JPS6335752B2 - - Google Patents

Info

Publication number
JPS6335752B2
JPS6335752B2 JP59268558A JP26855884A JPS6335752B2 JP S6335752 B2 JPS6335752 B2 JP S6335752B2 JP 59268558 A JP59268558 A JP 59268558A JP 26855884 A JP26855884 A JP 26855884A JP S6335752 B2 JPS6335752 B2 JP S6335752B2
Authority
JP
Japan
Prior art keywords
base fabric
ion plating
low
plasma
temperature plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59268558A
Other languages
Japanese (ja)
Other versions
JPS61146870A (en
Inventor
Kazuhide Ino
Shinobu Watanabe
Tsutomu Oohayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiraoka and Co Ltd
Original Assignee
Hiraoka and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiraoka and Co Ltd filed Critical Hiraoka and Co Ltd
Priority to JP26855884A priority Critical patent/JPS61146870A/en
Publication of JPS61146870A publication Critical patent/JPS61146870A/en
Publication of JPS6335752B2 publication Critical patent/JPS6335752B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は繊維性基布の表面金属化方法に関する
ものである。更に詳しく述べるならば、本発明
は、繊維性基布の表面を低温プラズマで処理した
後、それに連続して基布のプラズマ処理面にイオ
ンプレーテイングを施すことにより、繊維性基布
と金属層との接着力のすぐれた金属化布を製造す
る方法に関するものである。 従来の技術 表面が金属化された繊維性基布は、その良好な
フアツシヨン性、機械的特性、熱的特性等を利用
して、インテリア関係、衣料関係、包装関係、な
どの用途のみならず耐熱・耐火服、遮熱・遮光カ
ーテン等の産業資材関係の用途などにも幅広く利
用されている。しかし、従来の金属化布では、繊
維性基布と金属層との接着力が本質的に弱い為、
金属層が剥離する等の問題がある。 従来、繊維性基布の表面金属化方法としては化
学メツキと電気メツキを併用する方法、ポリオレ
フイン等に真空蒸着した金属を転写する方法、真
空蒸着法、及び、イオンプレーテイング法などが
知られている。 化学メツキと電気メツキを併用する方法に於い
ては繊維性基布と金属との接着は良好であるが、
しかし、その工程が複雑であり、又、生成する廃
液を処理しなければならない問題がある。 転写法および真空蒸着法は廃液処理等の問題も
なく簡便な方法であるが、得られる金属化布にお
いて基布と金属層との接着力が弱いという欠点が
ある。このような欠点を解決する為転写法では、
繊維性基布にあらかじめ接着剤を塗布する方法を
とり、また真空蒸着法では接着性の阻害原因とな
るような、製織工程などで使用される糊剤、油剤
類、及び、繊維表面に付着した汚れ、異物等を取
り除くため、蒸着処理前に精練及び/又は、洗浄
を行なう方法がとられている。しかし、これらの
改良方法では、工程が複雑となり、又満足できる
接着力も得られていない。 イオンプレーテイングによる金属化方法は、工
程が簡略が有効な方法であるが、この方法でも、
接着力は未だ不満足なものであり尚一層の改良が
望まれている。 本発明が解決しようとする問題点 本発明は繊維性基布の表面を金属化するに際
し、繊維性基布と金属層との接着力をより強固な
ものとし、耐摩耗性・耐久性に優れた表面金属化
布を提供しようとするものである。 問題点を解決するための手段およびその作用 本発明方法は、天然繊維、再生繊維、半合成繊
維および合成繊維から選ばれた少なくとも1種の
有機繊維を含んでなる繊維性基布の少くとも1表
面を低温プラズマで処理した後、この処理に連続
して、前記基布の処理された表面にイオンプレー
テイング処理を施すことを特徴とするものであ
り、これによつて繊維性基布と金属層が強固に接
着されている金属化布を得ることができる。 本発明に有用な繊維性基布は、天然繊維例えば
木綿、麻など、再生繊維例えばビスコースレーヨ
ン、キユプラなど、半合成繊維例えば、ジ−及び
トリ−アセテート繊維など、及び、合成繊維例え
ばナイロン6、ナイロン66、ポリエステル(ポリ
エチレンテレフタレート等)繊維、芳香族ポリア
ミド繊維、アクリル繊維、ポリ塩化ビニル繊維、
ポリオレフイン繊維及び不溶化又は難溶化された
ポリビニルアルコール繊維など、から選ばれた少
くとも1種からなるものである。基布中の繊維は
短繊維紡積糸条、長繊維糸条、スプリツトヤー
ン、テープヤーンなどのいずれの形状のものでも
よく、又、基布は識物、編物又は、不織布或いは
これらの複合布のいずれであつてもよい。 本発明方法において、イオンプレーテイングの
効果を高めるために、即ち、イオンプレーテイン
グで基布表面に付着させる金属と基布との接着性
をより向上させるために、まず基布に対して低温
プラズマ処理が施される。低温プラズマ処理は、
0.01〜10Torrの圧力下において、プラズマ重合
性を有しないガスの低温プラズマに繊維性基布を
さらすことにより行うことができる。 低温プラズマ処理時間は用いられる印加電圧に
よつても相違するが、一般には数秒から数十分の
範囲で十分である。 低温プラズマ処理には、例えば、放電周波数帯
としては低周波、マイクロ波を用いることがで
き、プラズマ発生様式もグロー放電のほかコロナ
放電、火花放電、無声放電などを選ぶことができ
る。プラズマ重合性を有しないガスとしては、ヘ
リウム、ネオン、アルゴン、窒素、亜酸化窒素、
二酸化窒素、酸素、空気、一酸化炭素、二酸化炭
素、水素、塩素、または、塩化水素、シアン化臭
素、臭化すずなどのハロゲン化物、または硫黄、
亜硫酸ガス、硫化水素などの硫化物などがあり、
これらのガスは単独または混合して使用すること
ができる。 本発明方法において、基布をイオンプレーテイ
ング法で処理する前に、低温プラズマで処理する
ことにより、繊維性基布と金属層との接着性が格
段に向上することになるが、その理由に就いては
未だ十分に明らかではない。しかし本発明の発明
者らは、その理由として、低温プラズマのスパツ
タリング効果に依り繊維表面に付着している汚
れ、異物等が除去されること、糊剤、油剤等の接
着は阻害物質が低分子量化され、揮発或いは変性
されること、スパツタリング効果により繊維表面
に凹凸が形成されること、および繊維自体の表面
がプラズマ中の高エネルギーで改質され、即ち、
その表面自由エネルギーが増大し金属との親和性
が向上することなどが有効なものであろうと考え
ている。又、このことはイオンプレーテイング方
法のみの金属化処理では、上記のような、接着性
改善効果を生み出し得ないであろうことを示して
いる。 この様に低温プラズマで表面改質された繊維性
基布は、直ちに連続してイオンプレーテイング処
理に供給される。低温プラズマ処理と、イオンプ
レーテイング処理とが連続して行なわれない場
合、繊維性基布と金属層との間の接着強度改善効
果が不十分なものになる。イオンプレーテイング
処理工程においては、10-5〜10-1Torrの圧力下
において、非活性ガスを高周波放電でプラズマ状
態とし、この雰囲気中にて基布表面に金属の蒸着
が施される。非活性ガスとしては、ヘリウム、ア
ルゴン、ネオンなどから選ばれた少くとも1種か
らなるものが用いられる。高周波放電の形式とし
ては、有極放電および、無極放電のいずれによつ
ても十分な結果が得られるが、基布の広面積に金
属化を施すときには有機放電が好ましい。 イオンプレーテイングは、Al、Ti、Cr、Ni、
Cu等の金属単体、ZnO、MgO等の金属酸化物、
および、MoS等の金属硫化物を用いて行なうこ
とが可能であり目的や用途に応じて任意の金属を
選ぶことができる。 次に第1図を参照しながら、本発明方法を具体
的に説明する。巻出装置1にセツトされた基布1
aはプラズマ室2に導入される。プラズマ室2内
には加熱冷却用ドラム陰極2a、陽電極3、イオ
ンプレーテイング用電極4、および金属種を入れ
たルツボ5が配置されている。電極近傍に設置さ
れたガラス供給口(図示されていない)より、所
定量の非重合性ガスを導入し、陽電極3、ドラム
陰極2の間に高周波を荷すことによりプラズマが
発生する。このとき、イオンプレーテイング用電
極4、およびルツボ5は作動していない。低温プ
ラズマで処理された基布は、巻取装置6に巻き取
られる。ここで、放電を中止し、プラズマ室内の
ガスを排気する。所定の圧力まで室内を排気した
後、室内に不活性ガスを導入し、ルツボ5および
イオンプレーテイング用電極4を作動させる。 巻き取り装置を反対方向に運転して巻き出し装
置として用い、基布を、プラズマ室2内に送り込
み、これにイオンプレーテイング処理を施し、巻
き出し装置を反対方向に運転してこれを巻き取り
装置として用い、処理された布を巻き取る。 実施例 次に実施例により本発明を更に詳しく説明す
る。 実施例1および比較例1〜3 下記組織のポリエステルモノフイラメント繊維
