JPS6336002B2 - - Google Patents

Info

Publication number
JPS6336002B2
JPS6336002B2 JP53078612A JP7861278A JPS6336002B2 JP S6336002 B2 JPS6336002 B2 JP S6336002B2 JP 53078612 A JP53078612 A JP 53078612A JP 7861278 A JP7861278 A JP 7861278A JP S6336002 B2 JPS6336002 B2 JP S6336002B2
Authority
JP
Japan
Prior art keywords
dumping
vehicle
stockyard
unmanned vehicle
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53078612A
Other languages
Japanese (ja)
Other versions
JPS556615A (en
Inventor
Hiroshi Wakabayashi
Hiromasa Takamatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP7861278A priority Critical patent/JPS556615A/en
Publication of JPS556615A publication Critical patent/JPS556615A/en
Publication of JPS6336002B2 publication Critical patent/JPS6336002B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【発明の詳細な説明】 本発明は無人操縦による運搬車の積載物を予じ
め決められた範囲に決められた順序に従つて自動
的に排出する積載物運搬方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for automatically discharging a load from an unmanned transport vehicle to a predetermined range in a predetermined order.

第1図に作業形態を示す。1は積載物のストツ
クヤードであり、運搬車2は矢印に添つてR→P
→Q→Rと走査する。Pは切返し点でP→Qは後
進、Qでダンプをする。
Figure 1 shows the working configuration. 1 is the storage yard for the loaded material, and the transport vehicle 2 moves from R to P along the arrow.
→ Scan → Q → R. P is the turning point, P→Q is the reverse, and Q is the dump.

ストツクヤード1にダンプする順序はQ11
Q12……Q10+n、Q21→Q22……Q20+n……Qmn
となる。
The order of dumping to stockyard 1 is Q 11
Q 12 ...Q 10 +n, Q 21 →Q 22 ...Q 20 +n...Qmn
becomes.

従つてそれにつれてダンプ位置も順次移動しダ
ンプ位置の列が変ると(Q10+n→Q21など)当
然切返し点Pを左側(P1→P2など)へ移る。
Therefore, the dump position also moves sequentially, and when the row of dump positions changes (Q 10 +n→Q 21, etc.), the turning point P naturally moves to the left (P 1 →P 2, etc.).

なお積載物は一般に砂利・土砂破石状のもので
ある。
The loaded material is generally gravel, earth, and crushed stones.

上記作業を無人車でならす場合次の点が問題に
なる。
When performing the above work using unmanned vehicles, the following issues arise.

(1) 積載物の一回当りの量にばらつきが大きい。
積載物の含水比などのばらつきにより排出され
た山の形状が一定でない。各無人車の性能のば
らつきなどにより第2図に示したようにコンパ
クトに整理された形に運搬物の山を形成するこ
とが困難である。
(1) There is a large variation in the amount of loaded material per load.
The shape of the discharged pile is not constant due to variations in the moisture content of the loaded material. Due to variations in the performance of each unmanned vehicle, it is difficult to form a pile of items to be transported in a compact and organized manner as shown in FIG. 2.

(2) 積込・運搬・排土までのシステムに複数台の
無人車が投入されるのが普通であるが、この場
合各無人車に各場合のダンプ位置を自動的に指
令するのが難しい。
(2) Usually, multiple unmanned vehicles are used in the system for loading, transporting, and unloading, but in this case, it is difficult to automatically command each unmanned vehicle to the dump position in each case. .

以上を考慮して無人車による上記作業の方法は
第3図に示すようなものであつた。
Taking the above into consideration, the method for carrying out the above work using an unmanned vehicle was as shown in Figure 3.

無人車は低周波定電流を通した誘導ケーブル4
によつて誘導され、第3図のように励振電源31
につながつている走路3、ストツクヤード1に誘
導ケーブル4が設置されている。
The unmanned car uses an induction cable 4 that passes a low-frequency constant current.
is induced by the excitation power source 31 as shown in FIG.
A guide cable 4 is installed in a running track 3 and a stockyard 1 that are connected to the railway.

