JPH0328194B2 - - Google Patents

Info

Publication number
JPH0328194B2
JPH0328194B2 JP6097385A JP6097385A JPH0328194B2 JP H0328194 B2 JPH0328194 B2 JP H0328194B2 JP 6097385 A JP6097385 A JP 6097385A JP 6097385 A JP6097385 A JP 6097385A JP H0328194 B2 JPH0328194 B2 JP H0328194B2
Authority
JP
Japan
Prior art keywords
enzyme
starch
solution
amylase
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6097385A
Other languages
Japanese (ja)
Other versions
JPS61219393A (en
Inventor
Masahiko Ishida
Ryoichi Haga
Masako Katsurayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6097385A priority Critical patent/JPS61219393A/en
Publication of JPS61219393A publication Critical patent/JPS61219393A/en
Publication of JPH0328194B2 publication Critical patent/JPH0328194B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】 〔産業分野〕 本発明は、澱粉、イヌリン等の高分子有機物質
の酵素による加水分解方法に係り、特に純度の低
いもしくは希薄な加水分解酵素の溶液を用いてこ
れら高分子有機物質を加水分解する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field] The present invention relates to a method for hydrolyzing high-molecular organic substances such as starch and inulin using an enzyme, and in particular, the present invention relates to a method for hydrolyzing high-molecular organic substances such as starch and inulin, and in particular, using a solution of a hydrolase with low purity or dilution. This invention relates to a method for hydrolyzing molecular organic substances.

〔従来の技術〕[Conventional technology]

現在、ぶどう糖や異性化糖は澱粉をα−アミラ
ーゼやグルコアミラーゼ糖の澱粉加水分解酵素
(アミラーゼ)を用いて加水分解することにより
大量生産されている。また、セルロース含有物質
をセルラーゼを用いてセルビオースやぶどう糖に
加水分解する研究も盛んである。これらの加水分
解酵素も含め、一般に酵素は微生物を液体培養
し、その培養濾液から分離精製して用いている。
培養濾液中には各種の無機塩や低分子有機物及び
高分子有機物を不純物として含む他、目的酵素を
破壊する蛋白分解酵素(プロテアーゼ)を含むこ
とが多い。このため、酵素反応を利用して有用物
質を生産する際には酵素の分離精製が不可欠とな
る。酵素の精製は一般に、モレキユラシーブ、イ
オン交換クロマト、塩析、PH沈澱等、物理、化学
的な各種の方法を組み合わせた複雑なプロセスに
より行うこととなり、極めて多大な労力、時間、
経費を必要とする。一方、以前により、アミラー
ゼは基質の澱粉に選択的に吸着することが知られ
ており、澱粉粒子に吸着後、脱着する方法も報告
されている。しかし、脱着に際しては塩溶液、酸
アルカリ溶液等の脱離液を用いることとなり、ア
ミラーゼの回収率も低く、また後処理として塩や
酸アルカリを除去と濃縮が必要となる。
Currently, glucose and high fructose sugar are mass-produced by hydrolyzing starch using α-amylase and glucoamylase sugar starch hydrolase (amylase). There is also active research into hydrolyzing cellulose-containing substances into cellulose and glucose using cellulases. Enzymes, including these hydrolytic enzymes, are generally used by culturing microorganisms in liquid and separating and purifying the culture filtrate.
The culture filtrate contains various inorganic salts, low-molecular organic substances, and high-molecular organic substances as impurities, and often contains proteolytic enzymes (proteases) that destroy target enzymes. For this reason, separation and purification of enzymes is essential when producing useful substances using enzymatic reactions. Enzyme purification is generally performed through a complex process that combines various physical and chemical methods such as molecular sieves, ion exchange chromatography, salting out, and PH precipitation, which requires an extremely large amount of labor, time, and
Requires expenses. On the other hand, it has been previously known that amylase selectively adsorbs to the substrate starch, and a method in which amylase is adsorbed to starch particles and then desorbed has also been reported. However, in desorption, a desorption solution such as a salt solution or an acid-alkali solution is used, and the recovery rate of amylase is low, and removal and concentration of the salt and acid-alkali are required as post-treatment.

そこで本発明者らは、上記欠点に鑑み加水分解
酵素を含む培養濾液などの純度の低いかつ比較的
希薄な溶液を用いて、高分子物質を加水分解する
実用性の高い方法につき鋭意研究した。
Therefore, in view of the above-mentioned drawbacks, the present inventors conducted intensive research on a highly practical method for hydrolyzing polymeric substances using a relatively dilute solution with low purity such as a culture filtrate containing a hydrolase.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高分子物質の加水分解酵素を
含む純度の低いもしくは比較的希薄な溶液を用
い、該溶液中に含まれる酵素を固体高分子基質に
吸着し、得られる酵素・基質複合体を酵素剤とし
て用いることにより、反応系に不純物を持ち込む
ことなく、かつ反応液の稀釈なしに効率よく高分
子基質を加水分解する方法を提供することにあ
る。
The purpose of the present invention is to use a low-purity or relatively dilute solution containing a hydrolyzing enzyme of a polymeric substance, to adsorb the enzyme contained in the solution onto a solid polymeric substrate, and to obtain an enzyme-substrate complex. The object of the present invention is to provide a method for efficiently hydrolyzing a polymeric substrate without introducing impurities into the reaction system and without diluting the reaction solution by using the enzyme as an enzyme agent.

〔発明の構成〕[Structure of the invention]

本発明は、高分子有機物を加水分解酵素により
加水分解する方法において、酵素剤として加水分
解酵素の水溶液と不溶性又は難溶性の固体高分子
基質とを氷点を越え、かつ両者が実質的に反応し
ない温度以下で接触させて得られる酵素・基質複
合体を用いることを特徴とする高分子有機物の加
水分解方法である。
The present invention provides a method for hydrolyzing a polymeric organic substance with a hydrolase, in which an aqueous solution of a hydrolase as an enzyme agent and an insoluble or slightly soluble solid polymer substrate are heated above the freezing point, and the two do not substantially react with each other. This is a method for hydrolyzing high-molecular organic substances, which is characterized by using an enzyme-substrate complex obtained by contacting the substance at a temperature below that temperature.

発明者らは従来と発想を変え、α−アミラーゼ
を含む細菌培養濾液と澱粉粒とを実質上反応がお
こらない低温下で接触させ、生成したα−アミラ
ーゼ・澱粉粒複合体を分離して洗浄後、この複合
体そのままα−アミラーゼとして澱粉溶液中に加
え反応させた。その結果、培養濾液中に含まれて
いた不純物を反応系に持ち込まずに、基質の澱粉
以外に吸着剤として使用した澱粉粒も含めて効率
よく加水分解できることを見い出した。
The inventors changed their thinking from conventional methods by bringing the bacterial culture filtrate containing α-amylase into contact with starch granules at low temperatures where virtually no reaction occurs, and then separating and washing the resulting α-amylase/starch granule complex. Thereafter, this complex was directly added to a starch solution as α-amylase and reacted. As a result, they found that it is possible to efficiently hydrolyze not only the starch substrate but also the starch granules used as an adsorbent without introducing impurities contained in the culture filtrate into the reaction system.

