JPS6336034A - Internal combustion engine of changeable compression ratio - Google Patents

Internal combustion engine of changeable compression ratio

Info

Publication number
JPS6336034A
JPS6336034A JP17821386A JP17821386A JPS6336034A JP S6336034 A JPS6336034 A JP S6336034A JP 17821386 A JP17821386 A JP 17821386A JP 17821386 A JP17821386 A JP 17821386A JP S6336034 A JPS6336034 A JP S6336034A
Authority
JP
Japan
Prior art keywords
cylinder
auxiliary cylinder
internal combustion
combustion engine
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17821386A
Other languages
Japanese (ja)
Inventor
Toshiaki Goto
利昭 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP17821386A priority Critical patent/JPS6336034A/en
Publication of JPS6336034A publication Critical patent/JPS6336034A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable an engine to be put in its optimum operation in accordance with the present operational conditions by providing an auxiliary cylinder which determines an air amount or a mixture amount necessary for one cycle in the internal combustion engine independently of cylinders of the engine and enabling the volume of this auxiliary cylinder to be changed. CONSTITUTION:An auxiliary cylinder axis 7 where an auxiliary cylinder 8 is formed is interposed between intake cylinders 9 and 10 which open at a combustion chamber in a cylinder 4 in which a piston 1 is interposed in a state where reciprocating motion is capable. Also, an ignition plug 11 is provided facing the combustion chamber, and an injector 12 is provided at the auxiliary cylinder 8 so that fuel injection can be executed. And the mixture generated in the auxiliary cylinder 8 is sucked in the combustion chamber according to a descent of the cylinder 4 at the time of an intake stroke when the auxiliary cylinder 8 is opposed to the intake cylinder 9. Also, air is introduced into the auxiliary cylinder 8 when the auxiliary cylinder 8 is opposed to the intake cylinder 10 at the time of a combustion stroke, and then, mixture is generated by injecting fuel from the injector 12.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレジプロあるいはロータリ式内燃機関に関し、
見かけ上圧缶化を可変出来る内燃機関に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a cash register or rotary internal combustion engine,
This invention relates to an internal combustion engine whose apparent pressure can be varied.

〔従来の技術〕[Conventional technology]

内・燃機関の圧縮比は高い程効率が良くなることは知ら
nているが、従来の内燃機関においては例えはガソリン
機関においては10以下になっていた。
It is known that the higher the compression ratio of an internal combustion engine, the better the efficiency, but in conventional internal combustion engines, for example, in gasoline engines, the compression ratio was 10 or less.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の内燃機関においては圧縮比を高くすると断熱圧縮
による温度上昇により自然発火するためあるいはピスト
ンやシリンダの耐熱性、強度の点から問題があった。
In conventional internal combustion engines, when the compression ratio is increased, the temperature rise due to adiabatic compression causes spontaneous combustion, which poses problems in terms of heat resistance and strength of the piston and cylinder.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は高圧縮比の内燃機関における前記の問題点を解
決するために、シリンダの吸気工程において、シリンダ
の最大吸気量より少ない混合気をシリンダに送り込むよ
うにシリンダに独立して吸気量を定める副シリンダを有
し、則シリンダの容積は可変出来るようにしたものであ
る。
In order to solve the above-mentioned problems in internal combustion engines with high compression ratios, the present invention independently determines the intake air amount for each cylinder so that a mixture smaller than the maximum intake air amount of the cylinder is sent into the cylinder during the intake stroke of the cylinder. It has a sub-cylinder, and the volume of the main cylinder can be varied.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図乃至第8図は本発明による4サイクルレジプロ内
燃機関を例にしてそれぞれ吸入下死点、圧縮、上死点、
爆発、下死点、排気、上死点にあるシリンダの工程を示
したものである。
FIGS. 1 to 8 show an example of a 4-cycle repro internal combustion engine according to the present invention, with suction bottom dead center, compression, top dead center,
It shows the process of a cylinder at explosion, bottom dead center, exhaust, and top dead center.

