JPS6336775B2 - - Google Patents

Info

Publication number
JPS6336775B2
JPS6336775B2 JP53007602A JP760278A JPS6336775B2 JP S6336775 B2 JPS6336775 B2 JP S6336775B2 JP 53007602 A JP53007602 A JP 53007602A JP 760278 A JP760278 A JP 760278A JP S6336775 B2 JPS6336775 B2 JP S6336775B2
Authority
JP
Japan
Prior art keywords
detector
ray
collimator
ray source
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53007602A
Other languages
Japanese (ja)
Other versions
JPS54100680A (en
Inventor
Sunao Shigemura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP760278A priority Critical patent/JPS54100680A/en
Publication of JPS54100680A publication Critical patent/JPS54100680A/en
Publication of JPS6336775B2 publication Critical patent/JPS6336775B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 本発明は被検体の同一断層面について多方向か
らのX線投影データを収集し、それに基づいて該
断層面のX線透過吸収係数の分布を再構成するい
わゆるコンピユータ断層法(Computerized
Tomography〜CT)を用いたコンピユータ断層
装置(以下「CT装置」と略称する)にかかわり、
特にいわゆる第4世代のCT装置すなわち回転フ
アンビーム、固定デテクタ方式のCT装置におい
て、被検体からの散乱X線を除去する散乱線除去
コリメータを備えたものに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a so-called computer tomography system that collects X-ray projection data from multiple directions on the same tomographic plane of a subject and reconstructs the distribution of X-ray transmission and absorption coefficients of the tomographic plane based on the data. Law (Computerized
We are involved in computerized tomography devices (hereinafter abbreviated as "CT devices") using
In particular, the present invention relates to a so-called fourth generation CT device, that is, a rotating fan beam, fixed detector type CT device, which is equipped with a scattered ray removal collimator that removes scattered X-rays from a subject.

第1図はこの種の方式のCT装置の原理構成を
示すものである。被検体1の周囲の円周上に多数
のX線検出器2が固定配置されており、X線源3
が被検体1のまわりの前記検出器2と同心の円周
上を回転する。X線源3からのX線は被検体1を
覆い得る扇状を呈するいわゆるフアンビームであ
る。このX線としてはパルス的または連続的なX
線が用いられる。連続的なX線の場合には、検出
器2の出力回路にサンプリング機能をもたせ、X
線源3の回転角度位置に対応した検出器2をデー
タとして採集する。
FIG. 1 shows the basic configuration of this type of CT apparatus. A large number of X-ray detectors 2 are fixedly arranged on the circumference around the subject 1, and an X-ray source 3
rotates on a circumference concentric with the detector 2 around the subject 1. The X-rays from the X-ray source 3 are so-called fan beams that have a fan shape that can cover the subject 1 . This X-ray can be pulsed or continuous
A line is used. In the case of continuous X-rays, the output circuit of detector 2 has a sampling function, and
The detector 2 corresponding to the rotational angular position of the radiation source 3 is collected as data.

この方式の特徴は、X線源3と検出器2の相互
の幾何学的関係が時間とともに変化することにあ
る。
A feature of this method is that the mutual geometrical relationship between the X-ray source 3 and the detector 2 changes over time.

一方、第2図にいわゆる第3世代のCT装置す
なわち回転フアンビームX線、回転検出器方式の
CT装置の原理構成を示す。この方式の場合は、
X線源3と検出器4の幾何学的関係は固定されて
おり、X線フアンビームとこれに対向して配列さ
れた多数の検出器4が、被検体の周囲を回転し被
検体のX線吸収係数を測定する。
On the other hand, Fig. 2 shows the so-called third generation CT equipment, namely rotating fan beam X-ray and rotating detector type.
The principle configuration of the CT device is shown. In this method,
The geometrical relationship between the X-ray source 3 and the detector 4 is fixed, and the X-ray fan beam and a number of detectors 4 arranged opposite to it rotate around the subject to detect the X-ray beam of the subject. Measure the linear absorption coefficient.

