JPS6335605A - Crosslinked polyglucan and its production - Google Patents

Crosslinked polyglucan and its production

Info

Publication number
JPS6335605A
JPS6335605A JP17751286A JP17751286A JPS6335605A JP S6335605 A JPS6335605 A JP S6335605A JP 17751286 A JP17751286 A JP 17751286A JP 17751286 A JP17751286 A JP 17751286A JP S6335605 A JPS6335605 A JP S6335605A
Authority
JP
Japan
Prior art keywords
polyglucan
glucoamylase
amylase
gel
glucose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17751286A
Other languages
Japanese (ja)
Other versions
JPH0576961B2 (en
Inventor
Masahiko Ishida
昌彦 石田
Yusaku Nishimura
勇作 西村
Ryoichi Haga
良一 芳賀
Masami Tsuchiya
土屋 雅美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17751286A priority Critical patent/JPS6335605A/en
Publication of JPS6335605A publication Critical patent/JPS6335605A/en
Publication of JPH0576961B2 publication Critical patent/JPH0576961B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

PURPOSE:To obtain a crosslinked polyglucan which can purify glucoamylase, by highly selective adsorption, by crosslinking a specified polyglucan having a nonreducing glucose residue as an open terminal. CONSTITUTION:The purpose crosslinked polyglucan is obtained by crosslinking a polyglucan formed by bonding branches having a nonreducing glucose residue as an open terminal and branched off from a main chain though alpha-1,6 bonds to the main chain composed of glucose units bonded through alpha-1,4 bonds until its solubility in water at 60 deg.C is decreased to 0.01 or below. Preferably, the number of glucose units polymerized is decreased by adding amylase to the polyglucan before it is crosslinked. As said amylase, at least either of beta-amylase and glucoamylase is usually used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ポリグルカンに係り、特にグルコアミラーゼ
を高選択的に吸着精製できる架橋化ポリグルカン及びそ
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to polyglucan, and particularly to a crosslinked polyglucan that can highly selectively adsorb and purify glucoamylase, and a method for producing the same.

[従来の技術〕 現在、ぶどう糖及び異性化糖は、殿粉をα−アミラーゼ
とグルコアミラーゼを用いて加水分解して工業生産され
ている。このように、アミラーゼ類(殿粉加水分解酵素
群)は殿粉から有用な低分子物質を工業生産するのに極
めて有用である。
[Prior Art] Currently, glucose and high fructose corn syrup are industrially produced by hydrolyzing starch using α-amylase and glucoamylase. As described above, amylases (starch hydrolase group) are extremely useful in the industrial production of useful low-molecular substances from starch.

一般に、酵素は酵素生産菌を液体培養して製造される。Generally, enzymes are produced by liquid culturing enzyme-producing bacteria.

工業用酵素製剤としては、培養濾液をそのまま濃縮した
濃縮液か、乾燥した粉末、あるいは分離精製して得られ
る濃縮液もしくはその乾燥粉末として得られる。しかし
、培養濾液の濃縮液や粗乾燥品には、培養液中に含まれ
る不快臭成分及び着色成分が多量に含まれるため、目的
とする多い、このため、酵素反応を利用して有用物質を
生産する際には、これら不利益となる不純物を除去する
ことが必要となってくる。このため、後続の反応生成物
の分離精製工程に著しく負担をかける。一方、一般的な
精製方法として知られる塩析法や液体クロマト単独では
部分的な濃縮が限界であり、分離精度を高めるためには
これらの操作条件、例えば沈殿剤の種類、濃度*PHe
充填剤の種類、吸脱着液の種類等、を変えこれらを組み
合せた複雑なプロセスを経ることが必要となる。それだ
けではなく、例えば、特開昭61−12284号公報に
記載されるように操作には沈殿剤、溶出剤として多量の
塩を添加することになり、次工程へ移る際の着塩操作も
行わねばならない1以上のことから、これら公知の精製
方法は専ら研究用試薬等に限定されている。なかでも、
精製が困難とされているグルコアミラーゼを選択的に効
率よく吸着できる吸着剤が開発されれば、培養濾液から
酵素を一段で高純度に濃縮精製できる。
Industrial enzyme preparations can be obtained as a concentrated solution obtained by concentrating the culture filtrate as it is, as a dried powder, or as a concentrated solution obtained by separation and purification or as a dried powder thereof. However, concentrated liquids and crudely dried culture filtrates contain a large amount of unpleasant odor components and coloring components contained in the culture solution, so they cannot be used for many purposes.Therefore, useful substances can be extracted using enzyme reactions. During production, it is necessary to remove these disadvantageous impurities. This places a significant burden on the subsequent separation and purification process of the reaction product. On the other hand, the salting-out method and liquid chromatography alone, which are known as general purification methods, have a limit of partial concentration, and in order to improve the separation accuracy, these operating conditions, such as the type of precipitant, concentration *PHe
It is necessary to go through a complicated process that involves changing the type of filler, the type of adsorption/desorption liquid, etc., and combining these. Not only that, for example, as described in JP-A-61-12284, a large amount of salt is added as a precipitant and eluent during the operation, and a salting operation is also performed when moving to the next step. For one or more reasons, these known purification methods are limited to research reagents and the like. Among them,
If an adsorbent that can selectively and efficiently adsorb glucoamylase, which is difficult to purify, is developed, it will be possible to concentrate and purify the enzyme from culture filtrate to high purity in one step.

発明者らは、最近、α−アミラーゼの精製方法として研
究されはじめたアミロース(グルコースの直鎖状ポリマ
ー)を吸着剤とする吸着法に着目し、これをグルコアミ
ラーゼに適用してみた。しかし、吸着容量が極めて低く
、グルコアミラーゼに対しては実用的でないことが判明
した6〔発明が解決しようとする問題点〕 本発明の目的は、培養液などのグルコアミラーゼ以外に
多種多様の不純物を含むグルコアミラーゼ含有液から、
該酵素のみを選択的に効率よく吸着できる吸着剤として
リポリグルカンおよびその製造方法を提供することにあ
る。
The inventors focused on an adsorption method using amylose (a linear polymer of glucose) as an adsorbent, which has recently begun to be studied as a method for purifying α-amylase, and applied this to glucoamylase. However, it has been found that the adsorption capacity is extremely low and it is not practical for glucoamylase.6 [Problems to be solved by the invention] The purpose of the present invention is to absorb a wide variety of impurities other than glucoamylase such as culture fluid. From a glucoamylase-containing solution containing
The object of the present invention is to provide lipolyglucan as an adsorbent that can selectively and efficiently adsorb only the enzyme and a method for producing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、α−アミラーゼの精製方法として、従来
から公知であるアミロース(グルコースの直鎖状ポリマ
ー)を吸着剤とする吸着法に着目し、これをグルコアミ
ラーゼに適用してみた。しかし、吸着容量は極めて低く
、実用的でないことが判明した。グルコアミラーゼの吸
着剤を探索した結果、分岐度の高いグリコーゲンに効果
的に吸着されることならびにアミロペクチンにも比較的
吸着されやすい現象を見い出した。
The present inventors focused on a conventionally known adsorption method using amylose (a linear polymer of glucose) as an adsorbent as a method for purifying α-amylase, and applied this to glucoamylase. However, the adsorption capacity was found to be extremely low and impractical. As a result of searching for an adsorbent for glucoamylase, we discovered that it is effectively adsorbed to glycogen, which has a high degree of branching, and that it is also relatively easily adsorbed to amylopectin.

しかし、これらの高分岐多糖類は水溶性であり、吸着剤
としては極めて操作しにくいことを知った。
However, we learned that these highly branched polysaccharides are water-soluble and extremely difficult to manipulate as adsorbents.

