JPS6335709B2 - - Google Patents

Info

Publication number
JPS6335709B2
JPS6335709B2 JP57059511A JP5951182A JPS6335709B2 JP S6335709 B2 JPS6335709 B2 JP S6335709B2 JP 57059511 A JP57059511 A JP 57059511A JP 5951182 A JP5951182 A JP 5951182A JP S6335709 B2 JPS6335709 B2 JP S6335709B2
Authority
JP
Japan
Prior art keywords
substrate
vapor deposition
mask
container
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57059511A
Other languages
Japanese (ja)
Other versions
JPS58177463A (en
Inventor
Minoru Tanaka
Hitoshi Kubota
Susumu Aiuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5951182A priority Critical patent/JPS58177463A/en
Publication of JPS58177463A publication Critical patent/JPS58177463A/en
Publication of JPS6335709B2 publication Critical patent/JPS6335709B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating

Description

【発明の詳細な説明】 本発明は、同一真空容器内においてスパツタ
膜、蒸着膜の両方からなる積層薄膜成膜装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a laminated thin film forming apparatus that forms both a sputtered film and a vapor-deposited film in the same vacuum vessel.

第1図〜第3図に従来の実施例を示す。 Conventional embodiments are shown in FIGS. 1 to 3.

第1図の実施例はIBM Technical Disclosure
Bulletin Vol.21No.7December1978に示されたも
ので同一真空容器内においてマスク蒸着、マスク
スパツタが可能な装置である。真空容器1は一室
構造をしており真空排気ポンプ2により真空排気
する。真空容器1内には蒸着源3、スパツタ電極
4、基板5、マスク6が設置され基板5のみが移
動可能な構造をしている。基板5は基板ホルダー
7に保持され、主軸8に固定したアーム9が基板
ホルダー7に取り付けてある吊り金具10をひつ
かけて上昇回転することにより水平面内で回転移
動する。基板5とマスク6との位置合せは基板ホ
ルダー7と一体の位置決めボール11をマスクホ
ルダー12に穿つた位置決め穴13に入れて位置
合せする。
The example in Figure 1 is an IBM Technical Disclosure.
This device was introduced in Bulletin Vol. 21 No. 7 December 1978 and is capable of performing mask evaporation and mask sputtering in the same vacuum chamber. The vacuum container 1 has a one-chamber structure and is evacuated by a vacuum pump 2. A vapor deposition source 3, a sputter electrode 4, a substrate 5, and a mask 6 are installed in the vacuum container 1, and only the substrate 5 is movable. The substrate 5 is held by a substrate holder 7, and rotated in a horizontal plane by an arm 9 fixed to a main shaft 8 hooking a hanging fitting 10 attached to the substrate holder 7 and rotating upward. The substrate 5 and the mask 6 are aligned by placing a positioning ball 11 integrated with the substrate holder 7 into a positioning hole 13 made in the mask holder 12.

第2図の実施例は特開昭53−124968に示された
もので同一真空容器内でスパツタ膜と蒸着膜とか
ら成る多層膜を得る為の装置である。一室構造の
真空容器1内には蒸着源3、スパツタ電極4、基
板5が設置され、基板5は基板ホルダー7に保持
されて垂直面内で回転移動可能な構造となつてい
る。スパツタ電極4は基板5に対して対向面の間
隔を調節できる様直線的な移動が可能となつてお
り、蒸着源3は固定である。
The embodiment shown in FIG. 2 is disclosed in Japanese Unexamined Patent Publication No. 53-124968, and is an apparatus for obtaining a multilayer film consisting of a sputtered film and a vapor-deposited film in the same vacuum chamber. A vapor deposition source 3, a sputter electrode 4, and a substrate 5 are installed in a vacuum container 1 having a one-chamber structure, and the substrate 5 is held by a substrate holder 7 so as to be rotatable in a vertical plane. The sputter electrode 4 can be moved linearly with respect to the substrate 5 so that the distance between its opposing surfaces can be adjusted, and the evaporation source 3 is fixed.

第3図の実施例は蒸着源3とスパツタ電極4を
同一真空容器1内に直線的に並べたインライン構
成の装置を示すもので、蒸着源3とスパツタ電極
4は固定されており基板5のみがベルト状の基板
ホルダー7に保持されて水平面内で直線移動する
構造となつている。
The embodiment shown in FIG. 3 shows an apparatus with an in-line configuration in which a vapor deposition source 3 and a sputter electrode 4 are linearly arranged in the same vacuum container 1. The vapor deposition source 3 and sputter electrode 4 are fixed, and only the substrate 5 is placed. is held by a belt-shaped substrate holder 7 and moves linearly in a horizontal plane.