いわゆる第1世代のCT装置のようにペンシル
ビームと称される細い線状のX線ビームと狭い開
口部をもつた検出器を使用し被検体のX線吸収係
数を測定する方式においては、X線ビームと検出
器の幾何学的配置及び寸法を予め考慮して、X線
源からの直接X線のみが検出器に入り、被検体で
散乱した散乱X線は検出器に入射しないように設
計されている。
In the method of measuring the X-ray absorption coefficient of the subject using a thin linear X-ray beam called a pencil beam and a detector with a narrow aperture, as in the so-called first generation CT equipment, The geometry and dimensions of the ray beam and detector are designed so that only direct X-rays from the X-ray source enter the detector, and scattered X-rays scattered by the object do not enter the detector. has been done.

また、上記第2図に示す第3世代のCT装置に
おいては、X線ビームが扇状をしているため検出
器4の開口は広く、散乱X線が検出器4へ入射す
るおそれがある。散乱X線が検出器4へ入射する
と、本来目的としているX線源3とその検出器4
とを結ぶ直線上のX線吸収量の測定に対し、他の
部分からの散乱X線が誤差を与えることになる。
Furthermore, in the third generation CT apparatus shown in FIG. 2, the aperture of the detector 4 is wide because the X-ray beam is fan-shaped, and there is a risk that scattered X-rays may enter the detector 4. When the scattered X-rays enter the detector 4, the original target X-ray source 3 and its detector 4
Scattered X-rays from other parts give an error to the measurement of the amount of X-ray absorption on the straight line connecting the two points.

このためこの種のCT装置では一般に他の部分
からの散乱X線を防ぐために、第3図に示すよう
に検出器4の前面に重金属の薄板で作つたコリメ
ータ5を設け、X線源3とその検出器4とを結ぶ
直接X線X1の範囲以外の範囲からの散乱X線X2
をこのコリメータ5で吸収させ、検出器4へ入射
しないようにしている。
For this reason, in order to prevent X-rays from being scattered from other parts of this type of CT device, a collimator 5 made of a thin plate of heavy metal is generally provided in front of the detector 4, as shown in FIG. Scattered X-rays from a range other than the direct X-rays connected to the detector 4 X 2
is absorbed by this collimator 5 so that it does not enter the detector 4.

これに対して、上記第1図に示す第4世代の
CT装置においてはX線源3と検出器2の相互関
係は時間とともに変化する。このため特定の検出
器2がX線源3に対向する方向も、X線源3の移
動とともに変化する。従つて検出器2側に上記第
3図と同様な散乱線除去のための重金属薄板製の
コリメータを設けることは出来ない。すなわち検
出器2に対するX線源3の位置が移動するため、
コリメータの方向を一定にできないためである。
In contrast, the fourth generation shown in Figure 1 above
In a CT apparatus, the mutual relationship between the X-ray source 3 and the detector 2 changes over time. Therefore, the direction in which a particular detector 2 faces the X-ray source 3 also changes as the X-ray source 3 moves. Therefore, it is not possible to provide a collimator made of a heavy metal thin plate on the detector 2 side for removing scattered radiation similar to that shown in FIG. 3 above. In other words, since the position of the X-ray source 3 relative to the detector 2 moves,
This is because the direction of the collimator cannot be kept constant.

板状X線しやへい部(コリメータ6の)がX線
ビームの拡がり面に平行であるという条件で適宜
に配列してなるコリメータ6を、X線源3に対向
させて設け、このコリメータ6をX線源3と同時
に回転させる構成が考えられている。しかし乍、
この場合はコリメータ6の陰影が検出器2に入射
しX線源3、コリメータ6系と検出器2系の相互
関係の変化(X線源3と検出器2の相互角度の変
化)により、検出器2出力が変化するという欠点
があるため、従来は採用されていない。
A collimator 6 is provided facing the X-ray source 3 and is arranged as appropriate on the condition that the plate-shaped X-ray shielding part (of the collimator 6) is parallel to the spreading plane of the X-ray beam. A configuration in which the X-ray source 3 and the X-ray source 3 are rotated simultaneously has been considered. However,
In this case, the shadow of the collimator 6 enters the detector 2 and is detected due to changes in the mutual relationship between the X-ray source 3, collimator 6 system, and detector 2 system (changes in the mutual angle between the X-ray source 3 and detector 2). Conventionally, this method has not been adopted because it has the disadvantage that the output of the second circuit changes.