すなわち、高分岐多糖類や粉末やゲルを添加しても、こ
れらには吸着されず、溶解している高分岐多糖類の分子
とゲルコアラーゼ分子とが複合体を形成し溶解したまま
となる。本発明者らは鋭意研究を続けた結果、グリコー
ゲンを化学的に架橋して不溶化することにより上記問題
を解決し、本発明に到達した。
That is, even if a hyperbranched polysaccharide, powder, or gel is added, it is not adsorbed by these, and the dissolved hyperbranched polysaccharide molecules and gel coalase molecules form a complex and remain dissolved. As a result of intensive research, the present inventors solved the above problem by chemically crosslinking glycogen to make it insolubilized, and thus arrived at the present invention.

本発明の第1の発明の特徴は、グルコースがα−1,4
結合により重合した主鎖に、グルコースがα−1,4結
合により重合し、α−1,6結合により主鎖から分岐し
た。非還元性グルコース残基を開放末端とする分岐鎖が
結合してなるポリグルカンを、分子間1分子内で架橋し
てなる架橋化ポリグルカンにあり、好ましくは、分岐鎖
の分岐点に相当するグルコース残基が9分子生金グルコ
ース残基数の少なくとも5%以上を占め、また分岐鎖の
グルコース重合数が2以上6以下である架橋型ポリグル
カンにある。また、第2の発明の特徴は、グルコースが
μm1,4結合により重合した主鎖に、グルコースがα
−1,4結合により重合し、α−1,6結合により主鎖
から分岐した、非還元性グルコース残基を開放末端とす
る分岐鎖が結合してなるポリグルカンを、水に対する溶
解度が60℃において0.01 以下となるまで架橋処
理する架橋化ポリグルカンの製造方法にあり、好ましく
は、架橋化前のポリグルカン番こアミラーゼを添加して
、グルコース重合数を短縮化する点にあり、アミラーゼ
としては、β−アミラーゼタグルコアミラーゼのいずれ
か一方もしくは両方が通常、用いられる。
The first feature of the present invention is that glucose is α-1,4
Glucose was polymerized into the main chain through α-1,4 bonds and branched from the main chain through α-1,6 bonds. A crosslinked polyglucan is obtained by crosslinking a polyglucan formed by linking branched chains with non-reducing glucose residues at open ends within one molecule, and preferably corresponds to the branching point of the branched chain. The cross-linked polyglucan has glucose residues accounting for at least 5% of the number of nine molecules of raw gold glucose residues, and the number of branched glucose polymerizations is 2 or more and 6 or less. Further, the feature of the second invention is that glucose is present in the main chain polymerized by μm1,4 bonds.
A polyglucan that is polymerized by -1,4 bonds, branched from the main chain by α-1,6 bonds, and has branched chains with non-reducing glucose residues at open ends has a solubility in water of 60°C. The method for producing a crosslinked polyglucan involves crosslinking the polyglucan before crosslinking to 0.01 or less, preferably by adding amylase to the polyglucan before crosslinking to shorten the number of glucose polymerization. As such, either one or both of β-amylase and taglucoamylase are usually used.

本発明になるポリグルカンに適用しうる酵素番よ、α−
1,4グリコンド結合の非還元性末端側を加水分解する
アミラーゼ、いわゆるグルコアミラーゼ(γ−アミラー
ゼ)全般に適用できる0本酵素としてはグルコアミラー
ゼであれば、その起源生物に特に限定されるものではな
い0例えば、アスペルギルス属、リゾープス属等の糸状
菌を起源とするグルコアミラーゼ、バシルス属、クロス
トリジウム属などの細菌起源のグルコアミラーゼであっ
ても適用できる。
The enzyme number applicable to the polyglucan of the present invention is α-
This enzyme can be applied to all amylases that hydrolyze the non-reducing end of the 1,4 glycond bond, so-called glucoamylase (γ-amylase).As long as the enzyme is glucoamylase, it is not particularly limited to its source organism. For example, glucoamylase originating from filamentous fungi such as Aspergillus and Rhizopus, and glucoamylase originating from bacteria such as Bacillus and Clostridium can also be applied.

本発明の吸着剤にするための原料のグルカンとしては、
高度に分岐したグルカンが用いられる。
The glucans used as raw materials for making the adsorbent of the present invention include:
A highly branched glucan is used.

分岐の程度は、分岐点に相当するグルコース残基が、分
子中のグルコース残基総数の5%以上あれば用いること
ができる。15%以上の分岐点を含むグルカンならなお
好適である。したがって、グルカンの例としてはグリコ
ーゲンや高度分岐型のアミロペクチンがあげられる。こ
れらグリコーゲンや高度分岐型アミロペクチンも起源生
物には特に限定されない0例えばグリコーゲンは動物起
源のものであっても微生物起源のものでも使用できる。
The degree of branching can be used as long as the glucose residues corresponding to the branching points account for 5% or more of the total number of glucose residues in the molecule. Glucans containing 15% or more branch points are even more preferred. Therefore, examples of glucan include glycogen and highly branched amylopectin. The source organisms of glycogen and highly branched amylopectin are not particularly limited; for example, glycogen of animal origin or microbial origin can be used.

また、これらのグルカンとしては、上述した天然原料か
ら分離したグルカンだけでなく、これらの分岐を酵素処
理で短鎖化した加ニゲルカンを用いてもよい、グルカン
の短鎖化処理には、前述したようにグルコアミラーゼも
しくはβ−アミラーゼが用いられる。これらの酵素の種
類は特に限定されない、処理時の反応条件は基質のグル
カンの種類、濃度等により適宜選択されるが、分岐鎖の
グルコース重合数2以上、6以下にとどめる様、適宜調
節される。
In addition, as these glucans, not only glucan separated from the natural raw materials mentioned above, but also gelcan whose branches are shortened by enzymatic treatment may be used. Glucoamylase or β-amylase is used. The types of these enzymes are not particularly limited, and the reaction conditions during treatment are appropriately selected depending on the type and concentration of the substrate glucan, and are appropriately adjusted so that the number of branched chain glucose polymerizations is 2 or more and 6 or less. .

グルカンの分岐度が5%未満になると、グルコアミラー
ゼの吸着容量が低下し、実用的でない。
When the degree of branching of glucan is less than 5%, the glucoamylase adsorption capacity decreases, making it impractical.

上述したグルカンの架橋方法は特に限定されないが、そ
の架橋の程度は、グルコアミラーゼを吸着する際に使用
される温度である60℃以下において、100gの水に
対し、本発明なる吸着剤の溶解解が0.Olg 以下に
なる様に、分子間の架橋を行えばよい。したがって、架
橋処理により調製された本発明なる吸着剤は水和性のゲ
ル又は固体である。
The above-mentioned glucan crosslinking method is not particularly limited, but the degree of crosslinking is determined by dissolving the adsorbent of the present invention in 100g of water at 60°C or lower, which is the temperature used to adsorb glucoamylase. is 0. Intermolecular crosslinking may be performed so that the molecular weight becomes less than or equal to Olg. Therefore, the adsorbent according to the invention prepared by a crosslinking process is a hydratable gel or solid.

架橋反応及び条件は、グルカンの種類、濃度。The crosslinking reaction and conditions include the type and concentration of glucan.

吸着時の使用条件により適宜選択される1反応としては
例えば、エビハロゲンヒドリンによりグルコース残基の
OH基間の架橋等があげられる。エビハロゲンとしては
エピクロルヒドリンが最も実用的である。エビハロゲン
の場合その添加量は原料ポリグルカンの溶液の0.5〜
3倍が好適である。[料液中のポリグルカン濃度は少な
くとも1%以上が好ましい、アルカリは苛性ソーダ、苛
性カリ等の強アルカリが用いられるが、その濃度はIN
以上でエビハロゲンのハロゲンに対し等量以上のアルカ
リを含むことが必要である。温度は30℃以上で行われ
る1時間は温度、アルカリ濃度により適宜選定されるが
60℃の際30分間以上必要である。
One reaction that is appropriately selected depending on the usage conditions during adsorption includes, for example, crosslinking between OH groups of glucose residues using shrimp halogenhydrin. Epichlorohydrin is the most practical shrimp halogen. In the case of shrimp halogen, the amount added is 0.5 to 0.5 to the raw material polyglucan solution.
Three times is preferred. [The polyglucan concentration in the preparation solution is preferably at least 1% or more. As the alkali, a strong alkali such as caustic soda or caustic potash is used, but the concentration is IN
In the above, it is necessary to contain an amount of alkali equal to or more than the halogen of the shrimp halogen. The temperature for 1 hour at 30°C or higher is appropriately selected depending on the temperature and alkali concentration, but 30 minutes or more at 60°C is required.