基布: 50d×50d/250本/吋×250本/吋 を第1図に示された巻出巻取両用装置1にセツト
し、プラズマ室内を10-4Torrの圧力になるまで
排気した。その後陽電極3の近傍に設けられた図
示されていないガス供給管を通し、酸素ガスを室
内に導入し、室内圧力を0.15Torrとし、周波数
400kHz、起電圧5500Vでグロー放電を行ない陽電
極3とドラム陰極2の間に低温プラズマを発生せ
しめ、巻取速度60m/分で基布の1表面をプラズ
マ処理した。この時、基布が低温プラズマに曝さ
れた時間は約3秒であつた。巻取巻出両用装置へ
の巻取りが完了した後、プラズマ室の高周波の電
源を切り、一旦室内を10-4Torrの圧力になるま
で排気した。直ちに巻取、巻出両用装置を反転し
て、再び巻取速度80m/分で基布をプラズマ室に
送り込み、これにイオンプレーテイング処理を施
こした。このイオンプレーテイング処理において
プラズマ種としてアルゴンを、蒸着種としてニツ
ケルを用いた。先ず、陽極と陰極とが対向して平
列したイオンプレーテイング用高周波電極の近傍
に設けられたガス供給管を通してアルゴンを室内
に導入し、室内の圧力を5×10-3Torrに維持し、
起電圧4500Vでプラズマを発生させた。ルツボ温
度を200℃に設定し、又ルツボを陽極、ドラムを
陰極とし、この間に3000Vの直流電流を荷した。
この処理で得られたニツケル金属層の厚みは約
4μであつた。 比較例1において、低温プラズマ処理を行なわ
ず、その他は、実施例との上記条件と同一条件で
基布にイオンプレーテイング処理のみを施こし
た。比較例2において、低温プラズマ処理の条件
は実施例1と同一にし、イオンプレーテイング処
理で、放電電極を作動させず、通常の真空蒸着法
で基布に処理を施した。 又、比較例3において、基布に低温プラズマ処
理は行なわず、比較例2と同様の真空蒸着処理を
施こした。 得られたこれらの金属化布に就いてポリエステ
ルモノフイラメント繊維とニツケル金属層との接
着力を測定した。結果を第1表に示す。 測定法 スコツト式耐揉試験:JIS−K−1096荷重500grで
100回 セロテープ試験 :市販のセロテープを適当な
長さにカツトし、試料面に
強く圧着する。その後セロ
テープを一気に剥し取り、
セロテープへの転写の度合
を評価する。
INDUSTRIAL APPLICATION FIELD OF THE INVENTION The present invention relates to a method for surface metallizing a fibrous base fabric. More specifically, in the present invention, the surface of the fibrous base fabric is treated with low-temperature plasma, and then ion plating is applied to the plasma-treated surface of the base fabric, thereby forming a bond between the fibrous base fabric and the metal layer. The present invention relates to a method for producing a metallized cloth with excellent adhesion to. Conventional technology A fibrous base fabric with a metalized surface is used not only for interior decoration, clothing, packaging, etc., but also for heat-resistant applications, by taking advantage of its good fabric properties, mechanical properties, and thermal properties.・It is also widely used in industrial materials-related applications such as fireproof clothing, heat shielding and blackout curtains. However, with conventional metallized fabrics, the adhesive strength between the fibrous base fabric and the metal layer is inherently weak.
There are problems such as peeling of the metal layer. Conventionally, known methods for metallizing the surface of fibrous base fabrics include a method using a combination of chemical plating and electroplating, a method of transferring vacuum-deposited metal onto polyolefin, a vacuum evaporation method, and an ion plating method. There is. In the method of using chemical plating and electric plating together, the adhesion between the fibrous base fabric and the metal is good, but
However, the process is complicated, and there are problems in that the waste liquid produced must be treated. Although the transfer method and the vacuum deposition method are simple methods without problems such as waste liquid disposal, they have the drawback that the adhesive strength between the base fabric and the metal layer in the metallized fabric obtained is weak. In order to solve these drawbacks, the transfer method
Adhesives are applied to the fibrous base fabric in advance. Vacuum deposition methods also prevent adhesives such as glues and oils used in the weaving process, which can impede adhesion, as well as adhesives that adhere to the fiber surface. In order to remove dirt, foreign matter, etc., methods of scouring and/or cleaning are used before the vapor deposition process. However, these improved methods require complicated steps and do not provide satisfactory adhesion. The metallization method using ion plating is an effective method because of its simple process, but even with this method,
The adhesive strength is still unsatisfactory and further improvement is desired. Problems to be Solved by the Invention The present invention improves the adhesive strength between the fibrous base fabric and the metal layer when metallizing the surface of the fibrous base fabric, resulting in excellent abrasion resistance and durability. The present invention aims to provide a fabric with a metalized surface. Means for Solving the Problems and Their Effects The method of the present invention provides at least one fibrous base fabric comprising at least one organic fiber selected from natural fibers, regenerated fibers, semi-synthetic fibers, and synthetic fibers. After the surface is treated with low-temperature plasma, following this treatment, the treated surface of the base fabric is subjected to an ion plating treatment, thereby bonding the fibrous base fabric and the metal. A metallized fabric can be obtained in which the layers are firmly adhered. Fibrous base fabrics useful in the present invention include natural fibers such as cotton, linen, etc., recycled fibers such as viscose rayon, Kyupra, etc., semi-synthetic fibers such as di- and tri-acetate fibers, and synthetic fibers such as nylon 6. , nylon 66, polyester (polyethylene terephthalate, etc.) fiber, aromatic polyamide fiber, acrylic fiber, polyvinyl chloride fiber,
