuration, the branch pipe I2II may be too short,
Depending on the physical properties of the powder, it is possible to eliminate overflow from the material receiver (2) as shown in the fourth figure. In other words, the split pipe portion (20a) serves as the material receiver (2).
It has a level adjustment function that adjusts the amount of supply to it depending on the degree of insertion.

さら゛に、前記分岐管(至)の少し下流の輸送管0には
、ライン加圧用のブースター機構(至)が取付けである
Furthermore, a booster mechanism (to) for pressurizing the line is attached to the transport pipe 0 slightly downstream of the branch pipe (to).

このブースター機構(至)は、任意であるが、例えば第
7図に示すごとく、輸送管(財)の輸送路と連通ずる輸
送路(30b)を有し、且つ基部側を大径筒部(30c
) とじた外筒体(30a) と、この外筒体(30a
)の大径筒部(30c)に嵌装される内筒体(30a)
  とからなり、大径筒部(30c)基端部側の鍔部(
31)を輸送管0の鍔部(12a)  とボルト締めし
てある。外筒体(30a)の大径筒部(30c)の一部
には外部から中心方向に向けて形成した空気導入孔(3
2)が形成されていると共に、内筒体(30d)の外周
面には空気導入孔(32)と連通した環状連部(33)
が形成されており、外筒体の大径筒部(30c) と小
径筒(30e) との境界線には内方に向けて傾斜する
テーパー面(34)を有し、内筒体(30d)の先端に
は外方に向けて傾斜するテーパー面(35)を有し、こ
の両テーパ面(ロ)、(至)間で斜め内向きの噴出口(
至)を形成している。
Although this booster mechanism (to) is optional, as shown in FIG. 30c
) The closed outer cylinder body (30a) and this outer cylinder body (30a
) The inner cylindrical body (30a) is fitted into the large diameter cylindrical part (30c) of
, and the flange (
31) is bolted to the flange (12a) of transport pipe 0. An air introduction hole (3
2) is formed, and an annular connecting part (33) communicating with the air introduction hole (32) is formed on the outer peripheral surface of the inner cylinder (30d).
The outer cylinder has a tapered surface (34) that slopes inward at the boundary between the large diameter cylinder (30c) and the small diameter cylinder (30e), and the inner cylinder (30d) has a tapered surface (34) that slopes inward. ) has a tapered surface (35) that slopes outward, and a diagonally inward spout (35) is formed between both tapered surfaces (b) and (to).
).

また、第8図示の如く、前記構成からなるブースター機
構(至)を2個用いて、両者を反転してボルト■連結し
、粉粒体の移送方向に加圧空気を供給する前部の噴出口
(至)と、粉粒体の移送方向とは逆向きに加圧空気を供
給する後部の噴出口(36a) とを形成し、前方また
は後方から加圧空気を噴出するようにすることもできる
In addition, as shown in Figure 8, two booster mechanisms configured as described above are used, and both are inverted and connected with bolts, so that a front jet for supplying pressurized air in the direction of transport of the powder and granules can be used. It is also possible to form an outlet (toward) and a rear jet port (36a) for supplying pressurized air in the opposite direction to the transport direction of the powder and granules, so that pressurized air can be jetted from the front or rear. can.

このように構成すれば、分岐管(至)へ分岐されずに通
り過ぎてしまった粉粒体が、輸送路を閉塞するのを防止
することができる。
With this configuration, it is possible to prevent particles that have passed through without being branched to the branch pipe (to) from clogging the transport path.