〔作用〕[Effect]

本発明のポリグルカンは、分岐鎖の長さがグルコース数
2〜6とグルコアミラーゼ分子鎖と同程度の長さである
ことから、酵素生産菌の培養濾液など多種多様の有機性
、無機性不純物及び他種の酵素を含む液中から、本発明
実施例に示すように、グルコアミラーゼを選択的に吸着
できる。特に蛋きる。
The polyglucan of the present invention has a branched chain length of 2 to 6 glucose, which is about the same length as the glucoamylase molecular chain, so it is free from a wide variety of organic and inorganic impurities such as culture filtrate of enzyme-producing bacteria. As shown in the Examples of the present invention, glucoamylase can be selectively adsorbed from liquids containing other types of enzymes. It's especially eggy.

また、本発明のポリグルカンは、いわゆる分子間および
/または分子内三次元架橋されており、このため水に不
溶となっており、単に吸着したグルコアミラーゼを脱着
させることにより、容易に培養濾液から一拠に精製でき
、精製プロセスを大幅に簡略化可能である。
Furthermore, the polyglucan of the present invention has so-called intermolecular and/or intramolecular three-dimensional crosslinking, making it insoluble in water, and can be easily removed from the culture filtrate by simply desorbing the adsorbed glucoamylase. It can be purified in one step, and the purification process can be greatly simplified.

〔実施例〕〔Example〕

実施例1 大腸菌のグリコーゲン(推定分子量4X10I!!。 Example 1 Escherichia coli glycogen (estimated molecular weight 4X10I!!)

推定分岐度25%)の乾燥粉末5gに0.05M酢酸ソ
ーダ緩衝液(pH5,0)を95 m Q添加し、攪拌
しながら70’Cに加熱して溶解した・これを50℃ま
で冷却し、そのうち30mmを取りアスペルギルス属(
Aspergillus orizea I F 0−
4M6)起源のグルコアミラーゼ10単位を溶解したグ
ルコアミラーゼ溶液2mAを添加し、40℃に保持した
95 mQ of 0.05 M sodium acetate buffer (pH 5,0) was added to 5 g of dry powder with estimated degree of branching (estimated degree of branching: 25%), and dissolved by heating to 70'C with stirring.This was cooled to 50°C. , take 30mm of it and find the Aspergillus genus (
Aspergillus orizea IF 0-
4M6) 2 mA of a glucoamylase solution containing 10 units of the original glucoamylase was added and maintained at 40°C.

2時間後のグルコース生成量を測定した結果、供試グリ
コーゲン分子のグルコース残基数に対し約30%に達し
た。その時点の分子量は6X104であった。
As a result of measuring the amount of glucose produced after 2 hours, it reached approximately 30% of the number of glucose residues in the sample glycogen molecule. The molecular weight at that time was 6X104.

水液を透析用セロファンチューブに充填し、10℃の水
5aに対し10時間透析した。内容液を凍結乾燥し、白
色粉末0.9 g  を得た。
The aqueous solution was filled into a cellophane tube for dialysis, and dialyzed against water 5a at 10° C. for 10 hours. The contents were freeze-dried to obtain 0.9 g of white powder.

これに水10mΩを添加し、攪拌しながら70℃に加熱
して溶解して粘性の液体とした1次に6Nの苛性ソーダ
33mmを添加し、これを攪拌機と還流冷却器を付した
200mmの反応プラスコに入れた0次いで、100m
flのエピクロルヒドリンを加え、20rp■で攪拌し
つつ、70℃で5時間加熱した。
To this was added 10 mΩ of water, and heated to 70°C with stirring to dissolve it into a viscous liquid.Firstly, 33 mm of 6N caustic soda was added, and this was placed in a 200 mm reaction plastic vessel equipped with a stirrer and a reflux condenser. 0 then 100m
fl of epichlorohydrin was added, and the mixture was heated at 70° C. for 5 hours while stirring at 20 rpm.

反応終了後、内容物を室温に冷却し、下部の水層中のゲ
ル状物を濾別した。このゲル状物にエタノール50m1
2を添加し、攪拌後濾過してゲル状物を回収した1回収
ゲルを再度エタノール50mAに再懸濁し、濾過してゲ
ル状物を回収した。
After the reaction was completed, the contents were cooled to room temperature, and the gel-like substance in the lower aqueous layer was filtered off. Add 50ml of ethanol to this gel.
2 was added, stirred and filtered to recover a gel-like substance. The recovered gel in 1 was resuspended in 50 mA of ethanol and filtered to recover a gel-like substance.

本操作をさらに3回繰り返した6次に、蒸溜水50mΩ
に懸濁し、濾別した0本操作を3回繰り返した後再度、
エタノール50 m mに分散した。
After repeating this operation three more times, distilled water 50mΩ
After repeating the 0 bottle operation 3 times,
Dispersed in 50 m m ethanol.

これを濾過し、ゲル状物を乾燥後、粉砕し、白色粉末0
.7 gを得た。
Filter this, dry the gel-like substance, and then crush it to form a white powder with 0
.. 7 g was obtained.

本粉末の60℃における水への溶解度は水100gに対
し、O,001g であった、さらに1本粉末を60℃
水に1日間浸漬した後の水和ゲルの本粉末に対する重量
比は13.2であった6本粉末の非還元末端基を測定に
より分岐鎖の平均重合度は4.2であった1次に1本粉
末へのグルコアミラーゼの吸着性を見るため、以下の実
験を行った。
The solubility of this powder in water at 60°C was O,001g per 100g of water.
The weight ratio of the hydrated gel to the main powder after being immersed in water for one day was 13.2.The average degree of polymerization of the branched chains was 4.2 by measuring the non-reducing end groups of the six powders. The following experiment was conducted to examine the adsorption of glucoamylase to the powder.

アスペルギルス・オリゴI FO−4176の培養液4
0mΩ(α−アミラーゼ0.50 単位/mQ、グルコ
アミラーゼ1.30単位/mΩを含む)を6℃に冷却し
、上記の吸着剤粉末0.2 gを添加し、5 rp+*
で2分間混合して接触させた。
Aspergillus oligo I FO-4176 culture solution 4
0 mΩ (containing α-amylase 0.50 units/mQ, glucoamylase 1.30 units/mΩ) was cooled to 6°C, 0.2 g of the above adsorbent powder was added, and 5 rp+*
for 2 minutes.

これを濾過し、濾液中のα−アミラーゼ活性、グルコア
ミラーゼ活性を測定した。
This was filtered, and α-amylase activity and glucoamylase activity in the filtrate were measured.

上澄液中のα−アミラーゼは0.50単位/との接触前
の酵素濃度から接触後の酵素濃度を減じた値として計算
した。その結果、培養濾液中に存在したα−アミラーゼ
は実質上吸着されず、グルコアミラーゼの99%(1,
29単位)が吸着された。
The α-amylase in the supernatant was calculated as the value obtained by subtracting the enzyme concentration after contact from the enzyme concentration before contact with 0.50 units/. As a result, α-amylase present in the culture filtrate was not substantially adsorbed, and 99% of glucoamylase (1,
29 units) were adsorbed.