以上、第1図〜第3図のいずれの実施例におい
ても蒸着源は所定の位置に固定、スパツタ電極は
所定の位置に固定又は基板との対向間隔を調節で
きる方向にのみ直線移動可能となつており、基板
が蒸着源あるいはスパツタ電極の対向位置に移動
する構造となつている為、以下に述べる欠点があ
つた。第1に、蒸着源とスパツタ電極を薄膜形成
時互いに影響を及ぼさない異なる位置に設置し、
かつ蒸着源は基板から300〜400mmの間隔をもつて
設置する必要があり、更に基板移動機構を真空容
器内に設置する為真空容器が大きくなり、大容量
の真空排気ポンプを必要とし、装置の大形化、費
用の増大化を招くという欠点があつた。第2に基
板温度を一定に保持できない欠点がある。蒸着あ
るいはスパツタで薄膜を形成する場合、薄膜の材
質に応じて基板を所定の温度に加熱する必要があ
るが、この場合、基板を効率的に精度良く加熱す
る為には、基板のみを集中的に加熱し、基板とヒ
ータの設定条件をなるべく変えないことが望まし
い。ところが従来の実施例においては基板が移動
する方式である為に膜を一層形成する毎に基板と
ヒータの設定条件を変えなくてはならず安定な基
板加熱ができなくなり基板温度を一定に保持でき
ない欠点があつた。基板温度が不安定な場合、膜
の付着強度や膜質に悪影響を及ぼす。第3にマス
ク蒸着、マスクスパツタを行う場合、基板とマス
クを精度よく位置合せできない欠点がある。例え
ば薄膜磁気ヘツドのリード線をマスク蒸着、マス
クスパツタで形成する場合、基板とマスクは±
10μm程度に位置合せしなければならない。同一
パターンの蒸着膜とスパツタ膜を基板上に位置ず
れなく重ねて形成する場合、第1層目のパターン
に対してマスクパターンを正確に位置合せしなけ
ればならない。しかし第1図に示した従来の方式
では膜を一層形成する毎に基板を移動して第1層
目に使用したマスクとは異なるマスクに基板を位
置合せする方式となつている為、マスク間のパタ
ーン誤差、膜を一層形成する毎に行う基板とマス
クの位置合せ誤差、基板とマスクのギヤツプ変化
による回り込み量の違い等により大きな位置ずれ
が発生する。例えば第1図の方式の場合、マスク
間の誤差±20μm、膜を一層形成する毎に行う基
板とマスクの位置合せ誤差±30μm、基板とマス
クのギヤツプ変化による回り込量の違いによる誤
差±10μmで合計±40μm程度(誤差の二乗平均
値)の位置ずれとなる。又、第1図の実施例の様
な基板とマスクを位置合せする場合、基板温度の
ばらつきによつても位置ずれが発生する。例えば
熱膨張率が9.33×10-6/℃で一辺が100mmの正方
形のガラス基板と、熱膨張率が17.3×10-6/℃の
ステンレス製マスクを端面基準で位置合せして、
基板温度が±10℃ばらついた場合、固定基準端面
から最も離れた位置で約±11μmの位置ずれが起
る。
As described above, in any of the embodiments shown in FIGS. 1 to 3, the evaporation source is fixed at a predetermined position, and the sputter electrode is fixed at a predetermined position or can be moved linearly only in a direction in which the facing distance with the substrate can be adjusted. Since the substrate is moved to a position facing the evaporation source or the sputtering electrode, it has the following disadvantages. First, the evaporation source and sputtering electrode are installed at different positions so that they do not affect each other during thin film formation.
In addition, the evaporation source must be installed at a distance of 300 to 400 mm from the substrate, and since the substrate moving mechanism is installed inside the vacuum container, the vacuum container becomes large, a large-capacity vacuum pump is required, and the equipment It had the disadvantage of increasing size and cost. Second, there is a drawback that the substrate temperature cannot be maintained constant. When forming a thin film by vapor deposition or sputtering, it is necessary to heat the substrate to a predetermined temperature depending on the material of the thin film, but in this case, in order to heat the substrate efficiently and accurately, it is necessary to heat only the substrate It is desirable to heat the substrate and the heater settings as little as possible. However, in the conventional method, the substrate moves, so the setting conditions of the substrate and heater must be changed each time a layer of film is formed, making it impossible to stably heat the substrate and maintain a constant substrate temperature. There were flaws. If the substrate temperature is unstable, it will adversely affect the adhesion strength and film quality of the film. Thirdly, when performing mask vapor deposition or mask sputtering, there is a drawback that the substrate and mask cannot be precisely aligned. For example, when forming the lead wires of a thin film magnetic head by mask evaporation or mask sputtering, the substrate and mask are
The alignment must be approximately 10 μm. When a vapor-deposited film and a sputtered film of the same pattern are to be superimposed on a substrate without misalignment, the mask pattern must be accurately aligned with the pattern of the first layer. However, in the conventional method shown in Figure 1, the substrate is moved each time a layer of film is formed and the substrate is aligned with a mask different from the mask used for the first layer. Large positional deviations occur due to pattern errors, alignment errors between the substrate and mask each time a film is formed, and differences in wraparound amount due to changes in the gap between the substrate and mask. For example, in the case of the method shown in Figure 1, the error between the masks is ±20 μm, the alignment error between the substrate and the mask is ±30 μm each time a film is formed, and the error is ±10 μm due to the difference in wraparound amount due to gap changes between the substrate and the mask. This results in a total positional deviation of approximately ±40 μm (root mean square value of error). Furthermore, when aligning the substrate and mask as in the embodiment shown in FIG. 1, positional deviations occur due to variations in substrate temperature. For example, a square glass substrate with a coefficient of thermal expansion of 9.33×10 -6 /℃ and a side of 100 mm and a stainless steel mask with a coefficient of thermal expansion of 17.3×10 -6 /℃ are aligned based on the end face.
If the substrate temperature varies by ±10°C, a positional deviation of approximately ±11 μm will occur at the farthest position from the fixed reference end face.