本発明は澱粉の加水分解にとどまらず、各種の
加水分解反応に適用できる。例えば、デキストリ
ンやオリゴぶどう糖の加水分解、セルロースの加
水分解、イヌリンの加水分解、蛋白の加水分解等
があげられる。
The present invention is applicable not only to starch hydrolysis but also to various hydrolysis reactions. Examples include dextrin and oligoglucose hydrolysis, cellulose hydrolysis, inulin hydrolysis, and protein hydrolysis.

使用する酵素の吸着剤としては、氷点以上でか
つ実質的に反応がおこらない温度以下で(具体的
には0〜10℃)不溶もしくは難溶性の固体高分子
の基質が用いられる。具体例としては、澱粉では
馬鈴薯、甘薯、とうもろこしなどの澱粉粒全般、
セルロースではセルロース及び、リグノセルロー
スを含有する粉末もしくは微細繊維、イヌリンで
は植物のイヌリン粒やイヌリンの結晶、蛋白質で
はカゼイン、コラーゲン等が用いられる。吸着剤
固体高分子基質の溶解度の許容温度は、酵素の種
類、酵素の目標回収率、温度、共存溶質、PH等に
よつて変わるが、0.1%以下、好ましくは0.01%
以下である。溶解度が高いと、酵素分子が溶解し
ている基質分子と結合した分だけ、酵素・固体基
質複合体として回収できなくなるためである。吸
着剤としての基質の使用量は、酵素の種類、濃
度、目的酵素以外の不純物特に無機塩もしくは高
分子電解質の濃度、PH等によつて変化するため特
定できない。しかし、実用的には酵素含有液の
20wt%以下の範囲で用いられる。
As the adsorbent for the enzyme used, a solid polymer substrate that is insoluble or sparingly soluble at temperatures above the freezing point and below at which substantially no reaction occurs (specifically 0 to 10°C) is used. Specific examples include starch grains in general such as potatoes, sweet potatoes, and corn;
For cellulose, cellulose and lignocellulose-containing powder or fine fibers are used, for inulin, plant inulin grains and inulin crystals are used, and for protein, casein, collagen, etc. are used. The allowable temperature for the solubility of the adsorbent solid polymer substrate varies depending on the type of enzyme, target recovery rate of the enzyme, temperature, coexisting solutes, pH, etc., but it is 0.1% or less, preferably 0.01%.
It is as follows. This is because if the solubility is high, the amount of enzyme molecules bound to dissolved substrate molecules cannot be recovered as an enzyme/solid substrate complex. The amount of substrate used as an adsorbent cannot be specified because it varies depending on the type and concentration of the enzyme, the concentration of impurities other than the target enzyme, especially the concentration of inorganic salts or polymer electrolytes, and pH. However, in practice, enzyme-containing liquid
It is used in a range of 20wt% or less.

酵素としては、以下の例に示す加水分解酵素を
用いることができる。澱粉やデキストリンを基質
とするアミラーゼ類、すなわちα−アミラーゼ、
グルコアミラーゼ、β−アミラーゼ等が使用でき
る。この他、セルロースやリグノセルロースを基
質とするセルラーゼ、イヌリンを基質とするイヌ
ラーゼ、蛋白質を基質とする各種プロテアーゼが
含まれる。
As the enzyme, hydrolytic enzymes shown in the following examples can be used. amylases that use starch or dextrin as substrates, i.e. α-amylase;
Glucoamylase, β-amylase, etc. can be used. Other examples include cellulase that uses cellulose or lignocellulose as a substrate, inulase that uses inulin as a substrate, and various proteases that use protein as a substrate.

酵素含有液としては、主として生体の分泌液、
すなわち培養濾液や体液、消化液等、及び生体か
らの抽出液が用いられる。その他、酵素利用にお
いて出てくる酵素含有液、例えば反応生成物と残
存酵素を含む反応終了液や酵素の分離精製プロセ
スにおける酵素を含有する溶液が含まれる。
Enzyme-containing fluids are mainly biological secretions,
That is, culture filtrates, body fluids, digestive juices, etc., and extracts from living organisms are used. In addition, enzyme-containing liquids produced in the use of enzymes include, for example, reaction-completed liquids containing reaction products and residual enzymes, and solutions containing enzymes in enzyme separation and purification processes.

酵素含有液と吸着剤用固体基質とを接触する方
法は特に限定されず、各種の公知の方法が十分適
用できる。例えば、酵素含有液に吸着剤として固
体基質を添加しても、吸着剤用固体基質の充填床
に酵素含有液を通してもよい。接触時の温度や時
間等は、酵素の特性、吸着剤用固体基質の特性、
酵素と吸着剤用固体基質の濃度、目的酵素以外の
不純物の組成等によつて適宜選択される。一般に
は、温度は氷点以上、10度以下、時間は10分以内
で達成される。
The method of bringing the enzyme-containing liquid into contact with the solid substrate for adsorbent is not particularly limited, and various known methods are fully applicable. For example, a solid substrate may be added to the enzyme-containing liquid as an adsorbent, or the enzyme-containing liquid may be passed through a packed bed of solid substrate for the adsorbent. The temperature and time during contact will depend on the characteristics of the enzyme, the characteristics of the solid substrate for the adsorbent,
It is appropriately selected depending on the concentration of the enzyme and the solid substrate for the adsorbent, the composition of impurities other than the target enzyme, etc. Generally, the temperature is above freezing and below 10 degrees Celsius, and the time is less than 10 minutes.

酵素・固体基質複合体の分離方法は特に限定さ
れず、公知の固体分離方法が十分適用できる。酵
素含有液と固体基質とを混合接触した場合には、
遠心力や重力による沈降分離及び濾過法が用いら
れる。分離した酵素・固体基質複合体には母液が
付着しているが、彫液中の不純物をさらに除去し
たい時には、酵素・固体基質複合体を洗浄すれば
よい。洗浄方法は特に限定されず、各種の公知の
方法が適用できる。洗浄剤は通常、水が用いられ
るが、酵素、固体基質の種類と複合体の性質によ
り、適宜選択して使用できる。例えば、塩、酸、
アルカリを含む溶液も用いられる。
The method for separating the enzyme/solid substrate complex is not particularly limited, and known solid separation methods are fully applicable. When an enzyme-containing solution and a solid substrate are brought into contact with each other,
Sedimentation and filtration methods using centrifugal force or gravity are used. Mother liquor is attached to the separated enzyme/solid substrate complex, but if it is desired to further remove impurities from the engraving liquid, the enzyme/solid substrate complex may be washed. The cleaning method is not particularly limited, and various known methods can be applied. Water is usually used as the detergent, but it can be selected as appropriate depending on the type of enzyme and solid substrate and the properties of the complex. For example, salts, acids,
Solutions containing alkalis may also be used.