さらに、前記貯蔵容器(1)は、第6図及び第9図に示
す如(、仕切板(5)によりチャージ室(6)とサービ
ス室(7)とに分割し、前記サービス室(7)は貯蔵容
器(1)の排出部(1a)の前部に、チャージ室(6)
は同排出部(1a)の後部にそれぞれ臨ませるとともに
、貯蔵容器(1)の排出部(1a)を材料供給管(3)
を介して圧力容器OIに接続してある。一方、前記輸送
管(2)の終端部には、分岐管(2)へ分配されなかっ
た粉粒体をサービス室(7)に回収する循環パイプ(9
)が接続されている。このような構成によって、分岐管
(至)へ分配されなかった粉粒体をサービス室(7)に
回収するとともに、しかもチャージ室(6)の粉粒体よ
りも先に、前記回収した粉粒体を圧力容器Ql内へ供給
するものであるから、粉粒体の適正な循環が図られる利
点がある。そのほか、粉粒体の輸送中でも、仕切板(5
)によりサービス室(?1側の粉粒体がパルプの役目を
果たすため、チャージ室(6)に形成した投入口(2)
は常時大気圧下に開放しておける。なお、貯蔵容器(1
)の排出部(la)には攪拌手段(8)を設けることも
できる。Uは排気フィルター、曲はレベル計である。
Furthermore, the storage container (1) is divided into a charging chamber (6) and a service chamber (7) by a partition plate (5) as shown in FIGS. In the front part of the discharge part (1a) of the storage container (1), there is a charge chamber (6).
are facing the rear of the discharge part (1a), and the discharge part (1a) of the storage container (1) is connected to the material supply pipe (3).
It is connected to the pressure vessel OI via. On the other hand, at the terminal end of the transport pipe (2), there is a circulation pipe (9) that collects the powder and granules that have not been distributed to the branch pipe (2) into the service chamber (7).
) are connected. With this configuration, the powder and granules that have not been distributed to the branch pipe (to) are collected into the service chamber (7), and the collected powder and granules are collected before the powder and granules in the charge chamber (6). Since the granular material is supplied into the pressure vessel Ql, there is an advantage that proper circulation of the granular material can be achieved. In addition, during transportation of powder and granular materials, the partition plate (5
), the inlet (2) formed in the charge chamber (6) allows the powder and granules on the service chamber (?1 side to play the role of pulp).
can be kept open to atmospheric pressure at all times. In addition, storage container (1
) can also be provided with stirring means (8) in the discharge section (la). U is the exhaust filter, and song is the level meter.

(実施例の作用) 上記実施例の作用例を以下に説明する。(Effect of Example) An example of the operation of the above embodiment will be explained below.

貯蔵容器(1)の投入口+21から粉粒体材料を投入し
、その粉粒体を空気源(4)の輸送空気により、投入弁
(3a)を開き材料供給管(3)を介して圧力容器a・
へ投入供給する。このとき、貯蔵容器(1)の粉粒体は
、サービス室(7)の循環パイプ(9)を介して回収さ
れた材料が、チャージ室(6)のものより優先して供給
される。
Powder material is charged from the input port +21 of the storage container (1), and the powder is compressed by transport air from the air source (4) through the material supply pipe (3) by opening the charge valve (3a). Container a・
Input and supply to. At this time, the material collected in the storage container (1) via the circulation pipe (9) of the service chamber (7) is supplied preferentially to that of the charge chamber (6).

圧力容器α〔が設定量(例えば満杯)になると、レベル
計041が検知して投入弁(3a)を閉じ空気源(4)
の駆動を停止して輸送が停止され、圧力容器αeが密閉
される。粉粒体は自重で排出部ODまで達する。
When the pressure vessel α reaches a set amount (for example, full), the level meter 041 detects it and closes the injection valve (3a), which causes the air source (4) to close.
The transportation is stopped by stopping the driving of the pressure vessel αe, and the pressure vessel αe is sealed. The powder reaches the discharge section OD under its own weight.