鬼において、1はピストン、2はアーム、3はクランク
軸、4はシリンダ、5は排気弁、6は排気筒、7は副シ
リンダ軸、8は副シリンダ、9゜10は吸入筒、11は
点火プラグ、12はインジェクタである。
In Oni, 1 is a piston, 2 is an arm, 3 is a crankshaft, 4 is a cylinder, 5 is an exhaust valve, 6 is an exhaust pipe, 7 is a sub-cylinder shaft, 8 is a sub-cylinder, 9° 10 is an intake pipe, 11 is The spark plug 12 is an injector.

第1図乃至第8図の工程をみてわかるようにクランク軸
3と副シリンダ軸7の回転数比は2対1で各工程の軸回
転角度は副シリンダ軸4S: クランク軸90’単位に
図示している。金弟1図の吸入工程において、副シリン
ダ8と吸入筒9#i対向し、シリンダ4が下降するにつ
れ、副シリンダ8内の混合気がシリンダ4内に吸入され
る。次に第2図の下死点において、副シリンダ8は吸入
筒9と対向しなくなり図1−1に対してクランク軸3は
90o、副シリンダ軸7は45 回転が進んでいる。
As can be seen from the processes shown in Figures 1 to 8, the rotational speed ratio of the crankshaft 3 and sub-cylinder shaft 7 is 2:1, and the shaft rotation angle in each process is shown in units of sub-cylinder shaft 4S: crankshaft 90'. It shows. In the suction process shown in Figure 1, the sub-cylinder 8 and the suction pipe 9#i face each other, and as the cylinder 4 descends, the air-fuel mixture in the sub-cylinder 8 is sucked into the cylinder 4. Next, at the bottom dead center in FIG. 2, the sub-cylinder 8 no longer faces the suction cylinder 9, and the crankshaft 3 has advanced by 90 degrees and the sub-cylinder shaft 7 has rotated by 45 degrees relative to FIG. 1-1.

第3図は圧縮の工程にあり第2図に対しクランク軸3は
90°、副シリンダ@7は45 回転が進み、さらにピ
ストン1が上昇するにつれ混合気が圧縮さtて行く。第
4図は上死点にあり、点火プラグ11は上死点直前で火
花を飛ばしシリンダ4内の混合気の爆発が始まる。この
時点では第3図に対しクランク軸3は9o’、副シリン
ダ軸7は45°回転が進んでいる。
FIG. 3 shows the compression process, where the crankshaft 3 is rotated 90 degrees with respect to FIG. In FIG. 4, the spark plug 11 is at top dead center, and the spark plug 11 emits a spark just before the top dead center, and the air-fuel mixture in the cylinder 4 begins to explode. At this point, the crankshaft 3 has rotated 9o' and the sub-cylinder shaft 7 has rotated 45 degrees with respect to FIG.

第5図は爆発工程にあり、このとき削シリンダ8は吸入
筒10と対向し副シリンダ8内へ空気が吸入される。こ
の時点では図1−4に対しクランク軸3は90°’、 
IIJシリンダ軸7は45°回転が進んでいる。
FIG. 5 shows the explosion process, at which time the cutting cylinder 8 faces the suction cylinder 10 and air is sucked into the sub cylinder 8. At this point, the crankshaft 3 is 90°' with respect to Figure 1-4.
The IIJ cylinder shaft 7 has progressed through 45 degrees of rotation.

第6図は下死点の工程にあり、このとき排気弁5が開き
シリンダ4内の排気が始まる。この時点では第5図に対
しクランク軸3は90;副シリンダ軸7は45 回転が
進んでいる。
FIG. 6 shows the process at the bottom dead center, at which time the exhaust valve 5 opens and the exhaust inside the cylinder 4 begins. At this point, the crankshaft 3 has completed 90 revolutions and the sub-cylinder shaft 7 has completed 45 revolutions relative to FIG.