ストツクヤード1列目にダンプする時には最初
切換え接点11がON他の切換接点12,13,
14,15,21,22,23,24,25が
OFFのモード(電流はR→P→U→R)なの
で、無人車2は矢印にそつてPまで誘導される。
When dumping to the first row of the stockyard, switching contact 11 is first turned ON and other switching contacts 12, 13,
14, 15, 21, 22, 23, 24, 25
Since the mode is OFF (the current is R→P→U→R), the unmanned vehicle 2 is guided to P along the arrow.

また誘導ケーブル4に平行に走路3にそつて指
令ケーブル10が敷設され切返し点P附近に車両
感知器5および地上指令装置6が取付けられてい
る。無人車2には一定の周波数の信号波を出す発
信器が装着されており受信器5がそれをキヤツチ
すると発信器6が車両停止後後進の指令電磁波を
発信し受信器2がそれを受信して、停止後後進を
始める。一方発信器6は誘導ケーブル4の切換接
点と連がつているので同時に切換え接点11,1
2,13がON、切換え接点14がOFFのモード
に切かえる。従つて無人車2はP、切換え接点
12、Qに沿つて後進する。
Further, a command cable 10 is laid along the runway 3 parallel to the guide cable 4, and a vehicle sensor 5 and a ground command device 6 are installed near the turning point P. The unmanned vehicle 2 is equipped with a transmitter that emits a signal wave of a certain frequency, and when the receiver 5 catches it, the transmitter 6 transmits a command electromagnetic wave to stop the vehicle and move backward, and the receiver 2 receives it. then stop and start moving backwards. On the other hand, since the transmitter 6 is connected to the switching contact of the induction cable 4, the switching contacts 11 and 1 are connected at the same time.
2 and 13 are ON, and the switching contact 14 is OFF. Therefore, the unmanned vehicle 2 moves backward along P, the switching contact 12, and Q.

コース外に設けられた操作盤30には監視人が
おり、ダンプすべき位置に到達した時ダンプ指令
発信器7のスイツチを入れるダンプ指令の信号電
磁波が発信されそれを無人車2がキヤツチして停
止→ベツセル上げ→ベツセル下げ→発進までの動
作を車両側のシーケンス制御により自動的に行わ
れる。一方発信器7と接続された切換器8が作動
し切換え接点13,14がON切換え接点11,
12がOFFのモード(電流はR→T→S→V
→R′)に切りかわり、無人車2はQ→切換え接
点14→V→R′に沿つて進行する。無人車2が
W点にくるとP点と同様車両感知器5′が感知し、
地上指令装置6′が無人車2に指令信号を送ると
ともに誘導ケーブル切替えをモードにもどしス
トツクヤード侵入にそなえる。
There is a supervisor at the operation panel 30 installed outside the course, and when the dumping position is reached, the dumping command transmitter 7 is switched on. A dumping command signal electromagnetic wave is transmitted, and the unmanned vehicle 2 catches it. The sequence of operations from stopping, raising the vehicle, lowering the vehicle, and starting is automatically performed by sequence control on the vehicle side. On the other hand, the switch 8 connected to the transmitter 7 is activated, and the switching contacts 13 and 14 are turned ON.
12 is OFF mode (current is R→T→S→V
→R'), and the unmanned vehicle 2 moves along Q→switching contact 14→V→R'. When the unmanned vehicle 2 comes to point W, the vehicle sensor 5' senses it as at point P.
The ground command device 6' sends a command signal to the unmanned vehicle 2 and returns the guidance cable switching mode to the mode to prepare for intrusion into the stockyard.

また、ダンプ位置がストツクヤード1列目いつ
ぱいまでくると監視人が切換器9のスイツチボタ
ンを押す。切換え接点15が入り同時に2列目の
リレーに切りかわる。モード切換え接点21…
…25は各々切換え接点11〜15に相当し、切
換え接点12,15は常時入つたままの状態、切
換え接点11,13,14は常時切れた状態であ
る。
Further, when the dump position reaches the full capacity of the first row of the stockyard, the supervisor presses the switch button of the changeover device 9. When the switching contact 15 is turned on, the relay is switched to the second row relay at the same time. Mode switching contact 21...
...25 respectively correspond to the switching contacts 11 to 15, the switching contacts 12 and 15 are always closed, and the switching contacts 11, 13, and 14 are always closed.