酵素、固体基質複合体は基質の高分子有機物の
加水分解に使用するが、該基質は吸着剤用固体基
質と化学的に同種のものであつても、重合度や分
岐の異なつたものであつてもよい。吸着剤用固体
基質のように、反応温度で固体である必要はな
く、溶液でもよい。例えば、α−アミラーゼ含有
液をとうもろこし澱粉粒と低温下で接触させ、こ
れを固液分離してα−アミラーゼ・とうもろこし
澱粉粒複合体を得る。こうして得た複合体をα−
アミラーゼとして反応に用いる場合、基質は同じ
とうもろこし澱粉粒でも、馬鈴薯澱粉粒でも或い
はこれらの可溶化澱粉でも差し支えない。澱粉の
種類もアミロースでもアミロペクチンでもよい。
また、グルコアミラーゼ・とうもろこし澱粉粒複
合体を用いて、とうもろこし澱粉粒やデキストリ
ン溶液を基質としてもよい。なお反応の条件は使
用酵素の種類、基質、目的等により適宜選択す
る。
Enzyme and solid substrate complexes are used to hydrolyze polymeric organic substances as substrates, but even if the substrates are chemically the same as the solid substrate for adsorbents, they may have different degrees of polymerization or branching. It's okay. Like a solid substrate for an adsorbent, it does not need to be solid at the reaction temperature, but may be a solution. For example, an α-amylase-containing liquid is brought into contact with corn starch granules at a low temperature, and the mixture is solid-liquid separated to obtain an α-amylase/corn starch granule complex. The complex thus obtained is α−
When used in the reaction as amylase, the substrate may be the same corn starch granules, potato starch granules, or solubilized starches thereof. The type of starch may be amylose or amylopectin.
Alternatively, a glucoamylase/corn starch granule complex may be used, and corn starch granules or a dextrin solution may be used as a substrate. Note that reaction conditions are appropriately selected depending on the type of enzyme used, substrate, purpose, etc.

次に本発明の実施態様の一例を第1図に示すフ
ローを用いて説明する。
Next, an example of an embodiment of the present invention will be explained using the flow shown in FIG.

加水分解酵素生産菌の培養槽2に倍地溶液を入
れ、所定の温度、PH、雰囲気下で、所定時間培養
後、培養液1を移送配管3により貯槽4に貯留す
る。貯槽中の培養液1は配管5により遠心分離機
6に導かれ、培養濾液11は配管7を経て、培養
濾液貯槽12へ、菌体スラリー8は配管10を経
て、菌体スラリー貯槽9に貯留される。菌体外に
分泌される酵素であれば、本培養濾液11を酵素
原料液として使用する。次に、培養濾液11を配
管13を経て酵素、固体基質複合体調整槽14に
導き、固体基質スラリー貯槽21から配管16を
経て供給する固体基質スラリー20と接触させ、
酵素・固体基質複合体を形成させる。生成した酵
素・固体基質複合体懸濁液15は移送配管17を
経て遠心濾過機19に導き個液分離する。濾液は
配管29を経て貯槽28に貯留する。次いで、水
貯槽22から配管18により水21を遠心濾過機
19に導き、遠心濾過機19中の酵素・固体基質
複合体を洗浄して洗浄廃液を配管29を経て貯槽
28に導き、濾液と合わせ貯槽28に貯留する。
回収した酵素・固体基質複合体25は配管24を
経て貯槽26に貯留する。酵素・固体基質複合体
スラリー25は配管30を経て反応槽32に導か
れ、原料基質スラリー貯槽21から配管23を経
て供給する原料基質スラリー20と混合し、撹拌
下に所定条件下で所定時間滞留させ、基質を加水
分解する。この際の加熱は、例えば水蒸気33を
配管34を経て反応槽32に供給してもよい。反
応終了後、反応液35を系外に抜きだす。
A medium solution is placed in a culture tank 2 for hydrolytic enzyme-producing bacteria, and after culturing for a predetermined period of time at a predetermined temperature, pH, and atmosphere, the culture solution 1 is stored in a storage tank 4 via a transfer pipe 3. The culture solution 1 in the storage tank is led to a centrifuge 6 through a pipe 5, the culture filtrate 11 passes through a pipe 7 to a culture filtrate storage tank 12, and the bacterial slurry 8 passes through a pipe 10 and is stored in a bacterial slurry storage tank 9. be done. If the enzyme is secreted outside the bacterial cells, the main culture filtrate 11 is used as the enzyme raw material solution. Next, the culture filtrate 11 is led to the enzyme and solid substrate complex adjustment tank 14 via the pipe 13, and brought into contact with the solid substrate slurry 20 supplied from the solid substrate slurry storage tank 21 via the pipe 16,
Forms an enzyme/solid substrate complex. The generated enzyme/solid substrate complex suspension 15 is led to a centrifugal filter 19 via a transfer pipe 17 and separated into individual liquids. The filtrate passes through piping 29 and is stored in storage tank 28 . Next, the water 21 is led from the water storage tank 22 to the centrifugal filter 19 through the piping 18, the enzyme/solid substrate complex in the centrifugal filter 19 is washed, and the washing waste liquid is led to the storage tank 28 through the piping 29, where it is combined with the filtrate. It is stored in the storage tank 28.
The recovered enzyme/solid substrate complex 25 is stored in a storage tank 26 via piping 24. The enzyme/solid substrate complex slurry 25 is led to a reaction tank 32 via a pipe 30, mixed with the raw material substrate slurry 20 supplied from a raw material substrate slurry storage tank 21 via a pipe 23, and retained under a predetermined condition for a predetermined time under stirring. to hydrolyze the substrate. For heating at this time, for example, water vapor 33 may be supplied to the reaction tank 32 through the pipe 34. After the reaction is completed, the reaction solution 35 is taken out of the system.

〔実施例〕〔Example〕

以下、本発明の効果を実施例及び比較実施例を
用いてさらに詳しく説明する。
Hereinafter, the effects of the present invention will be explained in more detail using Examples and Comparative Examples.