第7図は排気工程にあり、ピストン1が上昇するにつれ
燃焼ガスが排気弁5を通り排気筒6へ排気される。この
時点で副シリンダ8内にインジェクタ12よりガソリン
が噴射され副シリンダ8内は混合気で充満さnる。又第
6図に対しクランク軸3は90、副シリンダ軸7は45
 進んでいる。
FIG. 7 shows the exhaust process, and as the piston 1 rises, combustion gas passes through the exhaust valve 5 and is exhausted to the exhaust pipe 6. At this point, gasoline is injected into the auxiliary cylinder 8 from the injector 12, and the inside of the auxiliary cylinder 8 is filled with the air-fuel mixture. Also, in relation to Fig. 6, the crankshaft 3 is 90, and the sub cylinder shaft 7 is 45.
It's progressing.

第8図は上死点の工程にあり、この時点で排気弁5は閉
じさらにクランク軸3の回転が進めば第1図の工程に進
み4サイクルエンジンの全工程が終了する。又第8図は
第7図に対しクランク軸3は90;副シリンダ軸7は4
5° 回転が進んでいる。今副シリンダ8内へ吸入され
る空気圧を大気圧pとしその容積をVとし、シリンダ4
の下死点時容積をv8 、上死点圧縮圧をV、とすると
、圧縮工程上死点点火直前の圧縮圧p0は、v/V、:
吸入空気率 従来の内燃機関の圧縮比eはおよそ10であるので本発
明の内燃機関の圧縮比ε=100とすると同等の圧縮圧
p0をえるためにはv / V 、を従来の内燃機関の
1/10にすれば良い。すなわち従来の内燃機関の吸入
空気量(副シリンダ8の吸入空気量に相当)v=V、で
あるが本発明ではシリンダの雇人吸気量(ピストン1の
下死点に相当する吸気量)のおよそ1/l Oの混合気
を副シリンダ8より送り込むようにすることにより従来
の上死点圧縮圧を可能をこしかつ爆発工程においては上
死点から下死点までの膨張は圧縮比の100に相当し1
00倍となり下死点における排気ガスは充分に膨張しき
っておりほとんどエネルギを有さないため効率のよい内
燃機関をえることが出来る。
FIG. 8 shows the process at top dead center, and at this point the exhaust valve 5 is closed and if the rotation of the crankshaft 3 continues, the process proceeds to the process shown in FIG. 1 and all processes of the four-cycle engine are completed. Also, in Fig. 8, compared to Fig. 7, the crankshaft 3 is 90; the auxiliary cylinder shaft 7 is 4.
5° rotation is progressing. The air pressure now sucked into the sub-cylinder 8 is atmospheric pressure p, its volume is V, and the cylinder 4
If the volume at bottom dead center of is v8 and the top dead center compression pressure is V, then the compression pressure p0 just before top dead center ignition in the compression process is v/V:
Intake Air Rate Since the compression ratio e of a conventional internal combustion engine is approximately 10, if the compression ratio ε of the internal combustion engine of the present invention is set to 100, in order to obtain the equivalent compression pressure p0, v / V, It should be 1/10. In other words, in the conventional internal combustion engine, the intake air amount (corresponding to the intake air amount of the auxiliary cylinder 8) v = V, but in the present invention, the intake air amount of the cylinder (the intake air amount corresponding to the bottom dead center of the piston 1) is By feeding a mixture of approximately 1/l O from the sub cylinder 8, the conventional top dead center compression pressure is made possible, and during the explosion process, the expansion from top dead center to bottom dead center is 100% of the compression ratio. equivalent to 1
00 times, the exhaust gas at the bottom dead center has fully expanded and has almost no energy, making it possible to obtain a highly efficient internal combustion engine.