このような従来の方法ではダンプ時とダンプ位
置の列切換時に有人操作を必要としていた。
Such conventional methods require manned operations during dumping and when switching rows of dumping positions.

本発明は上記の事情に鑑みなされたものであつ
て、その目的とするところは従来の有人に頼らね
ばならなかつたストツクヤードでのダンプ作業が
無人ででき、人件費の節減と単調作業からの解
放、有人操作による操作ミス防止を図ることがで
きる積載物運搬方法を提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to enable unmanned dumping operations in stockyards, which conventionally required manned personnel, to reduce labor costs and relieve monotonous work. An object of the present invention is to provide a method for transporting a loaded object that can prevent operational errors caused by manned operation.

以下、本発明を第4図以下を参照して説明す
る。
Hereinafter, the present invention will be explained with reference to FIG. 4 and subsequent figures.

第4図に示す誘導ケーブル4の回路は第3図に
示す従来方法における誘導ケーブルの回路と同じ
であるがストツクヤード1には別系統の励磁電源
41を持つケーブル40を埋設しこのケーブル4
0に一定の低周波定電流を流す。
The circuit of the induction cable 4 shown in FIG. 4 is the same as the circuit of the induction cable in the conventional method shown in FIG.
0, a constant low frequency constant current is applied.

また、無人車2には後部にセンサ50、中央部
にはセンサ51およびベツセル54のヒンジピン
52に取付けられたリミツトスイツチ55が追加
される。
Further, the unmanned vehicle 2 is additionally provided with a sensor 50 at the rear, a sensor 51 at the center, and a limit switch 55 attached to the hinge pin 52 of the vessel 54.

いま無人車2がP→Qに沿つて後進するとまず
車載システムAのセンサ50がケーブル40の周
辺に発生した磁界を感応しフイルタ56、増巾器
57を経てフリツプフロツプ60のS端子へ入り
リセツトされる。62は車速制御装置のフリツプ
フロツプで後進時高レベルとなる。
Now, when the unmanned vehicle 2 moves backward along the direction P→Q, the sensor 50 of the in-vehicle system A senses the magnetic field generated around the cable 40, passes through the filter 56 and the amplifier 57, and enters the S terminal of the flip-flop 60, where it is reset. Ru. Reference numeral 62 is a flip-flop of the vehicle speed control device, which becomes high level when traveling in reverse.

したがつて、ナンド回路63の出力はこの時高
レベルになり、発信器65より予め設定された電
磁波信号が発信される。
Therefore, the output of the NAND circuit 63 becomes high level at this time, and the transmitter 65 transmits a preset electromagnetic wave signal.

近くの地上に設置された地上装置Bの受信器の
センサ42がこれをキヤツチし、フイルタ43、
増巾器44を経て誘導ケーブル4のモード→モ
ードの切換器45を作動させる。
The sensor 42 of the receiver of the ground equipment B installed on the ground nearby catches this, and the filter 43,
The mode changer 45 of the induction cable 4 is activated via the amplifier 44.

また、次のケーブル40の磁界をセンサ51が
感応するとフイルタ58増巾器59を経てフリツ
プフロツプ60をリセツトさせる。
Further, when the sensor 51 senses the magnetic field of the next cable 40, it resets the flip-flop 60 via the filter 58 and amplifier 59.

ストツクヤードの列で始めてのダンプの場合
(第1図Q11,Q21……Qm1に相当)無人車2はそ
のまま後進をつづけケーブル40のB−B′部の
磁界をセンサ50が感知し、前述の経路をたどつ
て再びフリツプフロツプ60をセツトさせる。6
1は2進2段カウンタでフリツプフロツプ60の
高レベルで2段目のカウンタ出力が高レベルにな
り、フリツプフロツプ62が同じく高レベルなの
でナンド回路64の出力が発生しダンプシーケン
ス制御のリレー66を駆動させ、従つて停止→ダ
ンプ→発進までの一連動作が自動的に行われる。
In the case of the first dump in the stockyard row (corresponding to Q11 , Q21 ... Qm1 in Fig. 1), the unmanned vehicle 2 continues to move backward, and the sensor 50 detects the magnetic field at the B-B' section of the cable 40. The flip-flop 60 is set again by following the above-mentioned route. 6
1 is a binary two-stage counter, and when the flip-flop 60 is at a high level, the second-stage counter output becomes a high level, and since the flip-flop 62 is also at a high level, an output from a NAND circuit 64 is generated, which drives a dump sequence control relay 66. Therefore, a series of operations from stopping to dumping to starting is automatically performed.