したがつて、第4世代のCT装置では検出器2
と被検体の間に散乱線除去のためのコリメータを
設けることが事実上できなかつた。そこで散乱線
の影響を少しでも減少させるために、X線管の管
電圧を第3世代以前に使われていた120KVから
140KVへと高くするなどしているがどうしても
散乱線の影響を受けてしまう。
Therefore, in the fourth generation CT device, detector 2
It was virtually impossible to install a collimator between the object and the subject to remove scattered radiation. Therefore, in order to reduce the influence of scattered radiation as much as possible, the tube voltage of the X-ray tube was changed from 120KV, which was used before the third generation.
Although efforts have been made to increase the voltage to 140KV, it is still affected by scattered radiation.

本発明はこのような事情に基づいてなされたも
ので第4世代のCT装置において、被検体と検出
器の間にX線源と同期して回転する散乱線除去の
ためのコリメータを設けてしかもその陰影による
検出器出力の変動の生じないCT装置を提供する
ことを目的としている。
The present invention has been made based on the above circumstances, and is a fourth generation CT apparatus in which a collimator for removing scattered radiation that rotates in synchronization with the X-ray source is provided between the subject and the detector. The object of the present invention is to provide a CT apparatus that does not cause fluctuations in detector output due to shadows.

すなわち、本発明の特徴とするところは、コリ
メータを構成する板状X線しやへい部の角度間隔
を検出器の有効角度と同一またはその整数分の1
とすることにある。
In other words, the present invention is characterized in that the angular interval of the plate-like X-ray shielding portions constituting the collimator is the same as the effective angle of the detector or an integer fraction thereof.
It is to do so.