It is made of at least one kind selected from polyolefin fibers, insolubilized or hardly soluble polyvinyl alcohol fibers, and the like. The fibers in the base fabric may be in any form, such as short fiber spun yarn, long fiber yarn, split yarn, or tape yarn. It can be either. In the method of the present invention, in order to enhance the effect of ion plating, that is, to further improve the adhesion between the base fabric and the metal to be attached to the surface of the base fabric by ion plating, first, the base fabric is subjected to low-temperature plasma treatment. Processing is performed. Low temperature plasma treatment is
This can be carried out by exposing the fibrous base fabric to low-temperature plasma of a gas that does not have plasma polymerizability under a pressure of 0.01 to 10 Torr. The low-temperature plasma treatment time varies depending on the applied voltage used, but generally a range of several seconds to several tens of minutes is sufficient. For the low-temperature plasma treatment, for example, low frequency or microwave can be used as the discharge frequency band, and the plasma generation mode can be selected from glow discharge, corona discharge, spark discharge, silent discharge, etc. Gases that do not have plasma polymerizability include helium, neon, argon, nitrogen, nitrous oxide,
Nitrogen dioxide, oxygen, air, carbon monoxide, carbon dioxide, hydrogen, chlorine, or halides such as hydrogen chloride, bromine cyanide, tin bromide, or sulfur,
There are sulfides such as sulfur dioxide gas and hydrogen sulfide.
These gases can be used alone or in combination. In the method of the present invention, by treating the base fabric with low-temperature plasma before treating it with the ion plating method, the adhesion between the fibrous base fabric and the metal layer is significantly improved. It is still not clear enough. However, the inventors of the present invention believe that the reason for this is that dirt and foreign matter adhering to the fiber surface are removed by the sputtering effect of low-temperature plasma, and that the adhesion of glues, oils, etc. is inhibited by substances with low molecular weight. oxidized, volatilized or modified; irregularities are formed on the fiber surface due to the sputtering effect; and the surface of the fiber itself is modified by high energy in the plasma, i.e.
We believe that increasing the surface free energy and improving affinity with metals will be effective. This also indicates that metallization using only the ion plating method would not be able to produce the above-mentioned effect of improving adhesion. The fibrous base fabric surface-modified by low-temperature plasma in this way is immediately and continuously supplied to the ion plating treatment. If the low temperature plasma treatment and the ion plating treatment are not performed continuously, the effect of improving the adhesive strength between the fibrous base fabric and the metal layer will be insufficient. In the ion plating process, an inert gas is turned into a plasma state by high frequency discharge under a pressure of 10 -5 to 10 -1 Torr, and metal is vapor-deposited on the surface of the base fabric in this atmosphere. As the inert gas, at least one selected from helium, argon, neon, etc. is used. As for the type of high-frequency discharge, sufficient results can be obtained with either polar discharge or non-polar discharge, but organic discharge is preferable when metallizing a wide area of the base fabric. Ion plating is Al, Ti, Cr, Ni,
Single metals such as Cu, metal oxides such as ZnO and MgO,
Alternatively, metal sulfides such as MoS can be used, and any metal can be selected depending on the purpose and use. Next, the method of the present invention will be specifically explained with reference to FIG. Base fabric 1 set on unwinding device 1