一方ストツクヤードの列で始めてのダンプでな
い場合(第1図でQ11,Q21……Qm1以外の場合)
は無人車の後方(進行方向)に先行車の積載物の
山Yがある。
On the other hand, if it is not the first dump in the stockyard row (Q 11 , Q 21 ... other than Qm 1 in Figure 1)
There is a pile Y of the cargo of the preceding vehicle behind the unmanned vehicle (in the direction of travel).

無人車2の後部には測定手段Cの超音波センサ
70が装着されている。
An ultrasonic sensor 70 as measuring means C is attached to the rear of the unmanned vehicle 2.

基準パルス発生器71のパルスが変調増巾器7
2を経てスピーカ73より発生し積載物の山Yに
当つて反射した超音波がセンサ74でキヤツチさ
れ75で増巾検波され、距離調整ゲート76で与
えられたゲート時間での入力の積分などの処理を
処理回路77で行いダンプシーケンス制御のリレ
ー66を作動させる。
The pulses of the reference pulse generator 71 are modulated by the amplifier 7
2, the ultrasonic waves generated from the speaker 73 and reflected by the pile Y of the loaded object are caught by the sensor 74, amplified detection is carried out by 75, and the distance adjustment gate 76 integrates the input at a given gate time. The processing is performed by the processing circuit 77 and the dump sequence control relay 66 is activated.

距離調整ゲート76は予じめ積載物の状態など
により最適な距離Lを定めておけば後は自動的に
その状態でダンプができる。
By using the distance adjustment gate 76, if the optimal distance L is determined in advance according to the condition of the loaded object, dumping can be automatically performed in that condition.

次に、ダンプ位置がストツクヤード最端部へき
た場合、ケーブル40のA−A′部がダンプ時前
後軸間に来るようにしておけば、センサ51はケ
ーブル40からの磁界をキヤツチしフイルタ5
8、増巾器59を経てナンド回路67の入力端子
が高レベルとなる。
Next, when the dumping position reaches the end of the stockyard, if the A-A' section of the cable 40 is placed between the front and rear axles during dumping, the sensor 51 will catch the magnetic field from the cable 40 and the filter 5
8. The input terminal of the NAND circuit 67 becomes high level through the amplifier 59.

また、リミツトスイツチ55からの出力はダン
プ中は高レベルなので(ヒンジピン52はベツセ
ル54と一諸に回転するので車体側との相対位置
がずれてリミツトスイツチ55が入る)ナンド回
路67の出力Hレベルになり、発信器68より予
じめ設定された電磁波信号が発信され、センサ4
2が受信し、同調・検波・増巾しモードの切換
器46が入り、後続車は次の列よりダンプができ
るよう誘導ケーブル4が切換えられたことにな
る。なお、当然のことながらストツクヤード1が
不規則な形状をしていてもケーブル40をそれに
沿つて敷設すれば十分適応できる。
In addition, since the output from the limit switch 55 is at a high level during dumping (the hinge pin 52 rotates together with the vehicle body 54, the relative position with respect to the vehicle body is shifted and the limit switch 55 is turned on), the output from the NAND circuit 67 becomes H level. , a preset electromagnetic wave signal is transmitted from the transmitter 68, and the sensor 4
2 receives the signal, the tuning/detection/amplification mode switch 46 is turned on, and the guiding cable 4 is switched so that the following vehicle can dump from the next row. Of course, even if the stockyard 1 has an irregular shape, the cable 40 can be laid along the irregular shape.