第4に真空の質が悪くなる欠点がある。従来の
方式では複数個の基板ホルダーに基板を保持して
真空容器内に設置した基板搬送機構により基板の
移動を行つていた。又、基板が蒸着源、スパツタ
電極に対応する位置に移動する為、各位置におい
て基板加熱ヒータ(図示せず)を必要としてい
た。この様に真空容器内に多くの機構や部品を持
込むことで摺動部分からの摩耗による発塵や部品
表面からの脱ガスにより真空が汚染され、不要ガ
ス分子の混入による膜質の悪化や、基板に形成し
た薄膜への異物混入により、歩留りが低下する問
題があつた。
Fourthly, there is a drawback that the quality of the vacuum deteriorates. In the conventional method, the substrates are held in a plurality of substrate holders and moved by a substrate transfer mechanism installed in a vacuum container. Further, since the substrate is moved to a position corresponding to the evaporation source and the sputter electrode, a substrate heater (not shown) is required at each position. In this way, by bringing many mechanisms and parts into the vacuum container, the vacuum becomes contaminated due to dust generation due to abrasion from the sliding parts and degassing from the parts surfaces, and the film quality deteriorates due to the incorporation of unnecessary gas molecules. There was a problem in that the yield was reduced due to contamination of the thin film formed on the substrate.

本発明の目的は、上記従来技術の欠点を解決
し、同一真空容器内で真空を破らずに良質な蒸着
膜とスパツタ膜とを高精度に位置合わせして積層
成膜できるようにした積層薄膜成膜装置を提供す
ることにある。
The purpose of the present invention is to solve the above-mentioned drawbacks of the prior art, and to provide a laminated thin film that enables high-quality evaporated films and sputtered films to be laminated and deposited in the same vacuum container by aligning them with high precision without breaking the vacuum. The purpose of the present invention is to provide a film forming apparatus.

本発明は、上記目的を達成する為に、所定の雰
囲気を有する容器と、蒸着膜とスパツタ膜とを積
層する基板を下方に向けて取り付け、且つ上記基
板を加熱するヒータを備え、更に上記容器の上部
に設けた基板ホルダと、上記基板の下方に近接し
て設置されたマスクと、蒸着するとき上記マスク
に対向する成膜位置に位置すべく、上記容器に下
部に設けられ、上記容器の外側に設けられた蒸着
用電源に接続された蒸着源と、該蒸着源の上部に
開閉できるように設けられた蒸着用シヤツタと、
上記成膜位置から水平方向に偏心した上記容器の
下部位置に設けられた軸受と、該軸受に回転自在
に支持された回転軸と該回転軸の上記容器内側を
折り曲げて上記マスクと上記蒸着源との間に位置
すべく回転軸に一体にし、且つターゲツトを上記
マスクに向けて載置し、上記回転軸を介して容器
の外側に設けられたスパツタ用電源に接続するよ
うに構成されたスパツタ電極と上記回転軸を旋回
させるべく、上記容器の外側に設けた駆動源とを
有するスパツタ源とを備え付け、ヒータを有する
基板ホルダを固定することを可能にして積層パタ
ーンの位置ずれを少なくすると共にスパツタ源が
旋回できるように軸受によつて支持して真空容器
内に侵入する発塵量、脱ガス量を低減し、高質の
積層膜を成膜できるようにしたことを特徴とする
積層薄膜成膜装置である。
In order to achieve the above object, the present invention comprises a container having a predetermined atmosphere, a substrate on which a vapor deposited film and a sputtered film are laminated, and a heater for heating the substrate. a substrate holder provided on the top of the container, a mask placed close to the bottom of the substrate; an evaporation source connected to a evaporation power supply provided on the outside; a evaporation shutter provided above the evaporation source so as to be openable and closable;
A bearing provided at a lower position of the container horizontally eccentric from the film forming position, a rotating shaft rotatably supported by the bearing, and an inner side of the rotating shaft of the container being bent to form the mask and the vapor deposition source. a sputtering device, which is integrated with a rotating shaft so as to be located between the container and the sputtering device, and is configured to place a target facing the mask and connect to a sputtering power source provided on the outside of the container via the rotating shaft. A sputtering source having a driving source provided outside the container is provided to rotate the electrode and the rotating shaft, and a substrate holder having a heater can be fixed, thereby reducing misalignment of the laminated pattern. A laminated thin film characterized in that a spatter source is supported by a bearing so that it can rotate, reducing the amount of dust generated and outgassing that enters a vacuum container, and making it possible to form a high quality laminated film. It is a film forming device.