次いで、空気圧送源θηから加圧空気(Po)を連続的
に供給すると、排出部に内装したフィルタ(図示せず)
内で粉粒体が流動すると同時に、排出部aDの粉粒体が
輸送管@の基端部内へ例えば管径を塞ぐような柱状とな
って移動する。一方、圧力容器α・の内圧も輸送管@内
の粉粒体抵抗により当初より上昇した内圧(P、)とな
る。
Next, when pressurized air (Po) is continuously supplied from the pneumatic supply source θη, a filter (not shown) installed in the discharge part
At the same time as the powder and granules flow inside, the powder and granules in the discharge section aD move into the base end of the transport pipe @, for example, in the form of a column that blocks the pipe diameter. On the other hand, the internal pressure of the pressure vessel α・ becomes an internal pressure (P,) that has increased from the beginning due to the resistance of the granular material in the transport pipe @.

さらに、輸送管(ロ)での押し上げがある程度に達する
と、粉粒体の送り抵抗と圧力容器OI内の排出に基づく
減圧とが平衡し、先に押し上げられた材料と後続の材料
との間には、加圧空気(Po)のみが充填された空間が
形成され、以後交互にこのような現象が生じて断続した
柱状状態を形成しつつ輸送管(2)内を前進する。この
ようにして高濃度な輸送がなされるのである。
Furthermore, when the pushing up in the transport pipe (b) reaches a certain level, the feeding resistance of the powder and granular material and the reduced pressure based on the discharge inside the pressure vessel OI are balanced, and the gap between the material pushed up earlier and the following material is balanced. , a space filled only with pressurized air (Po) is formed, and thereafter, such a phenomenon occurs alternately, forming an intermittent columnar state while advancing inside the transport pipe (2). In this way, high-concentration transport is achieved.

そして、前記柱状状態で材料は各分岐管(至)を介して
手前側の材料受容器(23から順次充填して末端側まで
供給される。このとき、各材料受容器(2)へ粉粒体を
供給し終えた空気は、それぞれの材料受容器(社)外へ
排気される。
Then, in the columnar state, the material is sequentially filled from the material receiver (23) on the front side through each branch pipe (toward) and supplied to the end side.At this time, powder particles are supplied to each material receiver (2). The air that has finished supplying the body is exhausted out of each material receiver.

前述のようにして各材料受容器(2)内に粉粒体が充填
された時点では、各材料受容器(2)からの排気に見合
う量の空気が、空気圧送源αηまたは輸送管(2)に配
設したブースター機構(至)から系内に供給されるだけ
で、各材料受容器(ハ)、分岐管rs、輸送管0及び圧
力容器ae内の粉粒体は高密度、高圧力のもとで平衡状
態になり、粉粒体の移動は生じない。
At the time when each material receiver (2) is filled with powder and granules as described above, an amount of air corresponding to the exhaust from each material receiver (2) is transferred to the pneumatic supply source αη or the transport pipe (2). ), the powder and granules in each material receiver (c), branch pipe rs, transport pipe 0 and pressure vessel ae have high density and high pressure. An equilibrium state is reached under , and no movement of the powder or granules occurs.

この状態で材料受容器(2)内の粉粒体が消費され、材
料レベルが低下すると、そのレベル低下が当該材料受容
器(2)に接続した分岐管(至)から輸送管(2)内に
直ちに波及して当該部分の輸送管(2)の内圧低下を生
じ、その内圧低下はその間にも高密度、高圧力状態に保
持されている分岐管(至)、輸送管(2)及び圧力容器
01からの材料の移動により直ちに補充され、元の平衡
状態に戻り自動的に消費された材料の補充が行なわれる
。このとき、材料受容器(2)内ノ材料レベルが低下す
ると、そのレベル計Q・カコれを感知して圧力容器Ql
内の材料供給を行うようにする。
In this state, when the powder and granules in the material receiver (2) are consumed and the material level decreases, the level drop is transferred from the branch pipe (to) connected to the material receiver (2) to the transport pipe (2). This immediately spreads to the area, causing a drop in the internal pressure of the transport pipe (2), and this drop in internal pressure also affects the branch pipe (to), the transport pipe (2), and the pressure, which are maintained at a high density and high pressure state. The material is immediately replenished by the movement of the material from the container 01, and the original equilibrium state is returned to automatically replenish the consumed material. At this time, when the material level inside the material receiver (2) decreases, the level meter Q and the crack are detected and the pressure vessel Ql
Materials will be supplied within the facility.