実施例 1 可溶性澱粉1.5%、ポリペプトン0.5%、酵母エ
キス0.5%、りん酸第1カリウム0.7%、りん酸第
2ソーダ0.35%、硫酸マグネシウム・7水和物
0.01%及び水道水を含む液体倍地(PH6.5)を内
容積5の培養槽に1.52Kg分注し、120℃で20分
間殺菌する。
Example 1 Soluble starch 1.5%, polypeptone 0.5%, yeast extract 0.5%, monopotassium phosphate 0.7%, dibasic sodium phosphate 0.35%, magnesium sulfate heptahydrate
Dispense 1.52 kg of liquid medium (PH6.5) containing 0.01% and tap water into a culture tank with an internal volume of 5, and sterilize it at 120°C for 20 minutes.

これに同上培地で嫌気的に培養した耐熱制α−
アミラーゼ生産菌(クロスツリジユウム属細菌、
微工研菌寄第7918号)の菌体懸濁液80gを添加し
た。次いで、気相部をアルゴンガスで置換後、嫌
気条件下で培養した。培養槽内のPHを6.0に、温
度を60℃に自動調整しながら46時間培養した。こ
の培養液を6000rpmで10分間遠心分離して菌体を
除去し、α−アミラーゼ活性5.2単位/ml培養濾
液1.5を得た。本培養濾液中には無機塩1.1%、
α−アミラーゼ以外の有機物を2.4%含む。特に
有機物中には酢酸、プロピオン酸を主成分とする
揮発性脂肪酸を約0.3%含むため、不快な酸臭と
硫化物臭を有する。
In addition to this, heat-resistant α-
Amylase-producing bacteria (Clostridium bacteria,
80 g of a bacterial cell suspension of Micro-Ken Bacteria No. 7918) was added. Next, the gas phase was replaced with argon gas, and then cultured under anaerobic conditions. The cells were cultured for 46 hours while automatically adjusting the pH in the culture tank to 6.0 and the temperature to 60°C. This culture solution was centrifuged at 6000 rpm for 10 minutes to remove bacterial cells, yielding an α-amylase activity of 5.2 units/ml culture filtrate 1.5. Main culture filtrate contains 1.1% inorganic salt,
Contains 2.4% organic matter other than α-amylase. In particular, the organic matter contains about 0.3% volatile fatty acids, mainly acetic acid and propionic acid, so it has an unpleasant acid odor and sulfide odor.

次に、本培養濾液0.5α−アミラーゼ2600単
位含有、PH6.0)を5℃に冷却し、局方とうもろ
こし澱粉10gを添加し、撹件下で1分間保持し
た。上記の液を遠心分離(3000rpm、5分間)し
てα−アミラーゼ・澱粉複合体のスラリー30gと
清澄液0.51を得た。上記スラリー30g蒸溜水100
ml(5℃、PH6.2)を添加し、混合した後、遠心
分離(3000rpm、5分間)して洗浄した複合体ス
ラリー30gと洗浄廃液100mlを得た。上記清澄液
と洗浄廃液を合わせ、α−アミラーゼ活性を測定
した結果、澱粉に吸着しなかつたα−アミラーゼ
活性は52単位以下であることから、供試培養濾液
中のα−アミラーゼの98%をα−アミラーゼ・澱
粉複合体として回収したと推算した。
Next, the main culture filtrate (containing 0.5α-amylase 2600 units, pH 6.0) was cooled to 5° C., 10 g of pharmacopoeia corn starch was added, and the mixture was kept under stirring for 1 minute. The above liquid was centrifuged (3000 rpm, 5 minutes) to obtain 30 g of a slurry of α-amylase/starch complex and 0.51 g of a clear liquid. 30g of the above slurry 100g of distilled water
ml (5°C, PH6.2), mixed, and centrifuged (3000 rpm, 5 minutes) to obtain 30 g of washed composite slurry and 100 ml of washing waste liquid. The above clarified liquid and washing waste liquid were combined and the α-amylase activity was measured. As a result, the α-amylase activity that was not adsorbed to starch was less than 52 units, so 98% of the α-amylase in the test culture filtrate was measured. It is estimated that it was recovered as an α-amylase/starch complex.

次いで、局方とうもろこし澱粉100gと60℃の
温水230mlとの混合物に上記のα−アミラーゼ・
澱粉複合体29gを添加した。そのあと、80℃で30
分間加熱してDE(Dextrose Equivalent Value:DE=直接還元糖(ぶどう糖として標示
)/固形分×100 )が10.2のデキストリン溶液359gを得た、本反
応液は培養濾液由来の臭や色もなく、半透明の澱
粉臭を有する溶液である。本実施例では反応液が
α−アミラーゼ・澱粉複合体に含まれていた19ml
の水の分だけ(稀釈倍率=359/330≒1.09なお、稀釈 倍率の定義は 基質+酵素または酵素基質複合体の液量/基質
液量×100 である。〔以下同様〕。)ごくわずか稀釈されるに
すぎず、ほとんど供試基質液の基質に近い濃度で
反応できる。
Next, add the above α-amylase to a mixture of 100 g of corn starch and 230 ml of 60°C warm water.
29g of starch complex was added. Then, at 80℃ for 30
After heating for 1 minute, 359 g of a dextrin solution with a DE (Dextrose Equivalent Value: DE=direct reducing sugar (labeled as glucose)/solid content x 100) of 10.2 was obtained.This reaction solution had no odor or color derived from the culture filtrate. It is a translucent solution with a starch odor. In this example, the reaction solution contained 19 ml of α-amylase/starch complex.
(Dilution ratio = 359/330≒1.09The definition of dilution ratio is: Substrate + volume of enzyme or enzyme-substrate complex/volume of substrate x 100. [Similarly below]) Very slight dilution. It is possible to react at a concentration almost close to that of the substrate in the test substrate solution.