以下、本発明の実施例を第4図、第5図、第6
図により具体的に説明する。第4図〜第6図にお
いて第1図〜第3図と同様のものは同じ符号を付
した。本発明の実施例はマスク蒸着、マスクスパ
ツタを行う為の装置で基板5上に同一パターンの
蒸着膜、スパツタ膜を真空を破らずに連続して積
層するものである。第4図は本発明による一実施
例を示すもので一室構造の真空容器1内には下方
から順に蒸着源3、蒸着用シヤツタ14、スパツ
タ電極4、スパツタ用シヤツタ15、マスク6、
基板5、ヒータ16が設置してあり真空排気ポン
プ2により真空排気する。スパツタ電極4、蒸着
用シヤツタ14、スパツタ用シヤツタ15は大気
中に設けた駆動モータ17,18,19によりギ
ヤ列20,21,22を介して回転移動可能であ
りヒータ16は直線移動が可能である。蒸着源
3、マスク6、基板5は固定であり基板5は基板
ホルダー7に保持する。蒸着は蒸着用電源23に
より制御し、スパツタは高周波スパツタの場合マ
ツチングボツクス24を介して高周波スパツタ用
電源25により、直流スパツタの場合直接直流ス
パツタ用電源25′により制御する。本実施例の
場合、蒸着源3と基板5の間にスパツタ電極4を
設置する構造となつているが、蒸着の場合基板5
と蒸着源3との間隔は300〜400mmにするのが一般
的であり、一方基板5とスパツタ電極4との間隔
は50〜100mm程度であるので構成上特に問題はな
い。基板5上に同一パターンの蒸着膜とスパツタ
膜を交互に積層する場合、まずスパツタ電極4と
スパツタ用シヤツタ15を回転移動させ蒸着に支
障のない位置まで待避させる。基板5はヒータ1
6により所定の温度に加熱したら蒸着源3から蒸
着物質を蒸発させ蒸着用シヤツタ14を回転移動
させてマスク6のパターン穴を通して基板5上に
蒸着膜を形成する。蒸着膜の形成が終了したら蒸
着用シヤツタ14を蒸着源3上に回転移動し、蒸
着源3からの蒸着物質の蒸発を停止させ、スパツ
タ電極4とスパツタ用シヤツタ15を基板5と対
向する位置まで、回転移動させる。基板5をヒー
タ16によりスパツタ時の所定の温度に加熱し、
アルゴンガス導入(図示せず)によりスパツタ可
能圧力に到達したらスパツタを開始し、スパツタ
用シヤツタ15を回転移動させてマスク6のパタ
ーン穴を通して既に形成した蒸着膜上にスパツタ
膜を形成する。スパツタ膜の形成が終了したらス
パツタ用シヤツタ15をスパツタ電極4上まで回
転移動させスパツタを停止する。基板5及びマス
ク6は一度位置合せして設定したら全積層膜の形
成が終了するまで再設定をしない。
Embodiments of the present invention will be described below with reference to FIGS. 4, 5, and 6.
This will be explained in detail with reference to the drawings. In FIGS. 4 to 6, the same parts as in FIGS. 1 to 3 are given the same reference numerals. The embodiment of the present invention is an apparatus for performing mask vapor deposition and mask sputtering, and is used to continuously stack vapor deposited films and sputtered films of the same pattern on a substrate 5 without breaking the vacuum. FIG. 4 shows an embodiment of the present invention, in which a one-chamber vacuum vessel 1 includes, in order from the bottom, a vapor deposition source 3, a vapor deposition shutter 14, a sputter electrode 4, a sputter shutter 15, a mask 6,
A substrate 5 and a heater 16 are installed, and a vacuum pump 2 performs evacuation. The sputter electrode 4, the vapor deposition shutter 14, and the sputter shutter 15 are rotatably movable via gear trains 20, 21, and 22 by drive motors 17, 18, and 19 provided in the atmosphere, and the heater 16 is movable linearly. be. The vapor deposition source 3, mask 6, and substrate 5 are fixed, and the substrate 5 is held by a substrate holder 7. Vapor deposition is controlled by a vapor deposition power source 23, and sputtering is controlled by a high frequency sputter power source 25 via a matching box 24 in the case of high frequency sputtering, and directly by a direct current sputtering power source 25' in the case of DC sputtering. In the case of this embodiment, the structure is such that the sputter electrode 4 is installed between the evaporation source 3 and the substrate 5.
The spacing between the substrate 5 and the evaporation source 3 is generally 300 to 400 mm, while the spacing between the substrate 5 and the sputter electrode 4 is about 50 to 100 mm, so there is no particular problem in terms of construction. When depositing films and sputtering films of the same pattern are alternately laminated on the substrate 5, the sputtering electrode 4 and the sputtering shutter 15 are first rotated and retracted to a position where they do not interfere with the vapor deposition. The substrate 5 is the heater 1
6, the vapor deposition material is evaporated from the vapor deposition source 3, and the vapor deposition shutter 14 is rotated to form a vapor deposition film on the substrate 5 through the patterned holes of the mask 6. When the formation of the vapor deposition film is completed, the vapor deposition shutter 14 is rotated over the vapor deposition source 3 to stop the evaporation of the vapor deposition material from the vapor deposition source 3, and the sputter electrode 4 and the sputter shutter 15 are moved to a position facing the substrate 5. , rotate and move. The substrate 5 is heated to a predetermined temperature for sputtering by the heater 16,
When a sputtering-enabled pressure is reached by introducing argon gas (not shown), sputtering is started, and the sputtering shutter 15 is rotated to form a sputtered film on the already formed vapor deposited film through the pattern hole of the mask 6. When the formation of the sputtering film is completed, the sputtering shutter 15 is rotated and moved above the sputtering electrode 4 to stop the sputtering. Once the substrate 5 and mask 6 are aligned and set, they are not reset until the formation of all the laminated films is completed.