a is introduced into the plasma chamber 2. Arranged within the plasma chamber 2 are a heating and cooling drum cathode 2a, an anode 3, an ion plating electrode 4, and a crucible 5 containing metal species. A predetermined amount of non-polymerizable gas is introduced through a glass supply port (not shown) installed near the electrode, and a high frequency wave is applied between the anode 3 and the drum cathode 2 to generate plasma. At this time, the ion plating electrode 4 and the crucible 5 are not operating. The base fabric treated with low-temperature plasma is wound up by a winding device 6. At this point, the discharge is stopped and the gas in the plasma chamber is exhausted. After the chamber is evacuated to a predetermined pressure, an inert gas is introduced into the chamber, and the crucible 5 and the ion plating electrode 4 are operated. The winding device is operated in the opposite direction and used as an unwinding device to feed the base fabric into the plasma chamber 2 and subjected to ion plating treatment, and the unwinding device is operated in the opposite direction to wind it up. It is used as a device to wind up the treated fabric. Examples Next, the present invention will be explained in more detail with reference to Examples. Example 1 and Comparative Examples 1 to 3 A polyester monofilament fiber base fabric having the following structure: 50d x 50d/250 pieces/inch x 250 pieces/inch was set in the unwinding/winding device 1 shown in Fig. 1. The plasma chamber was evacuated to a pressure of 10 -4 Torr. After that, oxygen gas was introduced into the room through a gas supply pipe (not shown) installed near the positive electrode 3, and the pressure in the room was set to 0.15 Torr.
Glow discharge was performed at 400 kHz and an electromotive force of 5500 V to generate low-temperature plasma between the anode 3 and the drum cathode 2, and one surface of the base fabric was plasma treated at a winding speed of 60 m/min. At this time, the time during which the base fabric was exposed to the low-temperature plasma was about 3 seconds. After winding into the winding/unwinding device was completed, the high frequency power of the plasma chamber was turned off and the chamber was evacuated to a pressure of 10 −4 Torr. Immediately, the winding and unwinding device was reversed, and the base fabric was fed into the plasma chamber again at a winding speed of 80 m/min, where it was subjected to ion plating treatment. In this ion plating process, argon was used as the plasma species and nickel was used as the vapor deposition species. First, argon was introduced into the chamber through a gas supply pipe installed near the high-frequency electrode for ion plating, in which the anode and cathode were arranged in parallel and facing each other, and the pressure in the chamber was maintained at 5 × 10 -3 Torr.
Plasma was generated with an electromotive voltage of 4500V. The crucible temperature was set at 200°C, the crucible was used as an anode, the drum was used as a cathode, and a direct current of 3000V was applied between them.
The thickness of the nickel metal layer obtained by this process is approximately
It was 4μ. In Comparative Example 1, the base fabric was subjected to only ion plating treatment under the same conditions as those of the example except that the low-temperature plasma treatment was not performed. In Comparative Example 2, the conditions for the low-temperature plasma treatment were the same as in Example 1, and the base fabric was treated by ion plating, without operating the discharge electrode, and by a normal vacuum evaporation method. Further, in Comparative Example 3, the base fabric was not subjected to low-temperature plasma treatment, but was subjected to vacuum evaporation treatment similar to Comparative Example 2. The adhesion between the polyester monofilament fibers and the nickel metal layer of these metallized fabrics thus obtained was measured. The results are shown in Table 1. Measurement method Scotto type rubbing resistance test: JIS-K-1096 load 500gr
100 times Cellotape test: Cut commercially available cellophane tape to an appropriate length and firmly press it against the sample surface. Then peel off the sellotape all at once.
Evaluate the degree of transfer to Sellotape.