内燃機関は、その回転数、負荷、燃料の種類温度により
、萌記上死点圧縮圧を可変出来ることが内燃機関の最適
制御の点から好ましい。従来の内燃機関ではこの上死点
圧縮圧見かけ上の圧縮比を可変出来ない欠点があった。
From the viewpoint of optimal control of the internal combustion engine, it is preferable that the top dead center compression pressure of the internal combustion engine can be varied depending on the rotational speed, load, and fuel type and temperature. Conventional internal combustion engines have the disadvantage that this top dead center compression pressure and apparent compression ratio cannot be varied.

本発明のも一つの点はこの上死点圧縮圧を可変出来る点
ばあり次に説明する。
Another feature of the present invention is that this top dead center compression pressure can be varied, which will be explained next.

第9図、第10図は副シリンダ軸7の構造断面図を示し
、8は副シリンダ、13は副シリンダ容量可変ピストン
(以下可変ピストンと言う)、14は油圧シリンダ、1
5は油圧電である。
9 and 10 show structural cross-sectional views of the sub-cylinder shaft 7, 8 is a sub-cylinder, 13 is a sub-cylinder variable capacity piston (hereinafter referred to as variable piston), 14 is a hydraulic cylinder, 1
5 is a hydraulic electric.

第9図においては油圧シリンダ内に油圧により油が送り
込まれていないため則シリンダ8の容積は充分大きい1 第10図は油圧シリンダに油圧により油が送り込まれて
おり、到シリンダ8内に可変ピストン13がはり出し、
副シリンダ8の容積は小さくなっている。以上のように
油圧により可変ピストン13を副シリンダ8内にはり出
させることにより副シリンダ8内の88を可変すること
が出来る。
In Fig. 9, oil is not pumped into the hydraulic cylinder by hydraulic pressure, so the volume of regular cylinder 8 is sufficiently large.In Fig. 10, oil is pumped into the hydraulic cylinder by hydraulic pressure, and when the variable piston is inserted into cylinder 8. 13 sticks out,
The volume of the sub cylinder 8 is small. As described above, by causing the variable piston 13 to protrude into the sub-cylinder 8 using hydraulic pressure, the position 88 in the sub-cylinder 8 can be varied.

尚本発明の実施例をレジプロ内燃機関により説明したが
、ロータリ内燃機関においても同様である。
Although the embodiments of the present invention have been described using a register internal combustion engine, the same applies to a rotary internal combustion engine.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は高圧縮比の内燃機関の高
効率の利点を話し、ピストン、シリンダに耐熱性、耐機
械的強度の特別な配慮の不要な内燃機関を提供出来かつ
最適制御しやすい前記吸入突気率V/Vl  (見かけ
の圧縮比)を可変出来るため内燃機関の冬作に合った最
適な運転がOT能である。
As explained above, the present invention takes advantage of the high efficiency of an internal combustion engine with a high compression ratio, provides an internal combustion engine that does not require special consideration of heat resistance and mechanical strength of the piston and cylinder, and can be controlled optimally. Since the intake thrust ratio V/Vl (apparent compression ratio) can be easily varied, optimum operation suitable for winter cropping of the internal combustion engine is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第8図は本発明の4サイクル内燃機関の吸入
、下死点、圧縮、上死点、爆発、下死点、排気上死点の
工程をそれぞれ示したものである。 1・・・・・・ピストン、3・・・・・・クランク軸、
4・・・・・・シリンダ、5・・・・・・排気弁、7・
・・・・・副シリンダ軸、8・・・・・・副シリンダ、 第9図、第10図は則シリンダ容槓可変副シリンダ軸の
構造断面図を示す。 7・・・・・・副シリンダ軸、8・・・・・・副シリン
ダ、13・・・・・・副シリンダ容檀af変ピストン、
14・・・・・・油圧シリンダ、15・・・・・・油圧
電。
FIGS. 1 to 8 show the steps of intake, bottom dead center, compression, top dead center, explosion, bottom dead center, and exhaust top dead center of the four-cycle internal combustion engine of the present invention, respectively. 1...Piston, 3...Crankshaft,
4...Cylinder, 5...Exhaust valve, 7.
...Sub-cylinder shaft, 8...Sub-cylinder, Figures 9 and 10 show structural cross-sectional views of the variable cylinder displacement sub-cylinder shaft. 7...Sub-cylinder shaft, 8...Sub-cylinder, 13...Sub-cylinder AF variable piston,
14...Hydraulic cylinder, 15...Hydraulic electric.