第5図は本発明による他の実施例を示したもの
で蒸着源3とスパツタ電極4の両方が移動可能な
例で、スパツタ時スパツタ電極4が基板対向位置
に移動し、蒸着源3はスパツタに支障のない位置
に待避している状態を示したものである。本実施
例は蒸着源3とスパツタ電極4が基板5と対向す
る位置において互いに干渉する場合に有効な方法
である。本実施例において基板5上に同一パター
ンの蒸着膜とスパツタ膜を交互に積層する場合、
まずスパツタ電極4を回転移動させ蒸着に支障の
ない位置まで待避させ、エアシリンダ等のアクチ
ユエータ47により蒸着源3を基板5と対向する
位置まで移動させる。基板5をヒータ16により
所定の温度に加熱したら蒸着源3から蒸着物質を
蒸発させシヤツタ15(蒸着、スパツタ兼用)を
回転移動させてマスク6のパターン穴を通して基
板5上に蒸着膜を形成する。蒸着膜の形成が終了
したらシヤツタ15を蒸着源3上に回転移動し、
蒸着源3からの蒸着物質の蒸発を停止させ、蒸着
源3を基板対向位置からスパツタに支障のない位
置に待避させる。次にスパツタ電極4を基板5と
対向する位置まで回転移動させ、基板5をヒータ
16によりスパツタ時の所定の温度に加熱し、ア
ルゴンガス導入(図示せず)によりスパツタ可能
圧力に到達したらスパツタを開始し、シヤツタ1
5を回転移動させてマスク6のパターン穴を通し
て既に形成した蒸着膜上にスパツタ膜を形成す
る。スパツタ膜の形成が終了したらシヤツタ15
をスパツタ電極4上まで回転移動させスパツタを
停止する。
FIG. 5 shows another embodiment according to the present invention, in which both the evaporation source 3 and the sputter electrode 4 are movable. During sputtering, the sputter electrode 4 moves to a position facing the substrate, and the evaporation source 3 This figure shows the situation where the vehicle is evacuated to a position where it will not cause any problems. This embodiment is an effective method when the vapor deposition source 3 and the sputter electrode 4 interfere with each other at a position facing the substrate 5. In this embodiment, when deposited films and sputtered films of the same pattern are alternately stacked on the substrate 5,
First, the sputter electrode 4 is rotated and retracted to a position that does not interfere with vapor deposition, and the vapor deposition source 3 is moved to a position facing the substrate 5 using an actuator 47 such as an air cylinder. When the substrate 5 is heated to a predetermined temperature by the heater 16, the vapor deposition material is evaporated from the vapor deposition source 3, and the shutter 15 (used for both vapor deposition and sputtering) is rotated to form a vapor deposited film on the substrate 5 through the pattern hole of the mask 6. When the formation of the vapor deposition film is completed, the shutter 15 is rotated and moved onto the vapor deposition source 3,
Evaporation of the vapor deposition material from the vapor deposition source 3 is stopped, and the vapor deposition source 3 is retracted from the position facing the substrate to a position that does not interfere with sputtering. Next, the sputtering electrode 4 is rotated to a position facing the substrate 5, the substrate 5 is heated to a predetermined temperature for sputtering by the heater 16, and the sputtering is stopped when the pressure that allows sputtering is reached by introducing argon gas (not shown). Start, shutter 1
5 is rotated to form a sputtered film on the already formed vapor deposited film through the patterned holes of the mask 6. When the formation of the spatter film is completed, the shutter 15 is
is rotated to above the sputter electrode 4 and the sputter is stopped.