本発明は上記のように、ストツクヤード1を列
と行とで区分しこのストツクヤード1に設けられ
た誘導ケーブル4の切換え接点の切換えにより無
人車2を第1列の1行目からn行目、第2列の1
行目からn行目以下第3列、第4列……と順次走
行させて積載物を運搬する積載物運搬方法におい
て、前記ストツクヤード1の周囲に励磁電源41
を有するループ状のケーブル40を埋設し、ケー
ブル40に低周波電流を流し発生する磁界を、無
人車2が搭載した、検出部と論理回路と発信部と
を備えた車載システムAで検出し、この車載シス
テムAからの信号を地上装置Bで受信することに
より、無人車2の折返し点Pからダンプ点Qへま
での後進、ストツクヤード1の列で始めてのダン
プ操作及び無人車2の停止→ダンプ→発進の一連
の動作、ダンプ点Qがストツクヤード1の最端部
へきた時のダンプ操作及び後続車が次の列よりダ
ンプできるような誘導ケーブル4の切換えを行
い、また、ダンプ列の2回目よりは車載の測定手
段Cにより先行車のダンプされた積載物の山と無
人車2との間隔を自動測定しダンプ位置を決める
ようにしたことを特徴とする運搬方法である。
As described above, the present invention divides the stockyard 1 into columns and rows, and by switching the switching contacts of the induction cable 4 provided in the stockyard 1, the unmanned vehicle 2 is moved from the 1st row of the 1st column to the nth row. 1 in the second column
In a method for transporting a loaded object in which the loaded object is transported by sequentially traveling from the nth row to the third column, the fourth column, etc., an excitation power source 41 is provided around the stockyard 1.
A loop-shaped cable 40 having the following characteristics is buried, a low frequency current is passed through the cable 40, and the generated magnetic field is detected by an on-vehicle system A equipped with a detection section, a logic circuit, and a transmission section, which is mounted on the unmanned vehicle 2, By receiving this signal from the in-vehicle system A at the ground device B, the unmanned vehicle 2 moves backward from the turning point P to the dumping point Q, performs the first dump operation in the stockyard 1 row, and stops the unmanned vehicle 2 → dumps. →A series of operations for starting, dumping operations when the dumping point Q reaches the end of the stockyard 1, switching of the guidance cable 4 so that the following vehicle can dump from the next row, and the second dumping row This transportation method is characterized in that the dumping position is determined by automatically measuring the distance between the dumped load pile of the preceding vehicle and the unmanned vehicle 2 using on-vehicle measuring means C.

したがつて、ストツクヤード1の列で始めてダ
ンプする場合無人車2はそのまま後進をつづけ、
ケーブル40の磁界を無人車2の車載システムA
が感知し停止→ダンプ→発進までの一連動作を行
うし、またダンプ位置がストツクヤード最端部へ
きた場合、ケーブル40からの磁界を無人車2の
車載システムAが感知し切替信号を地上装置Bに
送り後続車は次の列よりダンプできるように誘導
ケーブル4が切換えられる。
Therefore, when dumping for the first time in stockyard 1 row, unmanned vehicle 2 continues to move backwards,
The magnetic field of the cable 40 is transferred to the in-vehicle system A of the unmanned vehicle 2.
When the dump position reaches the end of the stockyard, the on-vehicle system A of the unmanned vehicle 2 senses the magnetic field from the cable 40 and sends a switching signal to the ground equipment B. The guiding cable 4 is switched so that the following cars can dump from the next row.

このように誘導ケーブル4とは別系列のケーブ
ル40をもつことにより無人車2の車載システム
Aを介し切替信号を地上装置Bへ送れるようにな
り、この地上装置Bをストツクヤード1から離れ
た位置に設置でき敷設上あるいはシステムの信頼
性上有利になる。
By having the cable 40 of a different series from the induction cable 4 in this way, it becomes possible to send a switching signal to the ground equipment B via the on-vehicle system A of the unmanned vehicle 2, and this ground equipment B can be moved to a location away from the stockyard 1. This is advantageous in terms of installation and system reliability.