次に、本発明吸着剤の代りにα−アミラーゼ吸着剤とし
て公知のアミロース(馬鈴薯起源)を用いてα−アミラ
ーゼ及びグルコアミラーゼの吸着実施を比較例として実
施した。
Next, as a comparative example, adsorption of α-amylase and glucoamylase was carried out using amylose (derived from potato), which is known as an α-amylase adsorbent, instead of the adsorbent of the present invention.

比較例1 実施例と同一ロットのアスペルギルス・オリゴI FO
−4176の培養液40mA(a−アミラーゼ0.50
単位/ m fl 、グルコアミラーゼ1.30単位/
 m Qを含む)を6℃に冷却し、アミロース粉末0.
2 gを添加し、Srp麿で2分間混合して接触させた
。これを濾過し、濾液中のα−アミラーゼ活性及びグル
コアミラーゼ活性を測定した。
Comparative Example 1 Aspergillus oligo IFO from the same lot as the example
-4176 culture solution 40 mA (a-amylase 0.50
units/m fl, glucoamylase 1.30 units/
m Q) was cooled to 6°C and amylose powder 0.
2 g was added and mixed for 2 minutes with a SRP roller to make contact. This was filtered, and α-amylase activity and glucoamylase activity in the filtrate were measured.

上澄液中のα−アミラーゼは0.02単位/m・Ω、グ
ルコアミラーゼは1.29 単位であった。
The α-amylase in the supernatant was 0.02 units/m·Ω, and the glucoamylase was 1.29 units.

上記アミロース粉末に吸着した酵素量を、アミロースと
の接触前の酵素濃度から接触後の酵素濃度を減じた値と
して計算した。その結果、培養濾過中に存在したα−ア
ミラーゼはその96%(0,48単位/ m Q )が
吸着され、グルコアミラーゼは1%(0,01単位/m
Ω)と事買上吸着されなかった。
The amount of enzyme adsorbed to the amylose powder was calculated as the value obtained by subtracting the enzyme concentration after contact with amylose from the enzyme concentration before contact with amylose. As a result, 96% (0.48 units/m Q ) of α-amylase present in the culture filtration was adsorbed, and 1% (0.01 units/m Q ) of glucoamylase was adsorbed.
Ω) and things were not adsorbed on purchase.

以下1本発明の実施例を用いて、さらに詳しく招介する
The present invention will be explained in more detail below using an embodiment of the present invention.

実施例2 大腸菌のグリコーゲン(推定分子量4X10B。Example 2 E. coli glycogen (estimated molecular weight 4X10B).

推定分岐度25%)の乾燥粉末Logに水90mMを添
加し、攪拌しながら、70’Cに加熱して溶解して粘性
の液体とした。これに6Nの苛性ソーダ33mQを添加
し、これを攪拌機と還流冷却器を付した500mmの反
応フラスコに入れた。
90mM of water was added to the dry powder Log with an estimated degree of branching of 25%), and while stirring, it was heated to 70'C and dissolved to form a viscous liquid. To this was added 33 mQ of 6N caustic soda, and the mixture was placed in a 500 mm reaction flask equipped with a stirrer and a reflux condenser.

次いで、140mjlのエピクロルヒドリンを加え、2
0rpmで攪拌しつつ、50℃で5時間加熱した。
Then add 140 mjl of epichlorohydrin and add 2
The mixture was heated at 50° C. for 5 hours while stirring at 0 rpm.

反応終了後、内容物を室温に冷却し、下部の水層中のゲ
ル状物を濾別した。このゲル状物にエタノール50 m
 Qを添加し、攪拌後濾過してゲル状物を回収した6回
収ゲルを再度エタノール50mQに再懸濁し、濾過して
ゲル状物を回収した。
After the reaction was completed, the contents were cooled to room temperature, and the gel-like substance in the lower aqueous layer was filtered off. Add 50 m of ethanol to this gel.
Q was added, stirred, and then filtered to recover a gel-like substance. The recovered gel in 6 was resuspended in 50 mQ of ethanol and filtered to recover a gel-like substance.

本操作をさらに3回繰り返した0次に、蒸溜水50 m
 Qに懸濁し、濾別した0本操作を3回繰り返した後再
度、エタノール50m1!に分散した。
After repeating this operation three more times, 50 m of distilled water was added.
After repeating the 0 operation of suspending in Q and filtering it 3 times, add 50 ml of ethanol again! dispersed into

これを濾過し、ゲル状物を乾燥後、粉砕し、白色粉末9
.2 gを得た。
This was filtered, and the gel-like substance was dried and ground, resulting in a white powder of 9.
.. 2 g was obtained.

本粉末の60℃における水への溶解度は水1o。The solubility of this powder in water at 60°C is 10.

gに対し、0.002g 以下であった。さらに、本粉
末を60℃水に1日間浸漬した後の水和ゲルの本粉末に
対する重量比は11.5であった。
g, it was 0.002g or less. Furthermore, after immersing this powder in 60°C water for 1 day, the weight ratio of the hydrated gel to this powder was 11.5.

次に、本粉末へのグルコアミラーゼの吸着性を見るため
、以下の実験を行った。
Next, in order to examine the adsorption of glucoamylase to this powder, the following experiment was conducted.

アスペルギルス・オリゴIFO−4176の培養液40
 m 41 (a −7ミ9−ゼ0.50 単位/m 
n 、グルコアミラーゼ1.30単位/m11を含む)
を6℃に冷却し、上記の吸着剤粉末0.2  gを添加
し、5 rpmで2分間混合して接触させた。
Culture solution of Aspergillus oligo IFO-4176 40
m 41 (a-7m9-ze0.50 unit/m
n, containing 1.30 units of glucoamylase/ml)
was cooled to 6° C., 0.2 g of the above adsorbent powder was added and contacted by mixing at 5 rpm for 2 minutes.

これを濾過し、濾過中のα−アミラーゼ活性、グルコア
ミラーゼ活性を測定した。
This was filtered, and α-amylase activity and glucoamylase activity during filtration were measured.

上澄液中のα−アミラーゼはO,SO単位/mα、グル
コアミラーゼは0.01単位/ m Qであった。上記
吸着剤に吸着した#素置を、吸着剤との接触前の酵素濃
度から接触後の酵素濃度を減じた値として計算した。そ
の結果、培養濾液中に存在したα−アミラーゼは実質上
吸着されず、グルコアミラーゼの99%(51,6単位
)が吸着された。
The α-amylase in the supernatant was O,SO units/mα, and the glucoamylase was 0.01 units/mQ. The #adsorbent adsorbed on the adsorbent was calculated as the value obtained by subtracting the enzyme concentration after contact from the enzyme concentration before contact with the adsorbent. As a result, α-amylase present in the culture filtrate was not substantially adsorbed, and 99% (51.6 units) of glucoamylase was adsorbed.

実施例3 大腸菌のグリコーゲン(推定分子量4X10”。Example 3 Escherichia coli glycogen (estimated molecular weight 4 x 10”).

推定分岐度25%)の乾燥粉末20gに水8゜mQを添
加し、攪拌しなからIONの苛性ソーダ40mj2を添
加し、これを攪拌機と還流冷却器を付した500mmの
反応フラスコに入れた0次いで、200mΩのエピクロ
ルヒドリンを加え、20rpmで攪拌しつつ、70℃で
48時間加熱した。
8 mQ of water was added to 20 g of dry powder with an estimated degree of branching of 25%), 40 mj2 of ION caustic soda was added without stirring, and this was placed in a 500 mm reaction flask equipped with a stirrer and a reflux condenser. , 200 mΩ of epichlorohydrin was added, and the mixture was heated at 70° C. for 48 hours while stirring at 20 rpm.

反応終了後、内容物を室温に冷却し、下部の水層中のゲ
ル状物を濾別した。このゲル状物にエタノール50 m
 Qを添加し、攪拌後濾過してゲル状物を回収した6回
収ゲルを再度エタノール50mQに再懸濁し、濾過して
ゲル状物を回収した。
After the reaction was completed, the contents were cooled to room temperature, and the gel-like substance in the lower aqueous layer was filtered off. Add 50 m of ethanol to this gel.
Q was added, stirred, and then filtered to recover a gel-like substance. The recovered gel in 6 was resuspended in 50 mQ of ethanol and filtered to recover a gel-like substance.