第6図は本発明によるカソード及びターゲツト
中心と回転軸中心が偏心した回転移動可能なスパ
ツタ電極4を詳細に示したものである。26はマ
グネトロン型スパツタカソード27に冷却水を送
るための導電体からなる導入ブロツクであり絶縁
物(図示せず)を介して固定されている。28,
29は導入ブロツク26よりカソード27へ冷却
水を送る導電体から成る水路管であり28は送水
管、29は排水管である。これらは導入ブロツク
26に回転自在に係合しておりOリング30,3
1によりシールしてある。32は絶縁部材33に
より、内部にマグネツトを構成した通常見られる
マグネトロン型カソード電極から電気的に絶縁
し、ターゲツト34面ではアノードとしての役割
を果し、他の部分では放電が生じない程度のギヤ
ツプを維持することにより放電防止の役割を持つ
シールド管である。35はテフロン等の絶縁材料
から成るシールブロツクで排水管29とシールド
管32の間を電気的に絶縁し、更にOリング3
6,37により真空シールしている。シールド管
32は真空容器1の壁の一部にOリング38によ
り真空シールして取付けたフランジ39内の軸受
け40により回転自在に取付けてあり、同時にシ
ールド管32はフランジ39内のOリング41に
よりその外周を真空シールしている。
FIG. 6 shows in detail a rotatably movable sputter electrode 4 in which the center of the cathode and target and the center of the rotation axis are eccentric, according to the present invention. Reference numeral 26 denotes an introduction block made of a conductor for feeding cooling water to the magnetron type spatter cathode 27, and is fixed via an insulator (not shown). 28,
Reference numeral 29 is a water pipe made of a conductor that sends cooling water from the introduction block 26 to the cathode 27, 28 is a water pipe, and 29 is a drain pipe. These are rotatably engaged with the introduction block 26 and are O-rings 30, 3.
It is sealed by 1. 32 is electrically insulated from a commonly seen magnetron type cathode electrode with a magnet inside by an insulating member 33, and serves as an anode on the target 34 surface, with a gap to the extent that no discharge occurs in other parts. It is a shield tube that has the role of preventing discharge by maintaining the 35 is a seal block made of an insulating material such as Teflon, which electrically insulates between the drain pipe 29 and the shield pipe 32, and further includes an O-ring 3.
6 and 37 for vacuum sealing. The shield tube 32 is rotatably attached to a part of the wall of the vacuum vessel 1 by a bearing 40 in a flange 39 which is vacuum-sealed with an O-ring 38. Its outer periphery is vacuum sealed.

水路管28,29とシールド管32はカソード
27及びターゲツト34の中心と回転軸の中心を
偏心させる為、途中で折り曲げた構造にしてあ
る。
The water pipes 28, 29 and the shield pipe 32 are bent in the middle in order to make the centers of the cathode 27 and target 34 eccentric to the center of the rotating shaft.

シールド管32の下面端部にはギヤ42が固定
してあり、モータ44の回転軸に取付けたギヤ4
3と噛合い、モータ44の回転に伴いシールド管
32が回転し、マグネトロン型スパツタカソード
27、ターゲツト34等から成るスパツタ電極4
を基板5と対向する位置から蒸着に支障のない図
の一点鎖線で示した待避位置まで回転移動させ
る。スパツタ電源25からのスパツタ電流はマツ
チングボツクス24、導電板45、ターミナル4
6、導入ブロツク26、水路管28,29を介し
てマグネトロン型スパツタカソード27に導入さ
れターゲツト34とシールド管32の上端部との
間で放電を行う。
A gear 42 is fixed to the lower end of the shield tube 32, and a gear 42 is attached to the rotating shaft of a motor 44.
3, the shield tube 32 rotates as the motor 44 rotates, and the sputter electrode 4 consisting of the magnetron type sputter cathode 27, target 34, etc.
is rotated from a position facing the substrate 5 to a retracted position shown by a dashed line in the figure where vapor deposition is not hindered. The sputter current from the sputter power supply 25 is transmitted to the matching box 24, the conductive plate 45, and the terminal 4.
6. It is introduced into the magnetron type sputter cathode 27 via the introduction block 26 and the water pipes 28 and 29, and a discharge is generated between the target 34 and the upper end of the shield tube 32.

以上述べた如く、本実施例では同一真空容器内
に蒸着源とスパツタ電極を設け、基板を固定して
蒸着とスパツタの切替えは可動スパツタ電極又は
可動スパツタ電極と可動蒸着源の両方で行う様に
した為、基板搬送は不用となり、基板、基板ホル
ダー、マスク、基板加熱ヒータも各1個でよく、
更に基板とマスクの位置合せは最初に1回行うだ
けで真空を破ることなく同一パターンの蒸着膜、
スパツタ膜を連続して積層形成することが可能と
なつた。
As described above, in this example, the evaporation source and sputtering electrode are provided in the same vacuum container, the substrate is fixed, and switching between evaporation and sputtering is performed using the movable sputter electrode or both the movable sputter electrode and the movable evaporation source. Therefore, there is no need to transport the substrate, and only one substrate, one substrate holder, one mask, and one substrate heater are required.
Furthermore, by aligning the substrate and mask only once at the beginning, the same pattern of deposited film can be obtained without breaking the vacuum.
It has become possible to form sputtered films in a continuous manner.