Claims (1)

【特許請求の範囲】[Claims] レジプロあるいはロータリ式内燃機関において、内燃機
関の1サイクルに必要な空気あるいは混合気量を、該内
燃機関のシリンダに独立して定める副シリンダを有し、
該副シリンダの容積が可変出来る圧縮比可変内燃機関。
In a registration pro or rotary internal combustion engine, the cylinder of the internal combustion engine has an auxiliary cylinder that independently determines the amount of air or air mixture required for one cycle of the internal combustion engine,
A variable compression ratio internal combustion engine in which the volume of the auxiliary cylinder can be varied.
JP17821386A 1986-07-28 1986-07-28 Internal combustion engine of changeable compression ratio Pending JPS6336034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17821386A JPS6336034A (en) 1986-07-28 1986-07-28 Internal combustion engine of changeable compression ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17821386A JPS6336034A (en) 1986-07-28 1986-07-28 Internal combustion engine of changeable compression ratio

Publications (1)

Publication Number Publication Date
JPS6336034A true JPS6336034A (en) 1988-02-16

Family

ID=16044559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17821386A Pending JPS6336034A (en) 1986-07-28 1986-07-28 Internal combustion engine of changeable compression ratio

Country Status (1)

Country Link
JP (1) JPS6336034A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962432A (en) * 1988-04-30 1990-10-09 Fuji Photo Film Co., Ltd. Selective retrieval of data from microfilm images of different forms by reading a memory index form cord (bar code) recorded on each image frame

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962432A (en) * 1988-04-30 1990-10-09 Fuji Photo Film Co., Ltd. Selective retrieval of data from microfilm images of different forms by reading a memory index form cord (bar code) recorded on each image frame

Similar Documents

Publication Publication Date Title
US3808818A (en) Dual combustion engine and cycle
WO2005121522A1 (en) Independent combustion chamber-type internal combustion engine
CA2036035A1 (en) Combustion engine for hydrogen
US4169434A (en) Internal combustion engine with stepped piston supercharger
CN110778394A (en) Energy-saving four-stroke internal combustion engine
KR910010039A (en) 2-cycle engine with variable valve timing
US4307687A (en) Internal combustion engines
CA1209925A (en) Internal combustion engine and operating cycle
JP4286419B2 (en) Piston type internal combustion engine
US4033317A (en) Internal combustion engines
US8844496B2 (en) Internal combustion engine with separate combustion chamber and a method to achieve modified and controlled autoignition in said chamber
US20020129777A1 (en) Two stroke internal combustion engine
US4106445A (en) Reciprocating piston machine with complete combustion system
US4862841A (en) Internal combustion engine
JPS6336034A (en) Internal combustion engine of changeable compression ratio
CN211144636U (en) Energy-saving four-stroke internal combustion engine
WO1999047804A1 (en) High power density, diesel engine
JPS59113239A (en) Double expansion type internal-combustion engine
JPH08261004A (en) Spray water injection type stroke separation engine
JP2799917B2 (en) 2-4 cycle switching turbo compound engine
JP2002054457A (en) Intermittent fuel injection type rotary internal combustion engine
JP2002349268A (en) Cylinder injection two-cycle gasoline engle with supercharger
RU2056510C1 (en) Method of operation of two-stroke internal combustion engine
USRE22863E (en) Internal-combustion engine
RU2078963C1 (en) Paired two-four stroke engine