しかし、上記の場合において、第5図aに示すように、
分岐管(2)に材料が充填されたままで材料受容器@へ
排出されないことがある。このとき、分岐管(2)に設
けたブースター機構e梼を作動させて、その加圧空気に
より材料を材料受容器I2や内へ排出する。第5図に沿
って言えば、先ず(b)の下部のブースター機構(至)
を作動してその空気圧により先端部の材料が排出する0
次ぎに(c)の上部のブースター機構t2壕を作動して
同様にその上部の材料を排出する。最後に(d)の輸送
管(2)輸送圧力によって材料を排出する。
However, in the above case, as shown in Figure 5a,
The branch pipe (2) may remain filled with material and not be discharged to the material receiver @. At this time, the booster mechanism e provided in the branch pipe (2) is operated, and the pressurized air discharges the material into the material receiver I2. According to Figure 5, first, the lower booster mechanism (to) in (b)
The material at the tip is discharged by the air pressure.
Next, the booster mechanism t2 in the upper part of (c) is operated to discharge the material in the upper part in the same way. Finally, the material is discharged by the transport pressure in the transport pipe (2) in (d).

また、分岐管(至)の分岐管部(20a)を上下動して
、その高さを調整することにより、材料が材料受容器(
2)内よりオーバーフローするのを防止すると共に、該
材料受容器(至)のレベルを調整することができる。こ
のようにして分岐管r2Iの長さは任意に変更できる0
、 輸送管@の管路に材料が詰るような場合には、該輸送管
@に設けたライン加圧用ブースター機構(至)を作動し
てその加圧空気により、その材料の詰りを解除するとよ
い。
In addition, by moving the branch pipe part (20a) of the branch pipe (to) up and down to adjust its height, the material can be transferred to the material receiver (
2) It is possible to prevent overflow from inside and adjust the level of the material receiver. In this way, the length of the branch pipe r2I can be changed arbitrarily.
, If the pipe line of the transport pipe @ is clogged with material, it is recommended to activate the line pressure booster mechanism (to) installed in the transport pipe @ and use the pressurized air to release the clogging of the material. .

輸送管(2)から循環パイプ(9)を経て貯蔵容器(1
)のサービス室(7)へ回収された材料は、チャージ室
(6)の材料より優先的に圧力容器(1)へ供給される
The transport pipe (2) passes through the circulation pipe (9) to the storage container (1).
) is supplied to the pressure vessel (1) with priority over the material in the charge chamber (6).

なお、この第1の発明では、実施例の如き貯蔵容器+1
)でなくてもよいし、またその圧力容器α[有]への材
料供給も自動機構に限らず適宜な手動機構により°行う
ことができる。
In addition, in this first invention, the storage container +1 as in the embodiment is
), and the material supply to the pressure vessel α can be performed not only by an automatic mechanism but also by an appropriate manual mechanism.

前記ブースター機構(2)、または(至)は、圧力容器
0Iに設けた圧力計OI9に連動されるようにすること
もできる。
The booster mechanism (2) or (to) may also be linked to a pressure gauge OI9 provided in the pressure vessel 0I.

材料受容器(2)の数は1個以上任意である。また、粉
粒体が空気中の酸素などと化合し易いなどの特別な物質
の場合には、その輸送気体として空気を使用し難いので
、適切な例えばアルゴン、窒素などの他の気体を使用す
る。従って、本発明では輸送すべき空気とは、空気以外
の他の気体をも含む広義に解すべきである。
The number of material receivers (2) is one or more and arbitrary. In addition, if the powder or granular material is a special substance that easily combines with oxygen in the air, it is difficult to use air as the transport gas, so other suitable gases such as argon or nitrogen may be used. . Therefore, in the present invention, the air to be transported should be understood in a broad sense, including gases other than air.