実施例 2 実施例1で得たDE10.2の反応液357g(α−ア
ミラーゼ活性2540単位)を5℃に冷却した。これ
に局方とうもろこし澱粉10gを添加し1分間保持
した。上記の液を遠心分離(3000rpm、5分間)
してα−アミラーゼ・澱粉複合体のスラリー30g
と清澄液337gを得た。上記スラリー30gのα−
アミラーゼ活性を測定した結果2390単位(回収率
94%)であつた。次いで、局法とうもろこし澱粉
100gと60℃の温水200mlとの混合物に上記のα−
アミラーゼ・澱粉複合体30gを添加し330gの反
応液を得た。これを80℃で30分間反応させ、
DE10.0の反応液を得た。本反応液は培養濾液由
来の臭や色もなく、半透明の澱粉臭を有する溶液
である。本実施例では、反応液がα−アミラー
ゼ・澱粉複合体に含まれていた20mlの水の分だ
け、(稀釈率=330/300≒1.10)わずかに稀釈される にすぎず、実施例1と同様供試基質液の基質濃度
に近い濃度で反応できる。
Example 2 357 g (α-amylase activity 2540 units) of the DE10.2 reaction solution obtained in Example 1 was cooled to 5°C. To this was added 10 g of pharmacopoeia corn starch and held for 1 minute. Centrifuge the above solution (3000 rpm, 5 minutes)
Slurry of α-amylase/starch complex 30g
and 337 g of clear liquid was obtained. α- of 30g of the above slurry
Measurement of amylase activity resulted in 2390 units (recovery rate
94%). Next, topical corn starch
Add the above α-
30g of amylase/starch complex was added to obtain 330g of reaction solution. This was reacted at 80℃ for 30 minutes,
A reaction solution with a DE of 10.0 was obtained. This reaction solution has no odor or color derived from the culture filtrate, and is a translucent solution with a starch odor. In this example, the reaction solution was only slightly diluted by the 20 ml of water contained in the α-amylase/starch complex (dilution ratio = 330/300≒1.10), and was different from Example 1. Similarly, the reaction can be performed at a concentration close to the substrate concentration of the test substrate solution.

比較例 1 実施例1と同一バツチで調整した洗浄ずみのα
−アミラーゼ・澱粉複合体のスラリー30gをフイ
ルタ付カラムに充填した。カラム上部から2M食
塩水(PH9)0.5で溶出し、α−アミラーゼ含
有溶出液0.5を得た。次に本液をポアサイズ分
子量2+104モレキユラシープ膜で0.1まで濾過
濃縮し、水洗を2回繰り返して最終的に0.2の
脱塩処理α−アミラーゼ含有溶出液を得た。上記
液中のα−アミラーゼ活性を測定し、使用酵素活
性量の90%を回収したことを確認した。次いで、
局法とうもろこし澱粉100gと60℃の温水230mlと
の混合物に上記のα−アミラーゼ含有溶出液を加
え反応混液530mlを調整した。これを80℃、30分
間反応させ、DE10.1の反応液を得た。本反応液
は培養濾液由来の臭や色もなく、半透明の澱粉臭
を有する溶液である。本比較例では実施例1及び
2と同じく、反応液の着色、着臭は見られない
が、反応系に添加する酵素溶液の水量分だけ稀釈
される(稀釈率=530/300≒1.61)欠点を有する。
Comparative Example 1 Washed α prepared in the same batch as Example 1
- 30 g of slurry of amylase/starch complex was packed into a column with a filter. Elution was performed from the top of the column with 2M saline (PH9) 0.5 to obtain an eluate containing α-amylase at 0.5. Next, this solution was filtered and concentrated to 0.1 with a pore size molecular weight 2+ 104 molecular sheep membrane, and washing with water was repeated twice to finally obtain a desalted α-amylase-containing eluate with a pore size of 0.2. The α-amylase activity in the above solution was measured, and it was confirmed that 90% of the used enzyme activity was recovered. Then,
The above α-amylase-containing eluate was added to a mixture of 100 g of locally produced corn starch and 230 ml of 60°C warm water to prepare a reaction mixture of 530 ml. This was reacted at 80°C for 30 minutes to obtain a reaction solution with DE10.1. This reaction solution has no odor or color derived from the culture filtrate, and is a translucent solution with a starch odor. In this comparative example, as in Examples 1 and 2, no coloration or odor is observed in the reaction solution, but the enzyme solution is diluted by the amount of water added to the reaction system (dilution ratio = 530/300≒1.61). has.

比較例 2 実施例1と同一バツチで調整した培養濾液0.5
をそのまま供試酵素として、局法とうもろこし
澱粉100gと60℃温水230mlとの混合物に加え反応
混液830gを調整した。これを80℃、30分間反応
させ、DE9.2の反応液を得た。本反応液は培養濾
液由来の酸臭を有しかつ黄色に着色している。さ
らに、酵素液として培養濾液をそのまま反応系に
添加するため、培養濾液中の水分量だけ反応液が
大巾に稀釈される(稀釈率=830/330≒2.52)。
Comparative Example 2 Culture filtrate prepared in the same batch as Example 1 0.5
was used as a test enzyme and added to a mixture of 100 g of locally processed corn starch and 230 ml of 60°C warm water to prepare 830 g of a reaction mixture. This was reacted at 80°C for 30 minutes to obtain a reaction solution with DE9.2. This reaction solution has an acid odor derived from the culture filtrate and is colored yellow. Furthermore, since the culture filtrate is directly added to the reaction system as the enzyme solution, the reaction solution is diluted to a large extent by the amount of water in the culture filtrate (dilution ratio = 830/330≈2.52).

実施例 3 可溶性澱粉1.5%、ポリペプトン0.5%、酵母エ
キス0.5%、りん酸第一カリウム0.7%、りん酸第
二ソーダ0.35%、硫酸マグネシウム・7水和物
0.01%及び水道水を含む液体培地(PH7.0)を内
容積500ml坂口フラスコに100mlづつ15本分注し、
120℃で15分間殺菌する。これに、同上培地で好
気的に培養したバシルス・ズブチリス属に属する
α−アミラーゼ生産菌の好気培養液を10mlづつ分
注し、37℃で15時間(120ストロークス/分)で
振盪培養した。この培養液を6000rpmで10分間遠
心分離して菌体を除去し、α−アミラーゼ活性
8.0単位/mlの培養濾液1.5を得た。本培養濾液
中には無機塩1.1%、α−アミラーゼ以外の有機
物1.2%を含む。特に有機物中には酢酸、酪酸を
主成分とする揮発性脂肪酸を約0.5%含むため不
快な酸臭を有する。次に、本培養濾液を5℃に冷
却し、馬鈴薯澱粉10gを添加し、撹拌下で1分間
保持した。上記の液を遠心分離(3000rpm、5分
間)して、洗浄したα−アミラーゼ・澱粉複合体
スラリー25gと洗浄廃液100mlを得た。上記清澄
液と洗浄廃液を合わせ、α−アミラーアゼ活性を
測定した結果、澱粉に吸着しなかつたα−アミラ
ーゼ活性は250単位以下であることから、供試培
養濾液中のα−アミラーゼの99%をα−アミラー
ゼ・澱粉複合体として回収したと推算した。
Example 3 Soluble starch 1.5%, polypeptone 0.5%, yeast extract 0.5%, potassium phosphate 0.7%, sodium phosphate 0.35%, magnesium sulfate heptahydrate
Dispense a liquid medium (PH7.0) containing 0.01% and tap water into 15 100ml flasks each with an internal volume of 500ml.
Sterilize at 120°C for 15 minutes. To this, 10 ml of an aerobic culture of an α-amylase producing bacterium belonging to the genus Bacillus subtilis that had been aerobically cultured in the same medium was dispensed and cultured with shaking at 37°C for 15 hours (120 strokes/min). . This culture solution was centrifuged at 6000 rpm for 10 minutes to remove bacterial cells and α-amylase activity was determined.
1.5 of the culture filtrate with 8.0 units/ml was obtained. The main culture filtrate contains 1.1% of inorganic salts and 1.2% of organic substances other than α-amylase. In particular, organic matter contains about 0.5% of volatile fatty acids, mainly acetic acid and butyric acid, and has an unpleasant sour odor. Next, the main culture filtrate was cooled to 5° C., 10 g of potato starch was added, and the mixture was kept under stirring for 1 minute. The above solution was centrifuged (3000 rpm, 5 minutes) to obtain 25 g of washed α-amylase/starch complex slurry and 100 ml of washing waste liquid. The above clarified liquid and washing waste liquid were combined and the α-amylase activity was measured. As a result, the α-amylase activity that was not adsorbed to starch was less than 250 units, so 99% of the α-amylase in the test culture filtrate was measured. It is estimated that it was recovered as an α-amylase/starch complex.