以上説明したように本発明によれば、ヒータを
有する基板ホルダを固定することを可能にして積
層パターンの位置ずれを少なくすると共にスパツ
タ源が旋回できるように軸受によつて支持して真
空容器内に侵入する発塵量、脱ガス量を低減し、
高質の積層膜を成膜できる作用効果を奏する。
As explained above, according to the present invention, it is possible to fix the substrate holder having a heater to reduce the positional shift of the laminated pattern, and also to support it with a bearing so that the sputter source can rotate inside the vacuum container. Reduces the amount of dust and outgassing that enters the
It has the effect of being able to form a high quality laminated film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は、従来の実施例を説明する為
の図、第4図、及び第5図は本発明による一実施
例を説明する為の図、第6図は第4図、及び第5
図に示すスパツタ電極部を詳細に示した図であ
る。 1……真空容器、2……真空排気ポンプ、3…
…蒸着源、4……スパツタ電極、5……基板、6
……マスク、7……基板ホルダー、8……主軸、
9……アーム、10……吊り金具、11……位置
決めボール、12……マスクホルダー、13……
位置決め穴、14……蒸着用シヤツタ、15……
スパツタ用シヤツタ、16……基板加熱ヒータ、
17,18,19……駆動モータ、20,21,
22……ギヤ例、23……蒸着用電源、24……
マツチングボツクス、25……高周波スパツタ用
電源、25′……直流スパツタ用電源、26……
導入ブロツク、27……マグネトロン型スパツタ
カソード、28……送水管、29……排水管、3
0,31……Oリング、32……シールド管、3
3……絶縁部材、34……ターゲツト、35……
シールブロツク、36,37……Oリング、38
……Oリング、39……フランジ、40……軸受
け、41……Oリング、42,43……ギヤ、4
4……モータ、45……導電板、46……ターミ
ナル、47……アクチユエータ。
1 to 3 are diagrams for explaining a conventional embodiment, FIGS. 4 and 5 are diagrams for explaining an embodiment according to the present invention, and FIG. 6 is a diagram for explaining an embodiment according to the present invention. and fifth
FIG. 3 is a diagram showing details of the sputter electrode section shown in the figure. 1... Vacuum container, 2... Vacuum exhaust pump, 3...
... Vapor deposition source, 4 ... Sputter electrode, 5 ... Substrate, 6
...Mask, 7...Substrate holder, 8...Spindle,
9... Arm, 10... Hanging bracket, 11... Positioning ball, 12... Mask holder, 13...
Positioning hole, 14... Shutter for vapor deposition, 15...
Shutter for sputtering, 16...Substrate heater,
17, 18, 19... Drive motor, 20, 21,
22... Gear example, 23... Power source for vapor deposition, 24...
Matching box, 25... Power supply for high frequency sputter, 25'... Power supply for DC sputter, 26...
Introduction block, 27... Magnetron type sputter cathode, 28... Water pipe, 29... Drain pipe, 3
0, 31...O ring, 32...shield tube, 3
3... Insulating member, 34... Target, 35...
Seal block, 36, 37...O ring, 38
...O ring, 39 ... flange, 40 ... bearing, 41 ... O ring, 42, 43 ... gear, 4
4... Motor, 45... Conductive plate, 46... Terminal, 47... Actuator.

Claims (1)

【特許請求の範囲】 1 所定の雰囲気を有する容器と、蒸着膜とスパ
ツタ膜とを積層する基板を下方に向けて取り付
け、且つ上記基板を加熱するヒータを備え、更に
上記容器の上部に設けた基板ホルダと、上記基板
の下方に近接して設置されたマスクと、蒸着する
とき上記マスクに対向する成膜位置に位置すべ
く、上記容器に下部に設けられ、上記容器の外側
に設けられた蒸着用電源に接続された蒸着源と、
該蒸着源の上部に開閉できるように設けられた蒸
着用シヤツタと、上記成膜位置から水平方向に偏
心した上記容器の下部位置に設けられた軸受と、
該軸受に回転自在に支持された回転軸と該回転軸
の上記容器内側を折り曲げて上記マスクと上記蒸
着源との間に位置すべく回転軸に一体にし、且つ
ターゲツトを上記マスクに向けて載置し、上記回
転軸を介して容器の外側に設けられたスパツタ用
電源に接続するように構成されたスパツタ電極と
上記回転軸を旋回させるべく、上記容器の外側に
設けた駆動源とを有するスパツタ源とを備え付け
たことを特徴とする積層薄膜成膜装置。 2 上記蒸着源を、蒸着するとき成膜位置に移動
し、スパツタするとき支障のない位置に退避でき
るように移動可能に形成したことを特徴とする特
許請求の範囲第1項記載の積層薄膜成膜装置。 3 上記スパツタ源のスパツタ電極を冷却する冷
却水導入管を上記回転軸内に配設したことを特徴
とする特許請求の範囲第1項記載の積層薄膜成膜
装置。
[Claims] 1. A container having a predetermined atmosphere, a substrate on which a vapor-deposited film and a sputtered film are to be laminated is attached facing downward, and a heater is provided to heat the substrate, and further provided on the top of the container. a substrate holder, a mask installed close to the bottom of the substrate, and a mask provided at the bottom of the container and outside the container so as to be located at a film forming position opposite to the mask during vapor deposition. a deposition source connected to a power supply for deposition;
a vapor deposition shutter provided above the vapor deposition source so that it can be opened and closed; a bearing provided at a lower position of the container horizontally eccentric from the film forming position;
A rotating shaft rotatably supported by the bearing, an inner side of the container of the rotating shaft being bent to be integrated with the rotating shaft so as to be positioned between the mask and the vapor deposition source, and a target is placed toward the mask. and a sputtering electrode configured to be connected to a sputtering power source provided outside the container via the rotating shaft, and a drive source provided outside the container to rotate the rotating shaft. A laminated thin film deposition apparatus characterized in that it is equipped with a sputter source. 2. The laminated thin film forming method according to claim 1, wherein the vapor deposition source is movable so that it can be moved to a film forming position during vapor deposition and retreated to a position where there is no problem during sputtering. Membrane device. 3. The laminated thin film deposition apparatus according to claim 1, wherein a cooling water introduction pipe for cooling the sputter electrode of the sputter source is disposed within the rotating shaft.
JP5951182A 1982-04-12 1982-04-12 Method and device for formation of thin film Granted JPS58177463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5951182A JPS58177463A (en) 1982-04-12 1982-04-12 Method and device for formation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5951182A JPS58177463A (en) 1982-04-12 1982-04-12 Method and device for formation of thin film