(発明の効果) この第1の発明によれば、粉粒体を投入供給する圧力容
器と、圧力容器に接続する輸送管と、輸送管の先端部に
分岐管を介して接続する材料受容器と、前記輸送管及び
分岐管に常時粉粒体を充填し、かつ輸送方向に常時加圧
するとともに、前記圧力容器の排出部に連通接続する空
気圧送源とを設けるとともに、前記分岐管には適宜間隔
を置いて1つ以上のブースター機構を設け、上記材料受
容器内の材料レベルの低下を、前記の如く輸送用加圧空
気またはブースター機構の加圧空気により、加圧状態に
維持している粉粒体を移動させることにより自動的に補
充させるべく構成してなるから、上記従来例のものに比
べて、従来必要としていた開閉弁、レベル計、それらの
制御機器などの多くの構成部品を省略でき、その分コス
トダウンを図れる。また、開閉弁を不要としたから、開
閉弁への粉粒体の噛み込みや付着などによる作動不良や
故障、輸送時間のロスなどを、ことごとく解消できる。
(Effects of the Invention) According to the first invention, there is provided a pressure vessel for charging and supplying powder and granules, a transport pipe connected to the pressure vessel, and a material receiver connected to the tip of the transport pipe via a branch pipe. The transport pipe and the branch pipe are always filled with powder and granular material, and are always pressurized in the transport direction, and a pneumatic feed source is provided that is connected to the discharge part of the pressure vessel, and the branch pipe is provided with a suitable One or more booster mechanisms are provided at spaced intervals to maintain the reduced material level in the material receptacle under pressure with pressurized transport air or booster mechanism pressurized air as described above. Since it is configured to automatically replenish powder by moving it, many components such as on-off valves, level meters, and their control equipment, which were previously required, can be removed compared to the conventional example described above. It can be omitted, and costs can be reduced accordingly. In addition, since an on-off valve is not required, it is possible to eliminate all problems such as malfunctions, breakdowns, and transportation time losses due to particles getting caught in or adhering to the on-off valve.

また、第2の発明によれば、圧力容器の上流側に設けた
粉粒体の貯蔵容器は仕切板によりチャージ室とサービス
室とに分割し、前記サービス室は貯蔵容器の排出部の前
部に、チャージ室は同排出部の後部にそれぞれ臨ませる
とともに、貯蔵容器の排出部を材料供給管を介して圧力
容器に接続する一方、前記輸送管の終端部に接続した循
環パイプの終端部を前記貯蔵容器のサービス室に連通接
続してなるから、貯蔵容器の投入口が低くできるため踏
み台などを用いることな(、簡単に手投入ができるほか
、貯蔵容器の設置高さの制限を受けることがなくなった
し、チャージ室の投入口を常時開放しておくこともでき
作業能率が向上できる。
Further, according to the second invention, the powder storage container provided on the upstream side of the pressure vessel is divided into a charge chamber and a service chamber by a partition plate, and the service chamber is located in the front part of the discharge part of the storage container. In addition, the charge chambers are located at the rear of the discharge section, and the discharge section of the storage container is connected to the pressure vessel via the material supply pipe, while the terminal end of the circulation pipe connected to the terminal end of the transport pipe is connected to the discharge section of the storage container through the material supply pipe. Since it is connected to the service room of the storage container, the input port for the storage container can be lowered so that it can be easily loaded by hand without using a step stool, etc., and there are no restrictions on the installation height of the storage container. This eliminates the problem and allows the charge chamber inlet to be kept open at all times, improving work efficiency.

サービス室へ回収した材料は、チャージ室の材料より先
に輸送されるため、材料の適正な循環が達成できるなど
の多くの効果を有する。
Since the materials collected to the service room are transported before the materials in the charging room, there are many effects such as proper circulation of materials.