本操作をさらに3回繰り返した0次に、蒸溜水50mj
lに懸濁し、濾別した0本操作を3回繰り返した後、再
度エタノール50mflに分散した。
After repeating this operation three more times, 50 mj of distilled water was added.
After repeating this procedure three times in which the suspension was suspended in 50 mfl of ethanol and filtered, it was again dispersed in 50 mfl of ethanol.

これを濾過し、ゲル状物を乾燥後、粉砕し、白色粉末1
8.3  gを得た。
Filter this, dry the gel-like substance, and then crush it to form a white powder of 1
8.3 g was obtained.

本粉末の60℃における水への溶解度は水100gに対
し、0.00℃g 以下であった。さらに、本粉末を6
0℃水に1日間浸漬した後の水和ゲルの本粉末に対する
重量比は9.6であった。
The solubility of this powder in water at 60°C was 0.00°C or less per 100g of water. Furthermore, add 6 pieces of this powder.
The weight ratio of the hydrated gel to the present powder after being immersed in 0°C water for one day was 9.6.

次に、本粉末へのグルコアミラーゼの吸着性を見るため
、以下の実験を行った。
Next, in order to examine the adsorption of glucoamylase to this powder, the following experiment was conducted.

アスペルギルス・オリゴI FO−4176の培養液4
0mm(a−アミラーゼ0.50 単位/mΩ、グルコ
アミラーゼ1.30単位/mQを含む)を6℃に冷却し
、上記の吸着剤粉末0.2  gを添加し、Srp■で
2分間混合して接触させた。
Aspergillus oligo I FO-4176 culture solution 4
0 mm (containing 0.50 units/mΩ of a-amylase and 1.30 units/mQ of glucoamylase) was cooled to 6°C, 0.2 g of the above adsorbent powder was added, and mixed for 2 minutes with Srp■. I made contact with it.

これを濾過し、濾過中のα−アミラーゼ活性、グルコア
ミラーゼ活性を測定した。
This was filtered, and α-amylase activity and glucoamylase activity during filtration were measured.

上澄液中のα−アミラーゼは0.51単位/m Q 、
グルコアミラーゼは0.01単位/mΩであった。上記
吸着剤に吸着した酵素量を、吸着剤との接触前の酵素濃
度から接触後の酵素濃度を減じた値として計算した。そ
の結果、培養濾液中に存在したα−アミラーゼは実質上
吸着されず、グルコアミラーゼの99%(51,6単位
)が吸着された。
α-amylase in the supernatant was 0.51 units/m Q ,
Glucoamylase was 0.01 units/mΩ. The amount of enzyme adsorbed on the adsorbent was calculated as the value obtained by subtracting the enzyme concentration after contact with the adsorbent from the enzyme concentration before contact with the adsorbent. As a result, α-amylase present in the culture filtrate was not substantially adsorbed, and 99% (51.6 units) of glucoamylase was adsorbed.

実施例4 大腸菌のグリコーゲン(推定分子量4X10”。Example 4 Escherichia coli glycogen (estimated molecular weight 4 x 10”).

推定分岐度25%)の乾燥粉末30gに水70m+2を
添加し、攪拌しなからIONの苛性ソーダ40mUを添
加し、これを攪拌機と還流冷却器を付した500mff
1の反応フラスコに入れた。次いで、400mQのエピ
クロルヒドリンを加え。
Add 70 m+2 of water to 30 g of dry powder with an estimated degree of branching of 25%), add 40 mU of ION caustic soda without stirring, and transfer this to a 500 mff tank equipped with a stirrer and reflux condenser.
1 into a reaction flask. Then add 400 mQ of epichlorohydrin.

2Orp園で攪拌しつつ、80℃で48時間加熱した。The mixture was heated at 80° C. for 48 hours while stirring in a 2-orp oven.

反応終了後、内容物を室温に冷却し、下部の水層中のゲ
ル状物を濾別した。このゲル状物にエタノール150m
Aを添加し、攪拌後濾過してゲル状物を回収した0回収
ゲルを再度エタノール50mAに再懸濁し、濾過してゲ
ル状物を回収した。
After the reaction was completed, the contents were cooled to room temperature, and the gel-like substance in the lower aqueous layer was filtered off. Add 150m of ethanol to this gel-like substance.
A was added, stirred, and then filtered to recover a gel-like substance. The recovered gel was resuspended in 50 mA of ethanol and filtered to recover a gel-like substance.

本操作をさらに3回繰り返した0次に、蒸溜水150m
mに懸濁し、濾別した1本操作を3回繰り返した後、再
度エタノール150 m mに分散した。これを濾過し
、ゲル状物を乾燥後、粉砕し、白色粉末25gを得た。
After repeating this operation three more times, 150 m of distilled water
After repeating the procedure three times in which the suspension was suspended in 150 m m of ethanol and separated by filtration, it was again dispersed in 150 m m of ethanol. This was filtered, and the gel-like material was dried and crushed to obtain 25 g of white powder.

本粉末の60℃における水への溶解度は水100gに対
し、0.001 g 以下であった。さらに、本粉末を
60℃水に1日間浸漬した後の水和ゲルの本粉末に対す
る重量比は7.9 であった。
The solubility of this powder in water at 60°C was 0.001 g or less per 100 g of water. Furthermore, after immersing this powder in 60°C water for 1 day, the weight ratio of the hydrated gel to this powder was 7.9.

次に本粉末へのグルコアミラーゼの吸着性を見るため、
以下の実験を行った。
Next, to check the adsorption of glucoamylase to this powder,
The following experiment was conducted.

アスペルギルス・オリゴIFO−4176の培養液40
mu(α−アミラーゼ0.50 単位/mQ、グルコア
ミラーゼ1.30単位/mμを含む)を6℃に冷却し、
上記の吸着剤粉末0.2  gを添加し、5 rpmで
2分間源合して接触させた。
Culture solution of Aspergillus oligo IFO-4176 40
cooled to 6°C,
0.2 g of the above adsorbent powder was added and brought into contact at 5 rpm for 2 minutes.

これを濾過し、濾過中のα−アミラーゼ活性、グルコア
ミラーゼ活性を測定した。
This was filtered, and α-amylase activity and glucoamylase activity during filtration were measured.

上澄液中のα−アミラーゼは0.51単位/mQ、グル
コアミラーゼは0,02単位/ m nであった。上記
吸着剤に吸着した酵素量を、吸着剤との接触前の酵素濃
度から接触後の酵素濃度を減じた値として計算した。そ
の結果、培養濾液中に存在したα−アミラーゼは実質上
吸着されず、グルコアミラーゼの98%(1,28単位
)が吸着された。
The α-amylase in the supernatant was 0.51 units/mQ, and the glucoamylase was 0.02 units/mn. The amount of enzyme adsorbed on the adsorbent was calculated as the value obtained by subtracting the enzyme concentration after contact with the adsorbent from the enzyme concentration before contact with the adsorbent. As a result, α-amylase present in the culture filtrate was not substantially adsorbed, and 98% (1.28 units) of glucoamylase was adsorbed.

実施例5 大腸のグリコーゲン(推定分子量4X10B。Example 5 Glycogen in the large intestine (estimated molecular weight 4X10B).

推定分岐度25%)の乾燥粉末15gに水85mQを添
加し、攪拌しながら、6Nの苛性ソーダ33mρを添加
し、これを攪拌機と還流冷却器を付した500mAの反
応フラスコに入れた1次いで、150mQのエピクロル
ヒドリンを加え、15rpmで攪拌しつつ、75℃で3
6時間加熱した。
85 mQ of water was added to 15 g of dry powder with an estimated degree of branching of 25%), and while stirring, 33 mρ of 6N caustic soda was added, and this was placed in a 500 mA reaction flask equipped with a stirrer and a reflux condenser. of epichlorohydrin and stirred at 75°C for 3 minutes while stirring at 15 rpm.
Heated for 6 hours.