また位置設定にケーブル40を採用しているた
めストツクヤード1の形状が不規則でも適用可能
である。
Furthermore, since the cable 40 is used for position setting, it can be applied even if the shape of the stockyard 1 is irregular.

また、列方向の位置制御に車載の測定手段Cに
より測距を採用したことにより、排土の山との距
離を直接測つてダンプすれば前回までダンプされ
た排土量の影響が加算されるのでダンプ点固定の
場合に比べ列当りの排土量のバラツキが減少する
(例えば無人車の積載量が基準より少ない場合、
ダンプ1回当りの排土の法面せり出しが小さくな
るので、次の車は基準より後でダンプすることに
なり、列当りのダンプ回数は基準より増えること
になる。) また、排土の山で満たされるストツクヤード1
には地上装置を敷設する余地はないが、車載セン
サを用いることにより埋設された列方向の誘導ケ
ーブル4の他、地上装置なしにダンプ作業を順次
行なうことができる。
In addition, by adopting distance measurement using on-vehicle measurement means C for position control in the row direction, if the distance to the pile of dumped soil is directly measured and dumped, the influence of the amount of dumped soil dumped up to the previous time can be added. Therefore, the variation in the amount of soil removed per row is reduced compared to the case where the dumping point is fixed (for example, if the loading capacity of an unmanned vehicle is less than the standard,
Since the slope protrusion of the earth removed per dumping becomes smaller, the next car will dump later than the standard, and the number of dumps per row will increase from the standard. ) In addition, the stockyard 1 is filled with piles of excavated soil.
There is no room for ground equipment, but by using on-vehicle sensors, dumping operations can be performed sequentially without ground equipment in addition to the buried column-direction guidance cables 4.

このように、従来の有人に頼らねばならなかつ
たストツクヤードでのダンプ作業が無人ででき、
人件費の節減と単調作業からの解放、有人操作に
よる操作ミス防止を図ることができる。
In this way, dumping operations at stockyards that previously had to rely on manned work can now be done unmanned.
It is possible to reduce labor costs, relieve monotonous work, and prevent operational errors due to manned operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の積載物運搬方法の作業形態の説
明図、第2図は積載物の山の正面図、第3図は従
来の積載物運搬方法における誘導ケーブルの構成
説明図、第4図は本発明方法における誘導ケーブ
ルの構成説明図、第5図は無人車の側面図、第6
図は制御回路図、第7図は無人車とダンプした積
載物との説明図、第8図は間隔測定回路図であ
る。
Fig. 1 is an explanatory diagram of the working form of a conventional method for transporting a loaded object, Fig. 2 is a front view of a pile of loaded objects, Fig. 3 is an explanatory diagram of the configuration of the induction cable in the conventional method for transporting a loaded object, and Fig. 4 is an explanatory diagram of the structure of the induction cable in the method of the present invention, FIG. 5 is a side view of the unmanned vehicle, and FIG.
The figure is a control circuit diagram, FIG. 7 is an explanatory diagram of an unmanned vehicle and a dumped load, and FIG. 8 is a distance measuring circuit diagram.

Claims (1)