Publications (2)

Publication Number Publication Date
JPS58177463A JPS58177463A (en) 1983-10-18
JPS6335709B2 true JPS6335709B2 (en) 1988-07-15

Family

ID=13115351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5951182A Granted JPS58177463A (en) 1982-04-12 1982-04-12 Method and device for formation of thin film

Country Status (1)

Country Link
JP (1) JPS58177463A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017070A (en) * 1983-07-11 1985-01-28 Nippon Telegr & Teleph Corp <Ntt> Method and device for forming thin film
JPS61144029A (en) * 1984-12-17 1986-07-01 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for manufacturing silicon oxide film containing phosphorus
JPH07105345B2 (en) * 1985-08-08 1995-11-13 日電アネルバ株式会社 Substrate processing equipment
JPH06192821A (en) * 1991-03-26 1994-07-12 Toyo Eng Corp Laser pvd device
KR0108395Y1 (en) * 1993-12-01 1997-10-21 Hyundai Electronics Ind Sputtering system for semiconductor device
TW490714B (en) 1999-12-27 2002-06-11 Semiconductor Energy Lab Film formation apparatus and method for forming a film
JP4167833B2 (en) 2002-01-24 2008-10-22 株式会社ユーテック Film forming apparatus, oxide thin film forming substrate and manufacturing method thereof
EP1369499A3 (en) * 2002-04-15 2004-10-20 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating light-emitting device and apparatus for manufacturing light-emitting device
JP5256466B2 (en) * 2008-08-28 2013-08-07 株式会社ユーテック Film forming apparatus and oxide thin film forming substrate manufacturing method
KR102160155B1 (en) * 2013-03-14 2020-09-28 삼성디스플레이 주식회사 Vacuum evaporating apparatus
JP6627181B1 (en) * 2018-07-31 2020-01-08 キヤノントッキ株式会社 Evaporation source and evaporation equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546760U (en) * 1978-09-22 1980-03-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546760U (en) * 1978-09-22 1980-03-27

Also Published As

Publication number Publication date
JPS58177463A (en) 1983-10-18

Similar Documents

Publication Publication Date Title
US6641702B2 (en) Sputtering device
US5267607A (en) Substrate processing apparatus
KR100762856B1 (en) Manufacturing method of mask blank, and sputtering target for the same
JPS6335709B2 (en)
US3641973A (en) Vacuum coating apparatus
JPH0768613B2 (en) Liquid substance sputter deposition method
WO2007066511A1 (en) Film forming apparatus and method of forming film
CN112159967B (en) Ion beam deposition equipment for infrared metal film and film deposition method
US11932934B2 (en) Method for particle removal from wafers through plasma modification in pulsed PVD
JP4167833B2 (en) Film forming apparatus, oxide thin film forming substrate and manufacturing method thereof
US4472453A (en) Process for radiation free electron beam deposition
JP3441002B2 (en) Sputtering equipment
CN112481595A (en) Ion beam sputtering coating equipment
US11286554B2 (en) Sputtering apparatus
JP2019060015A (en) Apparatus and method for reducing particle in physical vapor phase deposition chamber
CN111733394A (en) Twin rotary sputtering cathode device capable of timely adjusting angle of magnetic field
JP3416853B2 (en) Sputtering method
JP2000323551A (en) Substrate processing apparatus
JP3036895B2 (en) Sputtering equipment
JPS59215485A (en) Planar magnetron type sputtering device
JP2003293129A (en) Sputtering system
JPS59208074A (en) Sheet type film forming device
JPH06450Y2 (en) Coil movable ion plating device
JPH0726378A (en) Film forming substrate holding device in film forming device
JPS6396268A (en) Sputtering device