反応終了後、内容物を室温に冷却し、下部の水層中のゲ
ル状物を濾別した。このゲル状物にエタノール100 
m IIを添加し、攪拌後、濾過してゲル状物を回収し
た1回収ゲルを再度エタノール50 m Qに再懸濁し
、濾過してゲル状物を回収した0本操作をさらに3回繰
り返した0次に、蒸溜水50mQに懸濁し、濾別した1
本操作を3回繰り返した後、再度エタノール150 m
 Qに分散した。これを濾過し、ゲル状物を乾燥後、粉
砕し、白色粉末14gを得た。
After the reaction was completed, the contents were cooled to room temperature, and the gel-like substance in the lower aqueous layer was filtered off. Add 100% ethanol to this gel.
m II was added, and after stirring, the gel was collected by filtration. The recovered gel was resuspended in 50 m of ethanol, and the gel was collected by filtration. This procedure was repeated three more times. 0 Next, 1 was suspended in 50 mQ of distilled water and filtered.
After repeating this operation three times, add 150 m of ethanol again.
Dispersed in Q. This was filtered, and the gel-like material was dried and crushed to obtain 14 g of white powder.

本粉末の60’Cにおける水への溶解度は水100gに
対し、0.001 g 以下であった。さらに、本粉末
を60℃水に1日間浸漬した後の水和ゲルの本粉末に対
する重量比は8.1であった。
The solubility of this powder in water at 60'C was 0.001 g or less per 100 g of water. Furthermore, after immersing this powder in 60° C. water for one day, the weight ratio of the hydrated gel to this powder was 8.1.

次に、本粉末へのグルコアミラーゼの吸着性を見るため
、以下の実験を行った。
Next, in order to examine the adsorption of glucoamylase to this powder, the following experiment was conducted.

アスペルギルス・オリゴIFO−4176の培養液40
mjl (α−アミラーゼ0.50 単位/mQ、グル
コアミラーゼ1.30単位/ m Qを含む)を6℃に
冷却し、上記の吸着剤粉末0.2  gを添加し、5 
rpn+で2分間源合して接触させた。
Culture solution of Aspergillus oligo IFO-4176 40
mjl (containing α-amylase 0.50 units/mQ, glucoamylase 1.30 units/mQ) was cooled to 6°C, 0.2 g of the above adsorbent powder was added, and 5
rpn+ for 2 minutes.

これを濾過し、濾過中のα−アミラーゼ活性、グルコア
ミラーゼ活性を測定した。
This was filtered, and α-amylase activity and glucoamylase activity during filtration were measured.

上澄液中のα−アミラーゼは0.50単位/m II 
、グルコアミラーゼは0.01 単位/ m Qであっ
た。上記吸着剤に吸着した酵素量を、吸着剤との接触前
の酵素濃度から接触後の酵素濃度を減じた値として計算
した。その結果、培養濾液中に存在したα−アミラーゼ
は実質上吸着されず、グルコアミラーゼの99%(1,
29単位)が吸着された。
α-Amylase in the supernatant is 0.50 units/m II
, glucoamylase was 0.01 units/m Q. The amount of enzyme adsorbed on the adsorbent was calculated as the value obtained by subtracting the enzyme concentration after contact with the adsorbent from the enzyme concentration before contact with the adsorbent. As a result, α-amylase present in the culture filtrate was not substantially adsorbed, and 99% of glucoamylase (1,
29 units) were adsorbed.

実施例6 牛肝臓のグリコーゲン(推定分子量3.5X10I5゜
推定分岐度27%)の乾燥粉末Logに水90m2を添
加し、攪拌しながら70’Cに加熱して溶廓して粘性の
液体を得た。これに4Nの苛性カリ33mQを添加し、
これを攪拌機と還流冷却器を付した500mAの反応フ
ラスコに入れた0次いで、140mQのエピクロルヒド
リンを加え。
Example 6 90 m2 of water was added to dry powder Log of beef liver glycogen (estimated molecular weight 3.5×10I5°, estimated degree of branching 27%), and heated to 70'C with stirring to melt and obtain a viscous liquid. Ta. Add 33 mQ of 4N caustic potash to this,
This was placed in a 500 mA reaction flask equipped with a stirrer and a reflux condenser. Then, 140 mQ of epichlorohydrin was added.

20rpmで攪拌しつつ、50℃で5時間加熱した。The mixture was heated at 50° C. for 5 hours while stirring at 20 rpm.

反応終了後、内容物を室温に冷却し、下部の水層中のゲ
ル状物を濾別した。このゲル状物にエタノール50mQ
を添加し、攪拌後濾過してゲル状物を回収した1回収ゲ
ルを再度エタノール50mmに再懸濁し、濾過してゲル
状物を回収した。
After the reaction was completed, the contents were cooled to room temperature, and the gel-like substance in the lower aqueous layer was filtered off. Add 50 mQ of ethanol to this gel-like substance.
was added, stirred and filtered to recover a gel-like substance. The recovered gel was resuspended in 50 mm of ethanol and filtered to recover a gel-like substance.

本操作をさらに3回繰り返した。次に、蒸溜水50 m
 lに懸濁し、濾別した0本操作を3回繰り返した後、
再度エタノール50mΩに分散した。
This operation was repeated three more times. Next, 50 m of distilled water
After repeating the procedure of suspending in 100ml and filtering it 3 times,
It was again dispersed in 50 mΩ of ethanol.

これを濾過し、ゲル状物を乾燥後、粉砕し、白色粉末9
.3 gを得た。
This was filtered, and the gel-like substance was dried and ground, resulting in a white powder of 9.
.. 3 g was obtained.

本粉末の60℃における水への溶解度は水100gに対
し、0.003g であった、さらに、本粉末を60℃
水に1日間浸漬した後の水和ゲルの本粉末に対する重量
比は12.3であった。
The solubility of this powder in water at 60°C was 0.003g per 100g of water.
The weight ratio of the hydrated gel to the present powder after being immersed in water for one day was 12.3.

次に1本粉末へのグルコアミラーゼの吸着性を見るため
、以下の実験を行った。   ′アスペルギルス・オリ
ゴIFO−4176の培養液40mA(a−アミラーゼ
0.50単位/m 12 、グルコアミラーゼ1.30
 単位/ m Qを含む)を6℃に冷却し、上記の吸着
剤粉末0.2  gを添加し、 5rpmで2分間混合
して接触させた。
Next, the following experiment was conducted to examine the adsorption of glucoamylase to the powder. '40 mA of culture solution of Aspergillus oligo IFO-4176 (a-amylase 0.50 units/m 12 , glucoamylase 1.30
unit/m Q) was cooled to 6 °C, 0.2 g of the above adsorbent powder was added and contacted by mixing at 5 rpm for 2 minutes.

これを濾過し、濾過中のα−アミラーゼ活性、グルコア
ミラーゼ活性を測定した。
This was filtered, and α-amylase activity and glucoamylase activity during filtration were measured.

上澄液中のα−アミラーゼは0.50 単位/mfl、
グルコアミラーゼは0.02 単位/ m Qであった
。上記吸着剤に吸着した酵素量を、吸着剤との接触前の
酵素濃度から接触後の酵素濃度を減じた値として計算し
た。その結果、培養濾液中に存在したα−アミラーゼは
実質上吸着されず、グルコアミラーゼの98%(1,2
8単位)が吸着された。
α-amylase in the supernatant was 0.50 units/mfl,
Glucoamylase was 0.02 units/mQ. The amount of enzyme adsorbed on the adsorbent was calculated as the value obtained by subtracting the enzyme concentration after contact with the adsorbent from the enzyme concentration before contact with the adsorbent. As a result, α-amylase present in the culture filtrate was not adsorbed substantially, and 98% of glucoamylase (1,2
8 units) were adsorbed.