なお、特許請求の範囲第(2)項ないし第(6)項また
は第(8)項記載の如く構成すれば、既述したような利
点がある。
Note that if the configuration is as described in claims (2) to (6) or (8), there will be advantages as described above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図、第5図ないし第9図は本発明の実
施例を示し、第1図は分岐管近傍の正面図、第2図は第
1図のブースター機構の具体的取付例の要部を示す正面
図、第3図は分割管近傍の断面図、第5図は分岐管部の
作動説明図、第6図は貯蔵容器の縦断面図、第7図と第
8図はブースター機構の取付例を示す一部断面正面図、
第9図は本発明の全体の概略説明図、第4図は従来例の
分岐管近傍の断面図、第10図は従来例の概略説明図で
ある。 (1)・・・貯蔵容器、(2)・・・投入口、(5)・
・・仕切板、(6)・・・チャージ室、(7)・・・サ
ービス室、(9)・・・循環パイプ、aI・・・圧力容
器、αυ・・・排出部、(2)・・・輸送管、an・・
・空気圧送源、(至)・・・分岐管、(20a)・・・
分割管部、(社)・・・材料受容器、(至)、(2L−
3)・・・ブースター機構、(至)・・・ライン加圧用
ブースター機構。 特許出願人 株式会社松井製作所 第1図 第2図 ↓ 第4図 ↓ 第3図 第5図 a     b     Cd 第6図 第8図
1 to 3 and 5 to 9 show embodiments of the present invention, FIG. 1 is a front view of the vicinity of the branch pipe, and FIG. 2 is a specific example of how the booster mechanism shown in FIG. 1 is installed. 3 is a sectional view of the vicinity of the split pipe, FIG. 5 is an explanatory diagram of the operation of the branch pipe section, FIG. 6 is a longitudinal sectional view of the storage container, and FIGS. 7 and 8 are A partially sectional front view showing an example of how the booster mechanism is installed;
FIG. 9 is an overall schematic explanatory diagram of the present invention, FIG. 4 is a cross-sectional view of the vicinity of a branch pipe of a conventional example, and FIG. 10 is a schematic explanatory diagram of a conventional example. (1)...storage container, (2)...inlet, (5)...
... Partition plate, (6) ... Charge chamber, (7) ... Service room, (9) ... Circulation pipe, aI ... Pressure vessel, αυ ... Discharge section, (2) ...・・Transport pipe, an・・
・Pneumatic supply source, (to)...branch pipe, (20a)...
Split pipe section, (company)...Material receiver, (to), (2L-
3)... Booster mechanism, (to)... Booster mechanism for pressurizing the line. Patent applicant Matsui Seisakusho Co., Ltd. Figure 1 Figure 2 ↓ Figure 4 ↓ Figure 3 Figure 5 a b Cd Figure 6 Figure 8

Claims (8)