次いで、局法馬鈴薯澱粉100gと50℃の温水230
mlとの混合物に上記のα−アミラーゼ・澱粉複合
体29gを添加し、355gの反応液を得た。これを
50℃で1時間加熱した結果、反応後のDEは12.3
を示した。本反応液は培養濾液由来の臭や色もな
く、ほぼ透明の澱粉臭を有する溶液である。本実
施例で反応液が複合体に含まれていた15mlの水分
量の分だけ稀釈されるにすぎず、ほとんど供試基
質濃度に近い濃度で反応できる(稀釈率=355/330≒ 1.08)。
Next, add 100g of topical potato starch and 230g of warm water at 50℃.
ml of the above α-amylase/starch complex was added to obtain 355 g of a reaction solution. this
As a result of heating at 50℃ for 1 hour, DE after reaction was 12.3
showed that. This reaction solution has no odor or color derived from the culture filtrate, and is an almost transparent solution with a starch odor. In this example, the reaction solution was only diluted by the amount of water of 15 ml contained in the complex, and the reaction could be carried out at a concentration almost close to the test substrate concentration (dilution ratio = 355/330≈1.08).

比較例 3 実施例1と同一バツチで調整した培養濾液0.5
そのまま供試酵素として、局法馬鈴薯澱粉100
gと50℃温水230mlとの混合物に加え、反応混液
830gを調整した。これを50℃で1時間反応させ、
DE9.2の反応液を得た。本比較例では反応液が培
養濾液由来の酸臭を有し、かつ黄褐色に着色して
いる。さらに、酵素液として培養濾液をそのまま
反応系に添加するため、培養濾液中の水分量だけ
反応液が大巾に稀釈される(稀釈率=830/330≒ 2.51)。
Comparative Example 3 Culture filtrate prepared in the same batch as Example 1 0.5
Use local method potato starch 100 as the test enzyme as it is.
g and 230 ml of 50°C warm water, add the reaction mixture
Adjusted to 830g. This was reacted at 50℃ for 1 hour,
A reaction solution of DE9.2 was obtained. In this comparative example, the reaction solution had an acid odor derived from the culture filtrate and was colored yellowish brown. Furthermore, since the culture filtrate is directly added to the reaction system as the enzyme solution, the reaction solution is diluted to a large extent by the amount of water in the culture filtrate (dilution ratio = 830/330≈2.51).

実施例 4 アスペルギルス・オリゼ(Aspergillus orizae
ATCC 1003)を起源とするグルコアミラーゼの
稀薄溶液(3.5単位/ml、PH6.8、無機塩濃度0.01
%)0.41を10℃に冷却し、馬鈴薯澱粉10gを添加
し、撹拌下で2分間保持した。上記の液を遠心分
離(3000rpm、5分間)して、洗浄したグルコア
ミラーゼ・澱粉複合体スラリー25gと洗浄廃液
100mlを得た。上記清澄液と洗浄廃液とを合わせ、
グルコアミラーゼ活性を測定した結果、澱粉に吸
着しなかつたグルコアミラーゼ活性は120単位以
下であることから、供試培養濾液中のグルコアミ
ラーゼの91%をグルコアミラーゼ・澱粉複合体と
して回収したと推算した。
Example 4 Aspergillus orizae
Dilute solution of glucoamylase (3.5 units/ml, PH6.8, inorganic salt concentration 0.01) originating from ATCC 1003)
%) 0.41 was cooled to 10° C., 10 g of potato starch was added and kept under stirring for 2 minutes. The above solution was centrifuged (3000 rpm, 5 minutes), and 25 g of washed glucoamylase/starch complex slurry and washing waste liquid were added.
Obtained 100ml. Combine the above clarified liquid and washing waste liquid,
As a result of measuring glucoamylase activity, the glucoamylase activity that was not adsorbed to starch was less than 120 units, so it was estimated that 91% of the glucoamylase in the test culture filtrate was recovered as a glucoamylase/starch complex. .

次いで、可溶性澱粉100gと50℃の温水230mlと
の混合物に上記のグルコアミラーゼ・澱粉複合体
29gを添加し、355gの反応液を得た。これを55
℃で40時間反応させた結果DE90.2の糖液を得た。
Next, add the above glucoamylase/starch complex to a mixture of 100 g of soluble starch and 230 ml of 50°C warm water.
29g was added to obtain 355g of reaction solution. This is 55
As a result of reacting at ℃ for 40 hours, a sugar solution with DE90.2 was obtained.

本反応液は無色半透明であり、澱粉臭以外は感
じられない。本実施例では、反応液が、複合体に
含まれていた19mlの水分量だけ(稀釈率=355/330≒ 1.07)、わずかに稀釈されるにすぎない。
This reaction solution is colorless and translucent, with no odor other than starch odor. In this example, the reaction solution was only slightly diluted by the amount of water contained in the complex, 19 ml (dilution ratio = 355/330≈1.07).

比較例 4 実施例4と同一バツチのグルコアミラーゼ溶液
0.4をそのまま供試酵素として、可溶性澱粉100
gと50℃温水230mlとの混合物に加えPHを4.0に調
節し、反応混液730gを調製した。これを55℃で
44時間反応させ、DE90.5の糖液を得た。本比較
例ではグルコアミラーゼの溶液をそのまま反応系
に添加するため、添加グルコアミラーゼ液の水分
量だけ反応液が大巾に稀釈される(稀釈率=730/330 ≒2.21)。
Comparative Example 4 Glucoamylase solution of the same batch as Example 4
0.4 as the test enzyme, soluble starch 100
g and 230 ml of 50°C hot water and the pH was adjusted to 4.0 to prepare 730 g of a reaction mixture. This at 55℃
The reaction was carried out for 44 hours to obtain a sugar solution with DE90.5. In this comparative example, since the glucoamylase solution is directly added to the reaction system, the reaction solution is diluted to a large extent by the amount of water in the added glucoamylase solution (dilution ratio = 730/330≈2.21).