実施例7 牛肝臓のグルコーゲン(推定分子量3.5X10’。Example 7 Beef liver glucogen (estimated molecular weight 3.5X10').

推定分岐度27%)の乾燥粉末20gに水80mQを添
加し、攪拌しながら80℃に加熱して糊状物とした。こ
れに6Nの苛性ソーダ66 m Qを添加し、これを攪
拌機と還流冷却器を付した500mΩの反応フラスコに
入れた。次いで、180mQのエピクロルヒドリンを加
え、10rpmで攪拌しつつ、70℃で9時間加熱した
80 mQ of water was added to 20 g of dry powder with an estimated degree of branching of 27%), and heated to 80° C. with stirring to form a paste. To this was added 66 mQ of 6N caustic soda, which was then placed in a 500 mΩ reaction flask equipped with a stirrer and a reflux condenser. Next, 180 mQ of epichlorohydrin was added, and the mixture was heated at 70° C. for 9 hours while stirring at 10 rpm.

反応終了後、内容物を室温に冷却し、下部の水層中のゲ
ル状物を濾別した。このゲル状物にエタノール80m1
2を添加し、攪拌後濾過してゲル状物を回収した。回収
ゲルを再度エタノール80rnQに懸濁し、濾過してゲ
ル状物を回収した0本操作をさらに3回繰り返した。次
に、蒸溜水50mQに懸濁し、濾別した0本操作を3回
繰り返した後、再度エタノール80mMに分散した。こ
れを濾過し、ゲル状物を乾燥後、粉砕し、白色粉末9.
3 gを得た。
After the reaction was completed, the contents were cooled to room temperature, and the gel-like substance in the lower aqueous layer was filtered off. Add 80ml of ethanol to this gel-like substance.
2 was added, stirred, and filtered to collect a gel-like substance. The recovered gel was resuspended in ethanol 80rnQ, filtered, and a gel-like substance was recovered. This operation was repeated three more times. Next, the procedure of suspending in 50 mQ of distilled water and filtering was repeated three times, and then dispersed again in 80 mM of ethanol. This was filtered, and the gel-like material was dried and ground to a white powder9.
3 g was obtained.

本粉末の60℃における水への溶解度は水100gに対
し、0.001 g であった。さらに、本粉末を60
℃水に1日間浸漬した後の水和ゲルの本粉末に対する重
量比は7.2であった。
The solubility of this powder in water at 60°C was 0.001 g per 100 g of water. Furthermore, 60% of this powder
The weight ratio of the hydrated gel to the present powder after being immersed in °C water for 1 day was 7.2.

次に、本粉末へのグルコアミラーゼの吸着性を見るため
、以下の実験を行った。
Next, in order to examine the adsorption of glucoamylase to this powder, the following experiment was conducted.

アスペルギルス・オリゼエFO−4176の培養液40
mΩ(α−アミラーゼ0.50単位/mQ、グルコアミ
ラーゼ1.30単位/ m Qを含む)を6℃に冷却し
、上記の吸着剤粉末0.2  gを添加し、 5rpm
で2分間混合して接触させた。
Aspergillus oryzae FO-4176 culture solution 40
mΩ (containing α-amylase 0.50 units/mQ, glucoamylase 1.30 units/mQ) was cooled to 6 °C, 0.2 g of the above adsorbent powder was added, and the mixture was heated at 5 rpm.
for 2 minutes.

これを濾過し、濾液中のα−アミラーゼ活性、グルコア
ミラーゼ活性を測定した。
This was filtered, and α-amylase activity and glucoamylase activity in the filtrate were measured.

上澄液中のα−アミラーゼは0.50 単位/m Q 
、グルコアミラーゼは0.02 単位/m12であった
。上記録着剤に吸着した酵素量を、吸着剤との接触前の
酵素濃度から接触後の酵素濃度を減じた値として計算し
た。その結果、培養濾液中に存在したα−アミラーゼは
実質上吸着されず、グルコアミラーゼの98%(1,2
8単位)が吸着された。
α-Amylase in the supernatant is 0.50 units/m Q
, glucoamylase was 0.02 units/m12. The amount of enzyme adsorbed to the above-mentioned adhesive was calculated as the value obtained by subtracting the enzyme concentration after contact with the adsorbent from the enzyme concentration before contact with the adsorbent. As a result, α-amylase present in the culture filtrate was not adsorbed substantially, and 98% of glucoamylase (1,2
8 units) were adsorbed.

実施例8 かき貝のグルコーゲン(推定分子量4X10”。Example 8 Glucogen from oyster shellfish (estimated molecular weight 4 x 10”).

推定分岐度25%)の乾燥粉末Logに水90mAを添
加し、攪拌しながら70℃に加熱して溶解して粘性の液
体とした。
90 mA of water was added to the dry powder Log with an estimated degree of branching of 25%), and the mixture was heated to 70° C. with stirring to dissolve and form a viscous liquid.

これに6Nの苛性ソーダ33mgを添加し、これを攪拌
機と還流冷却鼎を付した500m12の反応フラスコに
入れた0次いで、140mmのエピクロルヒドリンを加
え、15rpmで攪拌しつつ。
To this was added 33 mg of 6N caustic soda, which was then placed in a 500 m12 reaction flask equipped with a stirrer and a reflux condenser.Next, 140 mm of epichlorohydrin was added and stirred at 15 rpm.

50℃で5時間加熱した。Heated at 50°C for 5 hours.

反応終了後、内容物を室温に冷却し、下部の水層中のゲ
ル状物を濾別した。このゲル状物にエタノール50mA
を添加し、攪拌後濾過してゲル状物を回収した0回収ゲ
ルを再度エタノール50mQに再懸濁し、濾過してゲル
状物を回収した。
After the reaction was completed, the contents were cooled to room temperature, and the gel-like substance in the lower aqueous layer was filtered off. Add 50 mA of ethanol to this gel.
was added, stirred and filtered to recover a gel-like substance.The recovered gel was resuspended in 50 mQ of ethanol and filtered to recover a gel-like substance.

本操作をさらに3回繰り返した0次に、蒸溜水50mΩ
に懸濁し、濾別した0本操作をさらに3回繰り返した0
次に蒸溜水50 m Aに懸濁し、濾別した0本操作を
3回繰り返した後、再度エタノール50 m Qに分散
した。
After repeating this operation three more times, distilled water 50mΩ
The operation of suspending and filtering was repeated three more times.
Next, the suspension in 50 mA of distilled water and filtration were repeated three times, and then dispersed again in 50 mA of ethanol.

これを濾過し、ゲル状物を乾燥後、粉砕し、白色粉末9
.1 gを得た。
This was filtered, and the gel-like substance was dried and ground, resulting in a white powder of 9.
.. 1 g was obtained.

本粉末の60℃における水への溶解度は水100gに対
し、0.001g 以下であった。さらに、本粉末を6
0℃水に1日間浸漬した後の水和ゲルの本粉末に対する
重量比は10.8であった。
The solubility of this powder in water at 60° C. was 0.001 g or less per 100 g of water. Furthermore, add 6 pieces of this powder.
The weight ratio of the hydrated gel to the present powder after being immersed in 0°C water for one day was 10.8.

次に、本粉末へのグルコアミラーゼの吸着性を見るため
、以下の実験を行った。
Next, in order to examine the adsorption of glucoamylase to this powder, the following experiment was conducted.

アスペルギルス・オリゴIFO−4176の培養液40
mm (α−アミラーゼO,SO単位/m1!、グルコ
アミラーゼ1.30単位/ m 11を含む)を6℃に
冷却し、上記の吸着剤粉末0.2  gを添加し、5 
rpmで2分間混合して接触させた。
Culture solution of Aspergillus oligo IFO-4176 40
mm (containing α-amylase O, SO units/m 1!, glucoamylase 1.30 units/m 11) was cooled to 6 °C, 0.2 g of the above adsorbent powder was added, and 5
Mix and contact for 2 minutes at rpm.