【特許請求の範囲】[Claims] 1 ストツクヤード1を列と行とで区分しこのス
トツクヤード1に設けられた誘導ケーブル4の切
換え接点の切換えにより無人車2を第1列の1行
目からn行目、第2列の1行目からn行目以下第
3列、第4列……と順次走行させて積載物を運搬
する積載物運搬方法において、前記ストツクヤー
ド1の周囲に励磁電源41を有するループ状のケ
ーブル40を埋設し、ケーブル40に低周波電流
を流し発生する磁界を無人車2が搭載した、検出
部と論理回路と発信部とを備えた車載システムA
で検出し、この車載システムAからの信号を地上
装置Bで受信することにより、無人車2の折返し
点Pからダンプ点Qへまでの後進、ストツクヤー
ド1の列で始めてのダンプ操作及び無人車2の停
止→ダンプ→発進の一連の動作、ダンプ点Qがス
トツクヤード1の最端部へきた時のダンプ操作及
び後続車が次の列よりダンプできるような誘導ケ
ーブル4の切換えを行い、また、ダンプ列の2回
目よりは車載の測定手段Cにより先行車のダンプ
された積載物の山と無人車2との間隔を自動測定
しダンプ位置を決めるようにしたことを特徴とす
る積載物運搬方法。
1 The stockyard 1 is divided into columns and rows, and by switching the switching contacts of the induction cable 4 provided in the stockyard 1, the unmanned vehicle 2 is moved to the 1st to nth rows of the 1st column and the 1st row of the 2nd column. In the method for transporting a loaded object, the loaded object is transported by sequentially traveling from the nth row to the third column, the fourth column, etc., in which a loop-shaped cable 40 having an excitation power source 41 is buried around the stockyard 1, In-vehicle system A that includes a detection unit, a logic circuit, and a transmission unit, in which an unmanned vehicle 2 is equipped with a magnetic field generated by passing a low-frequency current through a cable 40.
By receiving the signal from the onboard system A at the ground device B, the unmanned vehicle 2 reverses from the turning point P to the dumping point Q, performs the dump operation for the first time in the stockyard 1 row, and unmanned vehicle 2 The series of operations of stopping → dumping → starting is performed, the dumping operation is performed when the dumping point Q reaches the end of the stockyard 1, and the guiding cable 4 is switched so that the following vehicle can dump from the next row, and the dumping From the second time in the queue, the distance between the pile of dumped loads of the preceding vehicle and the unmanned vehicle 2 is automatically measured by an on-vehicle measuring means C to determine the dumping position.
JP7861278A 1978-06-30 1978-06-30 Carrying method for load Granted JPS556615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7861278A JPS556615A (en) 1978-06-30 1978-06-30 Carrying method for load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7861278A JPS556615A (en) 1978-06-30 1978-06-30 Carrying method for load

Publications (2)

Publication Number Publication Date
JPS556615A JPS556615A (en) 1980-01-18
JPS6336002B2 true JPS6336002B2 (en) 1988-07-18

Family

ID=13666692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7861278A Granted JPS556615A (en) 1978-06-30 1978-06-30 Carrying method for load

Country Status (1)

Country Link
JP (1) JPS556615A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5931875A (en) * 1996-12-19 1999-08-03 Caterpillar Inc. System and method for managing a fleet of mobile machines for dumping at a plurality of dump points

Also Published As

Publication number Publication date
JPS556615A (en) 1980-01-18

Similar Documents

Publication Publication Date Title
JP4369419B2 (en) Guided travel control device for unmanned vehicles
US6134493A (en) Method and apparatus for interlocking entrance of unmanned dump truck into work area
US5752207A (en) Method and apparatus for determining a path for a machine between a predetermined route and a final position
CA2218731A1 (en) Method and device for preparing running course data for an unmanned dump truck
US3942601A (en) Refuse collection apparatus with personnel protection means
JPH06282792A (en) Car patrolling progress confirmation system
AU2023200477A1 (en) System for controlling operation of a machine
US20120092486A1 (en) System and method for controlling a multi-machine caravan
CN112978414A (en) Automatic truck of blowing awards hopper
JPS6336002B2 (en)
US11643794B2 (en) System and method for monitoring a machine operating at a worksite
CN111465950A (en) System and method for controlling the navigation of a motor vehicle equipped with a movable canopy system
EP4342729A1 (en) A load-carrier vehicle with load monitoring
US4406165A (en) Method and apparatus for measuring the speed of vehicles
JP3089438B2 (en) Volume measuring device for earth and sand
US20230061689A1 (en) Transport system, transport control method, and storage medium
JPS6137199B2 (en)
JP2594442B2 (en) Information transmission system
JP2571480B2 (en) Automatic earth and sand unloading system in tunnel construction
SU830447A1 (en) Device for registering transport facility runs
JP3277012B2 (en) Material removal equipment for work vehicles
JPS53100574A (en) Unmanned operation controlling system for dump truck
JPS61239730A (en) Communication equipment between loading machine and transporting machine
WO2023208613A1 (en) A method for navigating an autonomous vehicle when driving in an area
KR950014241B1 (en) Apparatus for transmitting and receiving the data of a car