【表】 第1表は、本発明方法によつて得られる積層物
において基布と金属層との接着力が強固なもので
あることを示している。また、本実施例において
得られたポリエステルモノフイラメント繊維基布
の金属化布をスクリーン布として使用したとこ
ろ、その耐摩耗性、弾性回復率が優れており、イ
ンク切れのよい耐久性に富んだものであつた。 実施例2および比較例4および5 実施例2において下記組織を有するナイロン6
繊維基布: 25d×25d/100本/吋×100本/吋 を第1図に示された装置を用いて、実施例1と同
様の方法で連続処理した。但し、 低温プラズマ処理条件 プラズマ種:酸素(30vol%)、アルゴン(70vol
%) 器内圧力 :1.0Torr イオンプレーテイング処理条件 蒸着種 :銅 ルツボ温度:1400℃ とした。比較例4において、ナイロン6基布を精
練剤(非イオン活性剤およびソーダ灰を含む温水
液(約60℃)で30分間精練し、次に湯洗い水洗い
を15分間施して、乾燥し、これに、実施例1と同
一条件でイオンプレーテイングのみを施した。
又、比較例5において、ナイロン6基布に直接、
実施例1と同一条件でイオンプレーテイングのみ
を施こした。これらの金属化布の接着力テストの
結果を第2表に示す。
[Table] Table 1 shows that in the laminate obtained by the method of the present invention, the adhesive strength between the base fabric and the metal layer is strong. In addition, when the metallized polyester monofilament fiber-based fabric obtained in this example was used as a screen cloth, it was found to have excellent abrasion resistance and elastic recovery rate, and was highly durable with good ink drainability. It was hot. Example 2 and Comparative Examples 4 and 5 Nylon 6 having the following structure in Example 2
Fiber base fabric: 25d×25d/100 fibers/inch×100 fibers/inch were continuously treated in the same manner as in Example 1 using the apparatus shown in FIG. However, low-temperature plasma treatment conditions plasma species: oxygen (30vol%), argon (70vol%)
%) Internal pressure: 1.0 Torr Ion plating processing conditions Vapor deposition species: Copper crucible temperature: 1400°C. In Comparative Example 4, a nylon 6-based fabric was scoured for 30 minutes in a warm water solution (approximately 60°C) containing a scouring agent (a nonionic activator and soda ash), then washed with hot water and cold water for 15 minutes, dried, and Only ion plating was performed under the same conditions as in Example 1.
In addition, in Comparative Example 5, directly on the nylon 6 base fabric,
Only ion plating was performed under the same conditions as in Example 1. The results of adhesion tests of these metallized fabrics are shown in Table 2.