以下図面を参照して本発明の一実施例を説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第5図に示すように第4世代のCTスキヤナに
おいて、第4図に示したのと同様に被検体からの
散乱X線を除去する目的で、X線源と同期して回
転する例えば重金属薄板製の複数の板状X線しや
へい部からなるコリメータ7を設ける。第5図に
おいてX線検出器8が等間隔に配置されている場
合を考える。隣合う二つの検出器の間の回転中心
0から見た角度間隔をA度、個々の検出器8の有
効角度範囲(回転中心からみて)をB度とする。
すなわち(A−B)度が隣合う二つの検出器8の
間の不感部分の回転中心0からみた角度となる。
そして、前記コリメータ7の隣合う二つの板状X
線しやへい部の回転中心0から見た角度は、均一
で、その角度をC度とする。ここでコリメータ7
の板状X線しやへい部角度ピツチCを、検出器8
の有効角度範囲Bと等しいか、またはその整数分
の一にする。すなわちA>Bであるから、A>B
Cで且つB=nC(但し、n=1.2.3…)が成立す
るようにする。このようにするとBCであるか
ら、検出器8の有効角度範囲に必ず一つまたは整
数個のコリメータ8の板状X線しやへい部が存在
することになる。この様子をわかり易くするため
の円弧状の部分を直線状に展開して第6図に示
す。そこでコリメータ7の板状しやへい部の厚み
による陰影の幅をD(一定)とすれば、検出器8
の有効角度範囲に、常にDまたはnDに相当する
分の陰影が出来ることになる。このコリメータ7
の板状X線しやへい部の厚みによる陰影の割合だ
けX線源3からの直接X線がしやへいされるが、
このしやへいされている割合は前記厚みDまたは
nDに応じて常に一定であるのでこれによる検出
器8の感度の変動は生じない。
As shown in Fig. 5, in the fourth generation CT scanner, a heavy metal thin plate, for example, rotates in synchronization with the A collimator 7 consisting of a plurality of plate-shaped X-ray shield parts made of In FIG. 5, consider the case where the X-ray detectors 8 are arranged at equal intervals. It is assumed that the angular interval between two adjacent detectors when viewed from the rotation center 0 is A degree, and the effective angular range of each detector 8 (as viewed from the rotation center) is B degrees.
That is, (A-B) degrees is the angle seen from the rotation center 0 of the insensitive portion between two adjacent detectors 8.
Then, the two adjacent plate shapes X of the collimator 7
The angle of the line edge portion viewed from the rotation center 0 is uniform and is defined as C degrees. Here collimator 7
The plate-like X-ray beam angle pitch C of
be equal to the effective angular range B, or an integer fraction thereof. That is, since A>B, A>B
C and B=nC (however, n=1.2.3...). In this case, since it is BC, one or an integral number of the plate-like X-ray sensitive portions of the collimator 8 will always exist within the effective angle range of the detector 8. In order to make this situation easier to understand, the arc-shaped portion is expanded into a straight line and shown in FIG. Therefore, if the width of the shadow due to the thickness of the plate-shaped shield part of the collimator 7 is D (constant), then the detector 8
A shadow corresponding to D or nD is always created in the effective angle range of . This collimator 7
Although the direct X-rays from the X-ray source 3 are suppressed by the proportion of the shadow due to the thickness of the plate-like X-ray shielding part,
This shrinkage ratio is the thickness D or
Since it is always constant according to nD, the sensitivity of the detector 8 does not change due to this.

コリメータ7の遮蔽部の角度間隔Cを、検出器
8の有効角度Bと同一またはその整数分の一にす
ると何故コリメータが検出器8の入射面を遮蔽す
る面積がいつも一定になるのかを第7図を用いて
証明する。
If the angular interval C of the shielding part of the collimator 7 is set to be the same as the effective angle B of the detector 8 or an integer fraction thereof, the area covered by the collimator to the incident surface of the detector 8 will always be constant. Prove using a diagram.

第7図には距離Cの等間隔で長さD(ただしD
<C)のX線遮蔽物が一列に並べられている。こ
のときEをE=C−Dとする。
Figure 7 shows the length D (however, D
<C) X-ray shields are arranged in a row. At this time, let E=C−D.

次に、遮蔽物と平行に任意の長さB(ただしB
≧C)の検出器を置くとき、検出器の両端から左
方向へ遮蔽物の左端までの距離を各々T1,T2
とする。
Next, extend an arbitrary length B (where B
≧C) When placing a detector, the distances from both ends of the detector to the left end of the shielding object to the left are T1 and T2, respectively.
shall be.

またB1=B−T2…(1)とする。 Further, it is assumed that B1=B−T2 (1).

今、B=Cのときを考えると、C=T1+B1
よりB1=B−T2からC=T1+B−T2が成
り立つ。これにB=Cを代入するとT1=T2と
なる。これは、B=CのときBの位置に限らずB
に対する距離DとE常に同じであることを意味す
る。次にB=nc(nは自然数)のとき、 nc=T1+B1と(1)式から nc=T1+B−T2が成立する。
Now, considering when B=C, C=T1+B1
Therefore, C=T1+B-T2 holds from B1=B-T2. Substituting B=C into this results in T1=T2. This is not limited to the position of B when B=C.
This means that the distances D and E are always the same. Next, when B=nc (n is a natural number), nc=T1+B-T2 holds from nc=T1+B1 and equation (1).

これにB=ncを代入すれば、やはりT1=T
2となる。
If we substitute B=nc into this, then T1=T
It becomes 2.

従つてB=ncであればよいことがわかる。 Therefore, it can be seen that B=nc is sufficient.