実施例 5 イヌリン1.5%、酵母エキス0.1%、りん酸第一
カリウム0.05%、りん酸第二カリウム0.01%、硫
酸マグネシウム7水和物0.05%、硫酸アンモニウ
ム0.2%、及び水道水を含む液体培地2、PH
5.7)を内容積51の培養槽に入れ、120℃で20分間
殺菌する。これに同上培地で嫌気的に培養したイ
ヌラーゼ生産菌(サツカロミセス・フラジリス:
Saccharomyces fragilis IF0−0288)の菌体懸
濁液100gを添加し、嫌気条件下でPHを5.7に自動
調整しながら30℃で48時間培養した。次いで、こ
の培養液を6000rpmで5分間、遠心分離して菌体
を除去し、イヌラーゼ活性1.1単位/mlの培養濾
液を1.95を得た。本培養濾液中には無機塩0.25
%、イヌラーゼ以外の有機物を0.95%含む。特に
有機物中にはエチルアルコール0.3%の他、酢酸
を含み、アルコール臭と弱い酸臭を有する。
Example 5 Liquid medium 2 containing 1.5% inulin, 0.1% yeast extract, 0.05% potassium phosphate, 0.01% dipotassium phosphate, 0.05% magnesium sulfate heptahydrate, 0.2% ammonium sulfate, and tap water, PH
5.7) into a culture tank with an internal volume of 51 cm and sterilize at 120℃ for 20 minutes. This was then cultured anaerobically in the same medium as the inulase producing bacterium (Saccharomyces fragilis).
100 g of a cell suspension of Saccharomyces fragilis IF0-0288) was added and cultured at 30°C for 48 hours under anaerobic conditions while automatically adjusting the pH to 5.7. Next, this culture solution was centrifuged at 6000 rpm for 5 minutes to remove bacterial cells, and a culture filtrate with an inulase activity of 1.1 units/ml was obtained. Main culture filtrate contains 0.25 inorganic salts.
%, Contains 0.95% organic matter other than inulase. In particular, the organic matter contains 0.3% ethyl alcohol and acetic acid, and has an alcohol odor and a weak acid odor.

次に、本培養濾液0.51(イヌラーゼ550単位含
有、PH5.8)を2℃に冷却した。これにイヌリン
粉末5gを添加し、撹拌下で1分間保持した。上
記の液を遠心分離(3000rpm、5分間)してイヌ
ラーゼ・イヌリン複合体のスラリー19gと清澄液
0.5mlを得た。上記スラリー19gに1℃の冷水20
mlを加えて混合後、遠心分離(3000rpm、5分
間)して洗浄した複合体スラリー21gと洗浄廃液
22mlを得た。上記清澄液と洗浄廃液とを合わせ、
イヌラーゼ活性を測定した結果、澱粉に吸着しな
かつたイヌラーゼ活性は62単位以下であることか
ら、供試培養濾液中のイヌラーゼの89%をイヌラ
ーゼ・イヌリン複合体として回収したと推算し
た。
Next, 0.5 l of the main culture filtrate (containing 550 units of inulase, pH 5.8) was cooled to 2°C. 5 g of inulin powder was added to this and kept under stirring for 1 minute. The above solution was centrifuged (3000 rpm, 5 minutes) to create a slurry of 19 g of inulase/inulin complex and a clear solution.
Obtained 0.5ml. 19g of the above slurry and 20g of cold water at 1℃
ml, mixed, centrifuged (3000 rpm, 5 minutes) and washed 21 g of complex slurry and washing waste liquid
Obtained 22ml. Combine the above clarified liquid and washing waste liquid,
As a result of measuring inulase activity, the amount of inulase activity that was not adsorbed to starch was less than 62 units, so it was estimated that 89% of the inulase in the test culture filtrate was recovered as an inulase-inulin complex.

次いで、イヌリン10gに水190mlを加え80℃に
加熱して溶解した。本イヌリン溶液を50℃に冷却
し、これに上記のイヌラーゼ・イヌリン複合体を
加えて50℃で3時間反応した。反応後のDEを測
定し82.3を得た。
Next, 190 ml of water was added to 10 g of inulin and dissolved by heating to 80°C. This inulin solution was cooled to 50°C, and the above-mentioned inulase-inulin complex was added thereto and reacted at 50°C for 3 hours. The DE after the reaction was measured and found to be 82.3.

本反応液は培養濾液由来のアルコール臭や酵母
臭もなく、無色透明の溶液である。本実施例では
反応液が複合体に含まれていた11mlの水分量の分
だけ稀釈されるにすぎず、ほとんど供試基質液の
濃度に近い濃度で反応できる(稀釈率=221/200≒ 1.11)。
This reaction solution is a colorless and transparent solution without any alcohol odor or yeast odor derived from the culture filtrate. In this example, the reaction solution was only diluted by the amount of water of 11 ml contained in the complex, and the reaction could be performed at a concentration almost close to that of the test substrate solution (dilution ratio = 221/200≒ 1.11). ).