【表】 第2表からわかるように、本発明は低温プラズ
マ−イオンプレーテイング連続処理によつて得ら
れたナイロン6基布の表面金属化布は、基布と金
属との接着力が極めてすぐれており、耐久性に優
れた金属化布製品を提供することができる。 比較例 6 実施例2と同様の操作を行つた。但し低温プラ
ズマ処理の後、処理された基布を、第1図の装置
の巻取室6から大気中に取り出し7日間放置し
た。この基布にイオンプレーテイングを施した。 得られた金属化布の接着力テスト結果は下記の
通りであつた。 (イ) スコツト式耐揉試験において、銅層に部分的
剥離が認められた。 (ロ) セロテープ試験において、銅層にわづかな剥
離が認められた。 上記比較例6の結果、本発明方法において、低
温プラズマ処理とイオンプレーテイング処理とを
非連続に施すと、得られる金属層の接着強度が不
満足なものになることが認められた。 発明の効果 本発明方法により製造される金属化布におい
て、その基布と金属層との接着強度が極めてすぐ
れており、その耐摩耗性および耐久性は優秀であ
る。従つて、このような金属化布はフアツシヨン
性を要求されるインテリヤ、および衣料分野のみ
ならず、耐熱服、耐火服、遮熱材料、および遮光
カーテンなどの産業資材分野においても広い用途
を有するものである。
[Table] As can be seen from Table 2, the surface metallized fabric of the nylon 6-base fabric obtained by the continuous low-temperature plasma-ion plating treatment of the present invention has extremely excellent adhesive strength between the base fabric and the metal. This allows us to provide highly durable metallized fabric products. Comparative Example 6 The same operation as in Example 2 was performed. However, after the low-temperature plasma treatment, the treated base fabric was taken out into the atmosphere from the winding chamber 6 of the apparatus shown in FIG. 1 and left for 7 days. Ion plating was applied to this base fabric. The results of the adhesion test of the obtained metallized cloth were as follows. (a) Partial peeling of the copper layer was observed in the Scotto-type rubbing resistance test. (b) Slight peeling of the copper layer was observed in the Sellotape test. As a result of Comparative Example 6, it was found that in the method of the present invention, if the low temperature plasma treatment and the ion plating treatment were performed discontinuously, the adhesive strength of the resulting metal layer would be unsatisfactory. Effects of the Invention In the metallized fabric produced by the method of the present invention, the adhesive strength between the base fabric and the metal layer is extremely excellent, and its abrasion resistance and durability are excellent. Therefore, such metallized fabrics have a wide range of applications not only in the interior and clothing fields that require fashionability, but also in the industrial materials field such as heat-resistant clothing, fire-resistant clothing, heat-shielding materials, and blackout curtains. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法を実施するために用いら
れる装置の1例の説明図である。 1,6……巻取・巻出両用装置、2……プラズ
マ室、2a……加熱・冷却用ドラム陰極、3……
陽電極、4……イオンプレーテイング用電極、5
……ルツボ。
FIG. 1 is an explanatory diagram of one example of an apparatus used to carry out the method of the present invention. 1, 6... Winding/unwinding device, 2... Plasma chamber, 2a... Heating/cooling drum cathode, 3...
Positive electrode, 4...Ion plating electrode, 5
...crucible.