これを濾過、し、濾液中のα−アミラーゼ活性、グルコ
アミラーゼ活性を測定した。
This was filtered, and α-amylase activity and glucoamylase activity in the filtrate were measured.

上澄液中のα−アミラーゼは0.50単位/mQ、グル
コアミラーゼは0.02単位/ m jlであった。上
記吸着剤に吸着した酵素量を、吸着剤との接触前の酵素
濃度から接触後の酵素濃度を減じた値として計算した。
The α-amylase in the supernatant was 0.50 units/mQ, and the glucoamylase was 0.02 units/mjl. The amount of enzyme adsorbed on the adsorbent was calculated as the value obtained by subtracting the enzyme concentration after contact with the adsorbent from the enzyme concentration before contact with the adsorbent.

その結果、培養濾液中に存在したα−アミラーゼは実質
上吸着されず、グルコアミラーゼの98%(1,28単
位)が吸着された。
As a result, α-amylase present in the culture filtrate was not substantially adsorbed, and 98% (1.28 units) of glucoamylase was adsorbed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、酵素性原菌の培養濾液なと多種多様の
有機性、S機性不純物及び他種の酵素を含む液中から、
グルコアミラーゼを選択的に吸着できる。また、かかる
機能を有する吸着剤を容易に製造できる。
According to the present invention, from a culture filtrate of enzymatic progenitor bacteria and a liquid containing various organic and S-organic impurities and other types of enzymes,
Can selectively adsorb glucoamylase. Moreover, an adsorbent having such a function can be easily produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、架橋剤としてエビハロゲンヒドリンを用いた
本発明請求範囲第1項に相当する物質の代表的構造単位
を示す、第2図は、架橋剤としてエビロゲンヒドリンを
用いた本発明請求範囲第1項に相当する物質の代表的単
位を示す。
Figure 1 shows a typical structural unit of a substance corresponding to claim 1 of the present invention using shrimp halogenhydrin as a crosslinking agent. Figure 2 shows the present invention using shrimp halogenhydrin as a crosslinking agent. Representative units of substances corresponding to claim 1 are shown below.

Claims (1)

【特許請求の範囲】 1、グルコースがα−1,4結合により重合した主鎖に
、グルコースがα−1,4結合により重合し、α−1,
6結合により主鎖から分岐した、非還元性グルコース残
基を開放末端とする分岐鎖が結合してなるポリグルカン
を、分子間、分子内で架橋してなる架橋化ポリグルカン
。 2、分岐鎖の分岐点に相当するグルコース残基が、分子
中全グルコース残基数の少なくとも5%以上を占める特
許請求の範囲第1項記載の架橋型ポリグルカン。 3、分岐鎖のグルコース重合数が2以上6以下である特
許請求の範囲第1項または第2項記載の架橋型ポリグル
カン。 4、グルコースがα−1,4結合により重合した主鎖に
、グルコースがα−1,4結合により重合し、α−1,
6結合により主鎖から分岐した、非還元性グルコース残
基を開放末端とする分岐鎖が結合してなるポリグルカン
を、水に対する溶解度が60℃において0.01以下と
なるまで架橋処理する架橋化ポリグルカンの製造方法。 5、架橋化前のポリグルカンにアミラーゼを添加する特
許請求の範囲第4項記載の架橋化ポリグルカンの製造方
法。 6、アミラーゼとして、β−アミラーゼ、グルコアミラ
ーゼのいずれか一方もしくは両方を用いる特許請求の範
囲第4項または第5項記載の架橋化ポリグルカンの製造
方法。
[Scope of Claims] 1. Glucose is polymerized through α-1,4 bonds in the main chain in which glucose is polymerized through α-1,4 bonds, and α-1,
A crosslinked polyglucan is obtained by intermolecularly and intramolecularly crosslinking polyglucan formed by branched chains branched from the main chain by 6 bonds and having non-reducing glucose residues at open ends. 2. The crosslinked polyglucan according to claim 1, wherein glucose residues corresponding to branch points of the branched chain account for at least 5% or more of the total number of glucose residues in the molecule. 3. The crosslinked polyglucan according to claim 1 or 2, wherein the number of branched glucose polymerizations is 2 or more and 6 or less. 4. Glucose is polymerized through α-1,4 bonds to the main chain in which glucose is polymerized through α-1,4 bonds, and α-1,
Crosslinking in which a polyglucan consisting of a branched chain branched from the main chain by 6 bonds and having an open end with a non-reducing glucose residue is crosslinked until the solubility in water becomes 0.01 or less at 60°C. Method for producing polyglucan. 5. The method for producing a crosslinked polyglucan according to claim 4, wherein amylase is added to the polyglucan before crosslinking. 6. The method for producing a crosslinked polyglucan according to claim 4 or 5, wherein one or both of β-amylase and glucoamylase is used as the amylase.
JP17751286A 1986-07-30 1986-07-30 Crosslinked polyglucan and its production Granted JPS6335605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17751286A JPS6335605A (en) 1986-07-30 1986-07-30 Crosslinked polyglucan and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17751286A JPS6335605A (en) 1986-07-30 1986-07-30 Crosslinked polyglucan and its production

Publications (2)

Publication Number Publication Date
JPS6335605A true JPS6335605A (en) 1988-02-16
JPH0576961B2 JPH0576961B2 (en) 1993-10-25

Family

ID=16032201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17751286A Granted JPS6335605A (en) 1986-07-30 1986-07-30 Crosslinked polyglucan and its production

Country Status (1)

Country Link
JP (1) JPS6335605A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763303A (en) * 1980-10-03 1982-04-16 Yoshiaki Motozato Spherical particles of crosslinked porous amylopectin and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763303A (en) * 1980-10-03 1982-04-16 Yoshiaki Motozato Spherical particles of crosslinked porous amylopectin and its production

Also Published As

Publication number Publication date
JPH0576961B2 (en) 1993-10-25

Similar Documents

Publication Publication Date Title
JPS59113889A (en) Preparation of immobilized enzyme or immobilized microbial cell
Lilly [4] Enzymes immobilized to cellulose
EP0675137A2 (en) Glucans having a cycle structure, and processes for preparing the same
JPS6335605A (en) Crosslinked polyglucan and its production
JPS5974984A (en) Preparation of immobilized enzyme or microorganism
US4121974A (en) Preparation of retrogradation-resistant starches with immobilized amylases
JPS63226284A (en) Separation and purification of amylase and adsorbent and apparatus used therefor
Kennedy et al. Immobilization of glucoamylase on gelatin by transition-metal chelation
JPH06197757A (en) Method for separating beta-amylase
JP2659086B2 (en) Method for producing high-purity carbohydrate-related enzyme and immobilized carbohydrate-related enzyme
JPS632595B2 (en)
JPS643480B2 (en)
KR950014967B1 (en) Preparation method of moranoline derivatives
Su et al. A novel method for continuous production of cyclodextrins using an immobilized enzyme system
JP2824902B2 (en) Method for producing enzyme-immobilizing carrier
JPH0372083B2 (en)
JPH0466094A (en) Enzymatic decomposition of starch-containing material and production of oligosaccharide
JPS61187797A (en) Production of fructan
KR100252704B1 (en) Method of making n,o-carboxy methyl chitosan with high purity crystallization and a method of controlling a molecular weight of water-soluble chitosan
JPH07102145B2 (en) Process for producing maltose transfer sugar mixture
JP2665791B2 (en) α-glucan production method
SU510479A1 (en) Method of immobilization of proteolytic enzymes
JPH0453491A (en) Enzymatic reaction
WO1991009963A1 (en) Procedure for producing maltodextrins and starch and maltose syrups containing cyclodextrins
JPH0328194B2 (en)