以上の証明は説明の都合上、X線源3又は回転
中心0が無限距離にある場合について言えるが、
検出器8及びコリメータ7を円弧状に配列した場
合にでも第7図のたて線を放射線状に変えること
により上式が成立する。
For convenience of explanation, the above proof can be applied to the case where the X-ray source 3 or the rotation center 0 is at an infinite distance, but
Even when the detector 8 and collimator 7 are arranged in an arc shape, the above equation holds true by changing the vertical lines in FIG. 7 to radial shapes.

このようなコリメータ7を設けることにより、
いわゆる第4世代のCT装置においても散乱線を
除去することが可能となり、散乱線の影響のない
CT画像を得ることが可能となる。これは、第4
図に示す構成が、コリメータ6のしやへい部の間
隔と検出器セル幅とが無関係であるに対し、本発
明では、コリメータ6のしやへい部の角度間隔
を、検出器8の有効角度と同一またはその整数分
の1にしたことにより、コリメータが検出器8の
入射面を遮蔽する面積をいつも一定にすることが
できるので、検出器出力の変動が発生しないとい
う効果を奏しているものである。
By providing such a collimator 7,
It is now possible to remove scattered radiation even in so-called 4th generation CT equipment, and there is no influence of scattered radiation.
It becomes possible to obtain CT images. This is the fourth
In the configuration shown in the figure, the interval between the narrow parts of the collimator 6 and the detector cell width are unrelated, whereas in the present invention, the angular interval between the narrow parts of the collimator 6 is determined by the effective angle of the detector 8. By making it the same as or an integer fraction thereof, the area where the collimator shields the incident surface of the detector 8 can always be kept constant, which has the effect of preventing fluctuations in the detector output. It is.

以上述べたように、本発明によれば、被検体と
検出器の間にX線源と同期して回転するコリメー
タを設けてしかもその陰影による検出器出力の変
動の生じないCT装置を提供することができる。
As described above, the present invention provides a CT apparatus in which a collimator that rotates in synchronization with an X-ray source is provided between a subject and a detector, and the detector output does not fluctuate due to shadows. be able to.

なお、本発明は上記し且つ図面に示す実施例に
のみ限定されることなくその要旨を変更しない範
囲内において種々変形して実施できるものであ
る。
It should be noted that the present invention is not limited to the embodiments described above and shown in the drawings, but can be implemented with various modifications without changing the gist thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はいわゆる第4世代のCT装置の原理構
成を示す図、第2図はいわゆる第3世代のCT装
置の原理構成を示す図、第3図は前記第3世代の
CT装置において用いられているコリメータの構
成の一例を示す図、第4図は前記第4世代のCT
装置にコリメータを設ける場合の問題点を説明す
るための図、第5図は本発明の一実施例の構成を
示す図、第6図は同実施例の原理構成をさらに詳
細に説明するための図、第7図は本発明の一実施
例を説明するためのコリメータと検出器の関係を
示す図である。 3……X線源、7……コリメータ、8……X線
検出器、0……回転中心。
Fig. 1 is a diagram showing the principle configuration of a so-called 4th generation CT device, Fig. 2 is a diagram showing the principle configuration of a so-called 3rd generation CT device, and Fig. 3 is a diagram showing the principle configuration of a so-called 3rd generation CT device.
Figure 4 is a diagram showing an example of the configuration of a collimator used in a CT device.
A diagram for explaining problems when a collimator is provided in the device, FIG. 5 is a diagram showing the configuration of an embodiment of the present invention, and FIG. 6 is a diagram for explaining the principle configuration of the embodiment in more detail. 7 are diagrams showing the relationship between a collimator and a detector for explaining an embodiment of the present invention. 3...X-ray source, 7...Collimator, 8...X-ray detector, 0...Rotation center.