Claims (1)

【特許請求の範囲】 1 天然繊維、再生繊維、半合成繊維及び合成繊
維から選ばれた少なくとも1種の有機繊維を含ん
でなる繊維性基布の少なくとも1表面を低温プラ
ズマで処理し、この処理に連続して前記基布の処
理された表面にイオンプレーテイング処理を施す
ことを特徴とする繊維性基布の表面金属化方法。 2 前記低温プラズマ処理が、0.01〜10Torrの
圧力下にプラズマ重合性を有しないガスの低温プ
ラズマを用いて行なわれる特許請求の範囲第1項
記載の方法。 3 前記プラズマ重合性を有しないガスが、ヘリ
ウム、ネオン、アルゴン、窒素、亜酸化窒素、二
酸化窒素、酸素、空気、一酸化炭素、二酸化炭
素、水素、塩素、ハロゲン化物、及び硫化物から
選ばれた少なくとも1種からなるものである、特
許請求の範囲第2項記載の方法。 4 前記イオンプレーテイング処理が、10-5
1Torrの圧力で不活性ガスの存在下において行な
われる特許請求の範囲第1項記載の方法。 5 前記不活性ガスが、ヘリウム、アルゴン、ネ
オンから選ばれた少なくとも1種からなるもので
ある特許請求の範囲第4項記載の方法。
[Claims] 1. At least one surface of a fibrous base fabric comprising at least one organic fiber selected from natural fibers, regenerated fibers, semi-synthetic fibers, and synthetic fibers is treated with low-temperature plasma, and this treatment 1. A method for metallizing the surface of a fibrous base fabric, which comprises sequentially subjecting the treated surface of the base fabric to an ion plating treatment. 2. The method according to claim 1, wherein the low-temperature plasma treatment is performed using low-temperature plasma of a gas that does not have plasma polymerizability under a pressure of 0.01 to 10 Torr. 3. The gas that does not have plasma polymerizability is selected from helium, neon, argon, nitrogen, nitrous oxide, nitrogen dioxide, oxygen, air, carbon monoxide, carbon dioxide, hydrogen, chlorine, halides, and sulfides. 3. The method according to claim 2, wherein the method comprises at least one of: 4. The ion plating treatment is performed at 10 -5 ~
A method according to claim 1, which is carried out in the presence of an inert gas at a pressure of 1 Torr. 5. The method according to claim 4, wherein the inert gas comprises at least one selected from helium, argon, and neon.
JP26855884A 1984-12-21 1984-12-21 Surface metallization of fibrous base cloth Granted JPS61146870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26855884A JPS61146870A (en) 1984-12-21 1984-12-21 Surface metallization of fibrous base cloth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26855884A JPS61146870A (en) 1984-12-21 1984-12-21 Surface metallization of fibrous base cloth

Publications (2)

Publication Number Publication Date
JPS61146870A JPS61146870A (en) 1986-07-04
JPS6335752B2 true JPS6335752B2 (en) 1988-07-15