〔発明の効果〕〔Effect of the invention〕

本発明によれば、原酵素液に不純物を含んでい
ても、あるいは酵素の濃度が希薄であつても、反
応系に不純物を混入することなく、かつほとんど
反応系を稀釈することなく基質の高分子物質を加
水分解できる。
According to the present invention, even if the raw enzyme solution contains impurities or the enzyme concentration is dilute, the substrate can be increased without introducing impurities into the reaction system and without diluting the reaction system. Can hydrolyze molecular substances.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一例を示すフロー図である。 1……酵素生産菌培養液、2……培養槽、3,
5……培養液移送配管、4……培養液貯槽、6…
…遠心分離機、7,13……培養濾液移送配管、
8……菌体スラリー、9……菌体スラリー貯槽、
10……菌体スラリー移送配管、11……培養濾
液、12……培養濾液貯槽、14……酵素・固体
基質複合体調製槽、15……酵素・固体基質複合
体懸濁液、16……固体基質スラリー移送配管、
17……酵素・固体基質複合体懸濁液移送管、1
8……水移送配管、19……遠心濾過機、20…
…澱粉スラリー、21……澱粉スラリー貯槽、2
2……水貯槽、23……原料基質移送配管、24
……酵素・固体基質複合体スラリー移送配管、2
5……酵素・固体基質複合体スラリー、26……
酵素・固体基質複合体スラリー貯槽、27……濾
液及び洗浄廃水、28……廃液貯槽、29……濾
液及び洗浄廃水移送配管、30……酵素・固体基
質複合体スラリー移送配管、31……基質加水分
解反応液、32……反応槽、33……スチーム、
34……スチーム供給配管、35……反応液。
FIG. 1 is a flow diagram showing an example of the present invention. 1... Enzyme-producing bacteria culture solution, 2... Culture tank, 3,
5...Culture solution transfer piping, 4...Culture solution storage tank, 6...
...Centrifugal separator, 7,13...Culture filtrate transfer piping,
8... bacterial cell slurry, 9... bacterial cell slurry storage tank,
10... Microbial cell slurry transfer piping, 11... Culture filtrate, 12... Culture filtrate storage tank, 14... Enzyme/solid substrate complex preparation tank, 15... Enzyme/solid substrate complex suspension, 16... solid substrate slurry transfer piping,
17... Enzyme/solid substrate complex suspension transfer tube, 1
8...Water transfer piping, 19...Centrifugal filter, 20...
... Starch slurry, 21 ... Starch slurry storage tank, 2
2... Water storage tank, 23... Raw material substrate transfer piping, 24
... Enzyme/solid substrate complex slurry transfer piping, 2
5... Enzyme/solid substrate complex slurry, 26...
Enzyme/solid substrate complex slurry storage tank, 27...filtrate and washing wastewater, 28...waste liquid storage tank, 29...filtrate and washing wastewater transfer piping, 30...enzyme/solid substrate complex slurry transfer piping, 31...substrate Hydrolysis reaction liquid, 32...reaction tank, 33...steam,
34...Steam supply piping, 35...Reaction liquid.

Claims (1)

【特許請求の範囲】 1 高分子有機物を加水分解酵素により加水分解
する方法において、酵素剤として、加水分解酵素
の水溶液と不溶性又は難溶性の固体高分子基質と
を氷点を越えかつ両者が実質的に反応しない温度
以下で接触させて得られる酵素・基質複合体を用
いることを特徴とする高分子有機物の酵素による
加水分解方法。 2 高分子有機物として、澱粉、セルロース、イ
ヌリン、蛋白質を用いることを特徴とする特許請
求の範囲第1項記載の高分子有機物の酵素による
加水分解方法。 3 加水分解酵素として、α−アミラーゼ、グル
コアミラーゼ、セルラーゼ、イヌラーゼ、プロテ
アーゼを用いることを特徴とする特許請求の範囲
第1項記載の高分子有機物質の加水分解方法。 4 固体高分子基質として、澱粉、セルロース、
イヌリン、カゼインを用いることを特徴とする特
許請求の範囲第1項記載の高分子有機物の加水分
解方法。
[Scope of Claims] 1. In a method of hydrolyzing a polymeric organic substance with a hydrolase, an aqueous solution of a hydrolase and an insoluble or poorly soluble solid polymer substrate are used as enzyme agents at a temperature exceeding the freezing point and both substantially A method for enzymatic hydrolysis of high-molecular organic substances, characterized by using an enzyme-substrate complex obtained by contacting the substance at a temperature below which no reaction occurs. 2. The method for hydrolyzing a high-molecular organic substance using an enzyme according to claim 1, characterized in that starch, cellulose, inulin, or protein is used as the high-molecular organic substance. 3. The method for hydrolyzing a polymeric organic substance according to claim 1, characterized in that α-amylase, glucoamylase, cellulase, inulase, or protease is used as the hydrolyzing enzyme. 4 Starch, cellulose,
2. A method for hydrolyzing a high-molecular organic substance according to claim 1, characterized in that inulin and casein are used.
JP6097385A 1985-03-27 1985-03-27 Hydrolysis of high polymeric organic substance with enzyme Granted JPS61219393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6097385A JPS61219393A (en) 1985-03-27 1985-03-27 Hydrolysis of high polymeric organic substance with enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6097385A JPS61219393A (en) 1985-03-27 1985-03-27 Hydrolysis of high polymeric organic substance with enzyme

Publications (2)

Publication Number Publication Date
JPS61219393A JPS61219393A (en) 1986-09-29
JPH0328194B2 true JPH0328194B2 (en) 1991-04-18

Family

ID=13157873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6097385A Granted JPS61219393A (en) 1985-03-27 1985-03-27 Hydrolysis of high polymeric organic substance with enzyme

Country Status (1)

Country Link
JP (1) JPS61219393A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2615398B2 (en) * 1991-10-31 1997-05-28 農林水産省食品総合研究所長 Method for producing starch granules with modified properties
CA2609341C (en) * 2005-05-23 2011-10-04 Natural Asa Concentration of fatty acid alkyl esters by enzymatic reactions with glycerol

Also Published As

Publication number Publication date
JPS61219393A (en) 1986-09-29

Similar Documents

Publication Publication Date Title
Boyer et al. Extracellular alkaline amylase from a Bacillus species
US4013514A (en) Preparing a reactor containing enzymes attached to dialdehyde cellulose
JPS61115496A (en) Method of liquefying starch
JPH0328194B2 (en)
SU469266A3 (en) The method of obtaining 7-amino-deacetoxycephalosporanic acid
JP3761236B2 (en) Novel β-glucosidase, production method and use thereof
US5202250A (en) Method for isolation and purification of amylases, and adsorbents used for the same as well as devices for the isolation and purification
JPS61249386A (en) Method of purifying high polymer hydrolyzing enzyme
KR830002846B1 (en) Method for preparing syrup containing dextrose
JPS6222590A (en) Dried composition containing high polymer hydrolyzing enzyme and production thereof
Roland et al. Modification of milk using immobilized enzymes
JPH0640823B2 (en) Method for producing purified α-amylase-containing liquid
JPS6120268B2 (en)
JPH0466094A (en) Enzymatic decomposition of starch-containing material and production of oligosaccharide
JP2664586B2 (en) Enzymes capable of synthesizing polyphenol glycosides
CA2005140A1 (en) Stable liquid enzyme concentrate and process for its production
JPH062071B2 (en) Saccharide manufacturing method
JPS62134088A (en) Immobilized enzyme
JPS63126596A (en) Decoloring method for soluble dye by microorganism
JPS6219081A (en) Production of heat-resistant alpha-amylase
CN1970745B (en) Bio-affinity purifying method for lipase
JPH0425794B2 (en)
KR960003644B1 (en) Preparation process of isomalto-oligosaccharide
Kit et al. Patents and literature
CN117802063A (en) Preparation method of starch branching enzyme dry powder preparation