【特許請求の範囲】[Claims] (1)粉粒体を投入供給する圧力容器と、圧力容器に接
続する輸送管と、輸送管の先端部に分岐管を介して接続
する材料受容器と、前記輸送管及び分岐管に常時粉粒体
を充填し、かつ輸送方向に常時加圧するとともに、前記
圧力容器の排出部に連通接続する空気圧送源とを設ける
とともに、前記分岐管には適宜間隔を置いて1つ以上の
ブースター機構を設け、上記材料受容器内の材料レベル
の低下を、前記の如く輸送用加圧空気またはブースター
機構の加圧空気により、加圧状態に維持している粉粒体
を移動させることにより自動的に補充させるべく構成し
てなることを特徴とする粉粒体の空気輸送装置。
(1) A pressure vessel for charging and supplying powder and granules, a transport pipe connected to the pressure vessel, a material receiver connected to the tip of the transport pipe via a branch pipe, and a powder container constantly connected to the transport pipe and the branch pipe. Filled with granules and constantly pressurized in the transport direction, a pneumatic supply source is provided that is connected in communication with the discharge part of the pressure vessel, and the branch pipe is provided with one or more booster mechanisms at appropriate intervals. The material level in the material receiver is automatically lowered by moving the granular material maintained in a pressurized state using pressurized air for transportation or pressurized air of a booster mechanism as described above. A pneumatic transportation device for powder and granular material, characterized in that it is configured to allow replenishment.
(2)前記ブースター機構を複数設けた場合に、該ブー
スター機構の取付位置は、輸送管の輸送圧力をP、最下
流側のブースター機構の材料の摩擦抵抗をα_n、同じ
く材料が落下しようとする重力をF_nとすると、α_
n−F_n<P+Σ_n_−_1α+Σ_n_−_1F
の一般式を充足する位置に設けてある特許請求の範囲第
(1)項記載の粉粒体の空気輸送装置。
(2) When multiple booster mechanisms are provided, the mounting position of the booster mechanism is such that the transport pressure of the transport pipe is P, the frictional resistance of the material of the booster mechanism on the most downstream side is α_n, and the material is also about to fall. If gravity is F_n, α_
n-F_n<P+Σ_n_-_1α+Σ_n_-_1F
A pneumatic transportation device for powder or granular material according to claim (1), which is provided at a position that satisfies the general formula:
(3)前記分岐管は、少なくとも下部を分割構成し、そ
の分割管部を材料受容器内に出し入れ自在に設けてある
特許請求の範囲第(1)項または第(2)項記載の粉粒
体の空気輸送装置。
(3) The powder particles according to claim (1) or (2), wherein the branch pipe has at least a lower portion divided, and the divided pipe portion is provided so as to be freely put in and taken out of the material receiver. Air transportation device of the body.
(4)前記分岐管は複数個に分割してある特許請求の範
囲第(1)項ないし第(3)項のいづれかに記載の粉粒
体の空気輸送装置。
(4) The pneumatic transportation device for powder and granular material according to any one of claims (1) to (3), wherein the branch pipe is divided into a plurality of parts.
(5)前記分岐管より少し下流の輸送管にはライン加圧
用ブースター機構が設けてある特許請求の範囲第(1)
項ないし第(4)項のいづれかに記載の粉粒体の空気輸
送装置。
(5) Claim No. 1, wherein a booster mechanism for pressurizing the line is provided in the transport pipe slightly downstream of the branch pipe.
A pneumatic transportation device for powder or granular material according to any one of items 1 to 4.
(6)前記ライン加圧用ブースター機構は、輸送管路の
粉粒体輸送方向に対して逆向きに加圧空気を送るように
構成してある特許請求の範囲第(5)項記載の粉粒体の
空気輸送装置。
(6) The powder particles according to claim (5), wherein the line pressurizing booster mechanism is configured to send pressurized air in a direction opposite to the direction in which the powder particles are transported in the transport pipe. Air transportation device of the body.
(7)特許請求の範囲第(1)項に記載の粉粒体の空気
輸送装置において、圧力容器の上流側に設けた粉粒体の
貯蔵容器は仕切板によりチャージ室とサービス室とに分
割し、前記サービス室は貯蔵容器の排出部の前部に、チ
ャージ室は同排出部の後部にそれぞれ臨ませるとともに
、貯蔵容器の排出部を材料供給管を介して圧力容器に接
続する一方、前記輸送管の終端部に接続した循環パイプ
の終端部を前記貯蔵容器のサービス室に連通接続したこ
とを特徴とする粉粒体の空気輸送装置。
(7) In the pneumatic transportation device for powder and granular material according to claim (1), the storage container for powder and granular material provided upstream of the pressure vessel is divided into a charging chamber and a service chamber by a partition plate. The service chamber faces the front part of the discharge part of the storage container, and the charge chamber faces the rear part of the discharge part of the storage container, and the discharge part of the storage container is connected to the pressure vessel via the material supply pipe. 1. A pneumatic transportation device for powder and granular material, characterized in that a terminal end of a circulation pipe connected to a terminal end of a transport pipe is connected in communication with a service chamber of the storage container.
(8)前記貯蔵容器の排出部には攪拌手段を設けてある
特許請求の範囲第(7)項記載の粉粒体の空気輸送装置
(8) The pneumatic transportation device for powder and granular material according to claim (7), wherein a stirring means is provided at the discharge portion of the storage container.
JP61179471A 1986-07-30 1986-07-30 Pneumatic transportation device for powder Expired - Lifetime JP2535150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61179471A JP2535150B2 (en) 1986-07-30 1986-07-30 Pneumatic transportation device for powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61179471A JP2535150B2 (en) 1986-07-30 1986-07-30 Pneumatic transportation device for powder