Family

ID=17460195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26855884A Granted JPS61146870A (en) 1984-12-21 1984-12-21 Surface metallization of fibrous base cloth

Country Status (1)

Country Link
JP (1) JPS61146870A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350569A (en) * 1986-08-20 1988-03-03 尾池工業株式会社 Conductive cloth like article
JPS63282367A (en) * 1987-05-11 1988-11-18 東レ株式会社 Reinforcing fabric
CA2073783A1 (en) * 1992-03-12 1993-09-13 Kimberly-Clark Corporation Elastomeric metallized fabric and process to make the same
US5316837A (en) * 1993-03-09 1994-05-31 Kimberly-Clark Corporation Stretchable metallized nonwoven web of non-elastomeric thermoplastic polymer fibers and process to make the same
JP3993464B2 (en) * 2002-05-24 2007-10-17 株式会社ブリヂストン Rubber composite material and rubber article using the same
CN100449052C (en) * 2004-10-25 2009-01-07 浙江新建纺织有限公司 Cloth in use for protecting saloon car and preparation method
CN103061114B (en) * 2013-01-15 2014-08-20 深圳市新纶科技股份有限公司 Preparation method of electromagnetic shielding textile

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551393A (en) * 1978-06-14 1980-01-08 Tno Adhesibility improvement of aromatic polyamide fiber
JPS5673113A (en) * 1979-11-19 1981-06-17 Toyobo Co Ltd Antistatic fiber
JPS57164947A (en) * 1981-08-13 1982-10-09 Toho Rayon Co Ltd Manufacture of prepreg for carbon fiber reinforced metallic composite material
JPS58120876A (en) * 1982-01-08 1983-07-18 東邦レーヨン株式会社 Method and apparatus for producing metal coated fiber
JPS5948149A (en) * 1982-09-11 1984-03-19 松下電工株式会社 Manufacture of laminated board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551393A (en) * 1978-06-14 1980-01-08 Tno Adhesibility improvement of aromatic polyamide fiber
JPS5673113A (en) * 1979-11-19 1981-06-17 Toyobo Co Ltd Antistatic fiber
JPS57164947A (en) * 1981-08-13 1982-10-09 Toho Rayon Co Ltd Manufacture of prepreg for carbon fiber reinforced metallic composite material
JPS58120876A (en) * 1982-01-08 1983-07-18 東邦レーヨン株式会社 Method and apparatus for producing metal coated fiber
JPS5948149A (en) * 1982-09-11 1984-03-19 松下電工株式会社 Manufacture of laminated board

Also Published As

Publication number Publication date
JPS61146870A (en) 1986-07-04

Similar Documents

Publication Publication Date Title
JPS6335751B2 (en)
US4756925A (en) Plasma and ion plating treatment of polymer fibers to improve adhesion to RFL rubber
JPS6335752B2 (en)
CN111705506A (en) Flexible conductive antibacterial fiber and preparation method thereof
JP2716505B2 (en) Metallization of fibrous materials
KR900000237B1 (en) Sheet like structure and process for producing the same
KR870001971B1 (en) Fabrics sticking metal
CN108442102B (en) Method for improving stability of metal plated fabric
US4601911A (en) Method for increasing hydrophilicity of a fabric material of synthetic fibers
CN110230189A (en) High temperature resistant conduction high-performance textile and preparation method thereof
CN109763321A (en) A kind of conductive graphene/silver Composite aramid fiber tow and preparation method thereof
JP3938704B2 (en) Surface-modified fiber material, surface-modified fiber product, and method and apparatus for producing surface-modified fiber material using low-temperature plasma
CN201241291Y (en) Ventilating antistatic fabric with high dust-separation shield performance
JPH03279469A (en) Fiber having metallic thin film and production thereof
US4251589A (en) Production of a substantially inert flexible textile material
JPH05295656A (en) Production of coated fabric
JPH06166952A (en) Scouring of woven fabric containing glass fiber
De Temmerman New metallized materials for EMI/RFI shielding
JP3993464B2 (en) Rubber composite material and rubber article using the same
JPS59106570A (en) Fiber product having different functions at front and back surfaces thereof
JPS60200967A (en) Method for plating organic polymer sheet with metal
JPH04126873A (en) Production of polyphenylene sulfide fiber or fibrous molded material having metallic layer on surface
JPS6350569A (en) Conductive cloth like article
JPS61148051A (en) Manufacture of laminated sheet
JPH0514614B2 (en)