Claims (1)

【特許請求の範囲】[Claims] 1 多数のX線検出器を同一円周上に等間隔で配
列し、これと同心軸上にX線源を回転させ扇状を
呈するX線ビームにより被検体を投影走査する方
式のコンピユータ断層装置において、前記X線源
を指向する如く等間隔で配列した複数の板状X線
遮蔽部からなり且つ前記X線源と一体となつて回
転するコリメータを被検体と前記検出器の間に設
けるとともにこのコリメータの板状X線遮蔽部の
角度間隔を前記検出器の有効角度とほぼ同一また
はそのほぼ整数分の1としたことを特徴とするコ
ンピユータ断層装置。
1 In a computerized tomography system in which a large number of X-ray detectors are arranged at equal intervals on the same circumference, an X-ray source is rotated on a concentric axis, and the subject is projected and scanned with a fan-shaped X-ray beam. A collimator is provided between the subject and the detector, the collimator being composed of a plurality of plate-shaped X-ray shielding parts arranged at equal intervals so as to point toward the X-ray source, and rotating together with the X-ray source. A computer tomography apparatus characterized in that the angular interval of the plate-shaped X-ray shielding parts of the collimator is approximately the same as the effective angle of the detector or approximately an integer fraction thereof.
JP760278A 1978-01-26 1978-01-26 Computer tomographic equipment Granted JPS54100680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP760278A JPS54100680A (en) 1978-01-26 1978-01-26 Computer tomographic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP760278A JPS54100680A (en) 1978-01-26 1978-01-26 Computer tomographic equipment

Publications (2)

Publication Number Publication Date
JPS54100680A JPS54100680A (en) 1979-08-08
JPS6336775B2 true JPS6336775B2 (en) 1988-07-21

Family

ID=11670339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP760278A Granted JPS54100680A (en) 1978-01-26 1978-01-26 Computer tomographic equipment

Country Status (1)

Country Link
JP (1) JPS54100680A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59500587A (en) * 1982-04-15 1984-04-05 エヌ・シー・アール・インターナショナル・インコーポレイテッド memory addressing system
JPH0675570B2 (en) * 1985-09-11 1994-09-28 株式会社東芝 X-ray CT system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107795A (en) * 1976-02-25 1977-09-09 Emi Ltd Radiation photograph

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107795A (en) * 1976-02-25 1977-09-09 Emi Ltd Radiation photograph

Also Published As

Publication number Publication date
JPS54100680A (en) 1979-08-08

Similar Documents

Publication Publication Date Title
US5799057A (en) Collimator and detector for computed tomography systems
US5377250A (en) Reconstruction method for helical scanning computed tomography apparatus with multi-row detector array
EP0428348B1 (en) Helical scanning computed tomography
US5128864A (en) Method for computing tomographic scans
US5291402A (en) Helical scanning computed tomography apparatus
US5270923A (en) Computed tomographic image reconstruction method for helical scanning using interpolation of partial scans for image construction
US5131021A (en) Computed tomography system with control and correction of fan beam position
US4751722A (en) X-ray apparatus
US5757878A (en) Detector arrangement for x-ray tomography system
US6979826B2 (en) Scintillator geometry for enhanced radiation detection and reduced error sensitivity
US4433427A (en) Method and apparatus for examining a body by means of penetrating radiation such as X-rays
US4114041A (en) Radiography
JPH0257B2 (en)
US4555760A (en) Method and computer tomography device for determining a tomographic image with elevated resolution
US4856041A (en) X-ray detector system
Crawford et al. Reconstruction for fan beam with an angular‐dependent displaced center‐of‐rotation
JP2978238B2 (en) CT device
Beattie Tomographic reconstruction from fan beam geometry using Radon's integration method
JPS6336775B2 (en)
GB2137453A (en) Improvements in high energy computed tomography
EP1295560B1 (en) Helical scanning CT-apparatus with multi-row detector array
JP2519249B2 (en) X-ray CT system
GB1562196A (en) Radiography
JPS63122428A (en) Detector for x-ray ct
JPS5832749A (en) Ct apparatus