Publications (2)

Publication Number Publication Date
JPS6337029A true JPS6337029A (en) 1988-02-17
JP2535150B2 JP2535150B2 (en) 1996-09-18

Family

ID=16066424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61179471A Expired - Lifetime JP2535150B2 (en) 1986-07-30 1986-07-30 Pneumatic transportation device for powder

Country Status (1)

Country Link
JP (1) JP2535150B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49104380A (en) * 1973-02-15 1974-10-02
JPS5031574A (en) * 1973-07-04 1975-03-28
JPS5968729U (en) * 1982-10-30 1984-05-10 株式会社松井製作所 Pressure nozzle in powder pneumatic transport equipment
JPS59190112A (en) * 1983-04-09 1984-10-27 Matsui Seisakusho:Kk Method and apparatus for throwing in granular powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49104380A (en) * 1973-02-15 1974-10-02
JPS5031574A (en) * 1973-07-04 1975-03-28
JPS5968729U (en) * 1982-10-30 1984-05-10 株式会社松井製作所 Pressure nozzle in powder pneumatic transport equipment
JPS59190112A (en) * 1983-04-09 1984-10-27 Matsui Seisakusho:Kk Method and apparatus for throwing in granular powder

Also Published As

Publication number Publication date
JP2535150B2 (en) 1996-09-18

Similar Documents

Publication Publication Date Title
US4111492A (en) Pneumatic conveying apparatus and method
CA2738719C (en) Device and method for pneumatically conveying bulk materials in a dense flow method
US7413388B2 (en) Method and apparatus for pneumatically conveying bulk material which does not flow readily
JPH0774044B2 (en) Pneumatic or hydraulic pipe conveying method for solid content and its implementation device
CN101312896A (en) Drill cuttings storage and conveying
JP4026177B2 (en) Method and system for dispensing flowable substances
US4502820A (en) High-pressure conveyor for powdery and granular materials
US4599017A (en) Method of and device for automatic charging a plurality of receiving stations with pulverized material
US6012875A (en) Apparatus for dispensing granular material
US4834587A (en) Pneumatic conveying system
US5855456A (en) Apparatus and method for unblocking conveying pipe
US3671079A (en) Method and apparatus for handling material
US3099497A (en) Pneumatic conveyor for pulverant materials
US4493593A (en) Method and device for continuous transporting powdered, fine-grained and coarse-grained materials
JPS6118635A (en) Pneumatic conveyance of powder material free from clogging and apparatus thereof
JPS6337029A (en) Pneumatic conveying device for granular material
UA83491C2 (en) device for continuously feeding powdery solid into pneumatic conveying line
SU391977A1 (en) CHAMBER FEEDER OF INFORMATIVE PNEUMATIC INSTALLATION
JPS62108117A (en) Weighing equipment of powdered and granular body
SU1770238A1 (en) Installation for pneumatic transportation of loose materials
US3578814A (en) Method and apparatus for conveying dust
LU92978B1 (en) Installation for distribution of granular or powder material via pneumatic transport comprising a device for pressurizing and depressurizing a dispensing hopper for storage of said material
SU994380A2 (en) Apparatus for conveying loose materials
US3844622A (en) Fluidic pump
JPH07285665A (en) Supply device of powder/grain